Fast lookup in hash tables with direct rehashing

J. A. T. Maddison

Thames Polytechnic, School of Mathematics, Statistics and Computing, Wellington Street,

London SE18 6PF

The ideas of Mallach (1977) are developed to produce a
practical method for organising a hash table with direct
rehashing so as to reduce the number of probes needed to
locate an item in the table.

Mallach (1977) discusses the possibility of reducing average
access paths in a hash table with direct rehashing by inserting a
new key in a position already occupied, and rehashing the
entry in that position. The algorithm he describes has too large
an overhead in setting up the table. Brent (1973) describes an
algorithm involving a limited reorganisation of the table. This
note describes a method of achieving the same results as
Mallach’s algorithm, but with less overheads, and compares its
operation with Brent’s algorithm.

It is assumed that we have a hashing function that can produce
a series of locations for each key, and that the likelihood of
any of these being free is a function of the table load factor
only. In particular, if two keys are hashed to the same loca-
tion, their subsequent locations will differ. It is also assumed
that once the table has been completed, only a negligibly small
proportion of attempted accesses will be to keys not in the
table, and that all keys are equally likely to be accessed.

Suppose we wish to insert a key A4 in the table. Let the first n
locations generated by the hashing function be X,, X,, ...,
X,. If there is an entry already in X, let subsequent positions
generated by the hash function for this be X,,, X,,,....In
general, if there is an entry at X . . . ,, let subsequent positions
for this be X;y, X; . . .12, Note (Fig. 1) that we have a
binary tree rooted at X, and that the sum of the subscripts of
a node is the number of nodes of the tree that are traversed to
that point. Let X, be an arbitrary node, and S(X,) the sum of
its subscripts.

If X, is free we place 4 there. Failing that we test X, and if
that is free place A there. Next we try X,,. If this is free we
move the entry at X, (B say) to X,, and put 4 at X,. This
reduces the average access time to 4 by at least 2 probes

Fig. 1

188

(X5 might not be free) at a cost of increasing access to B by 1
probe.

More formally we proceed by testing all positions X, for
which S(X,) = n for n = 1, 2, 3, ... until we find a free
position. In terms of Mallach (1977) we search each level of the
tree in turn. The position found may require shifting several
entries, and there will need to be considerable record keeping
both to show what moves will be needed to use the location
found, and also to show which locations should be tested.
How best to do this could be said to depend on the facilities
available in the system used by the programmer. Somethmg
on the following lines would be suitable:

(p[l] contains the next possible location for a key, its posmog
in the table, and hash function coefficients).

next: = |; free: = 2; found: = false;

set p[1] to refer to ﬁrst possible position of new key (X,);
while not found do

if position in p[next] free then found: = true

else set p[free] to refer to next position for key referred to by

sF:sdpy wouy pepe

use information in p to make necessary moves;

Note for each value n of S(X,), X, would be tested first.
would be possible at the expense of more complications tg
test for each value of n the various X, in ascending order of th&
number of changes to the table that wou]d be required if they
were free. It might also be convenient if any coefficients
required by the hashing mechanism were stored when a key ig
first inserted in the table, as this would save the need for extrg
computation when the possibility of rehashing that key i®
considered.

In comparlson with Brent’s algorithm this method wou].g‘
require less probes when inserting a key, since it stops at thg
first free location found, and will give shorter average acces§
paths, since it considers more possibilities. The average numbeg
of probes for inserting a key will be the same as for simplg
direct rehashmg, If the table load factor is « this is well knowg

1

plnext]; g
set p[free+1] to refer to next position for key in tablg
location given by p[next] 5
next: = next+1; free: = free+2 g

f 5
od; 3
§
p=N

156

to be - loge . The average number of probes to accesg

an ltem is the same as in Mallach’s algorithm—the dlﬁ"erence
is that the tree is searched width first rather than depth first—

e ¢]

and he states this to be (-l Z a?* 27% (A derivation of this
-0
result is outlined in Appendix 1).

Mallach’s (1977) Table 1 compares the average number of
probes to locate a key, using his algorithm, Brent’s and simple
direct rehashing. This shows that his algorithm, and hence the
one described in this note, will give the best results, especially
with fairly full tables. Direct chaining will give better results,
but this method would be worth considering when there is a
need to use direct rehashing, and either there is a specific need
to minimise average access paths or each key will, on average,
be accessed several times.

The Computer Journal -Volume 23 Number 2

Appendix Outline of derivation of formula for
average number of probes to locate key
When inserting a key
Let r be the probability that a position in the table is occupied
and p(=1 — r) that it is free.
Probable hashing depth = p + 2(pr + pr?) + 3(pr® + pr* +

pr® + pr) + ..

oo

_1 Z (nr?®" ' — nr?") by summing
r

n=1
series in brackets

[+]
= Y r?*~'~1 by expanding power

n=1

series.

References

BRreNT, R. P. (1973).

MaALLACH, E. G. (1977).
Journal, Vol. 20 No. 2, pp. 137-140.

If final table load factor is o,

o)
_ lj‘“ E 2m-1-1
= _ r dr
aJo

m =1

©
a ()}
m =1

uniformly convergent

(e o]
= 12&”' 2™
o

m =0

Average search depth

“'=1 4r since series is

Reducing the Retrieval Time of Scatter Storage Techniques, CACM, Vol. 16 pp. 105-109.
Scatter Storage Techniques: A Unifying Viewpoint and a Method for Reducing Retrieval Times, The Computer

To the Editor
The Computer Journal
Sir,

Points, polygons, and areas

In the August 1979 issue of The Computer Journal M.A. Sandys
described a method to determine whether a point lies inside or
outside an n-sided irregular figure. In commenting on this paper
Aleph Null described the method, long familiar to quantitative
geographers, for tackling this problem efficiently. I attach a FOR-
TRAN subroutine, written several years ago by R. Franklin of the
University of Ottawa, using the latter method.

Aleph Null also raises the question of calculating the area of a
n-gon using a method similar to that of Sandys’. An efficient
FORTRAN routine using the polygon coordinates is as follows:
Let X(1),... X(N) and Y(1) ... Y(N) be the N polygon vertex
co-ordinates (defined clockwise or anticlockwise around the
polygon), and let X(NV + 1) = X(1), Y(N + 1) = Y(1).

Then:
AREA = 00
DO100I = 1,N
J=I+1
AREA = AREA + (X(J) — X()* (Y(J) + Y(I))/2-0
100 CONTINUE
AREA = ABS (AREA)
computes the polygon area. The algorithm is essentially trapezoidal
integration applied to a closed figure.
Yours faithfully,
MICHAEL DE SMITH
Joan de Smith & Partners Ltd
41 Gloucester Place
London W1H 3PD
27 September 1979

SUBROUTINE PNPOLY(PXePY9XXeYYoNs INOUT)

€ secsvesresntscscescens ®esseessessecssessessscessessecasrrsersnesssPPOL 20
c PPOL 30
c SUSPOUTINE PNPRLY PPOL WO
c PPOL 50
4 PURPNSF PPOL 60
c TO DETERINE wMETHER A POINT 1S INSTOE A POLYGON pPeL 70
4 (LIS
(4 USAGE PPCL 90
c CALL PNPOLY (Pxo PYy XXo YYo Mo INOUT) PPOL 100
c vecL 110
c nnc.pncn 0F TME PANAMFTERS PPCL 120
c = X=CNiRDINATE OF POINT IN AUESTION, pepL 130
c ll s N LOMG VECTOR CORTATNING X=CORRDINATES OF PPOL 150
[4 vERTICES OF POLYGNN, PPOL ted
c vy ® N L0WG VECTOR CONTAINING YeCANRNINATES OF PPOL 170
c VERTICES OF POLYGON, PPOL 1O
c PY ® YaCNACAVIMATE OF POINT IN QUFSTION, PPRL 140
c ~ ® NaEQ OF VFATICES IN THE POLYGON, PreL 190
c ot = Tht SIGVAL RETUNMEDS PPOL 200
[®1 TF 1ML POINT 1S NUTSIDE OF THE POLYGONe PPOL 210
3 0 TF TmE POINT 18 ON AN FOGE 09 AT A VERTEX PP 220
c 1 TF 1wE POINT |S InSJCE OF THE POLYGON, PPNL 230
4 PPGI. 240
c REMARKS opnL. 250
[THE VFRTICFS MAY SE LISTED CLOCKATSE OR ANTICLOCKWISE, PPOAL 260
4 TeE FINST may nPTTONALLY KE KEPFATEDe IF SU N MAY penL 270
c CPYTOVALLY PE INCREASFD 8Y 1, pPOL 200
[4 THE INPUT POLYAAY NAY BF A COMPOUNA PALYGON CONSISTING PPAI. 290
4 OF RCVFRAL SEPARATE SUMPOLYGOVS, IF SO, THE FIRST VFRTEX PP2I 300
c OF EACW SURPPLYGUN PUST WE QEPLATERs AND wHEN CALCULATING PPOL 310
c Ne TmFSF FIRST VENTICES =UST BE CNUNTED TelCE, PPOL 320
c INOUT IS TWF OKLY PAKARETER WwHOSE VALUE 1S CHANGED, PROL 550
c THE STIZF OF TuF ARFLYS X ArD Y MAY RE CHANGED TO PPOL 340
c INCREASF ThF SI2E OF TwE POLYGOMS TN RF MANOLED PPOL 350
c OR Ty OECHEASE CUNE SPaCE wEWIIRCN, PPAL 300
4 ®RITIFS Y RANDALPH FRANRLING UNIVERSTTY OF OTTAwAy 7/70, PPOL 370

The Computer Journal Volume 23 Number 2

)
o
S
>
penL. ;ng

4

4 SURKNUTIHLS AND FUNCTION SUBPRNGRAMS REQIUIRED pepL 39

c NOKE PPOL 40

c vnou 416D

[4 METHCD L w20

c A VEKTICAL LINE IS DRAN THRU TWE POINY IN OQUESTION, IF 1T !ooL 430+

[CNOSSES THE POLYGOWN AN ODD NUMBFR OF TIMESy THEN THE PPOL 44

[4 POINT 1S INSINE UF THE POLYGON, PPOL 45

c PPOL 46

c eesenene cessesccnanene “eesesesstacrrnscacseanss essssessssasensnesPPOL 7T

c PPOL G8GF
00001} OIMENSION X(200)9Y(200) 9 XXIN) oYY (N) PrRO o
000011 LOGICAL MXoMYoNXoNY pruL 516"
000011 00 1 Txi.N PPOL S20=
000012 X(1)8YX(])=PX PPOL S3A)
000014 3 Y(I)avY([)ePy PPOL Su
000021 INVuTE=y PPNL. SS
000022 00 2 T=1en PPOL So
[ILIT3) JELemtO(TeN) PPOL 57
000027 MXZX(T) LGP, 0,0 PPOL S8D
600033 NXZX(J) ,GE,0,0 PPOL 596
000037 MYEY(1) ,GE, 0,0 PROL 600>
002043 AYRY(J),GF,0, -
oo0ocar TIFCLNAT ((MY,0RGNY) ,AND, (MX,OR,NX)) ,0R, (MX,ANDoNX)) GO TO 2 PPOL 620
nO0GSS TFCNOT (MY AND NY (AND L (MX OR(NX) AND, (NOT, (MXsANOGNX))) GO TO 3 PPGL 630
00r0ka GO0 T0 S O
LLLLLYY 3 TFCCYCL)ox) x(1)8V(I)I/(XCII=X(1)3) 204eS PPOL 66
00007s [} InOnY=Q PPOL 67
aoeory RETURN PO ABED
oce0rr S 1NOUTEaTAOUT pocL 69
aoring 2 CONTINVE pPAL 10
nGo10y KETURN peoL 1105
LILIY 3 EnD weoL T2

To the Editor
The Computer Journal

8l/z/ec/aPe,

Sir,

Jumping to some purpose
Arblaster, Sime and Green (1979) find that the use of GOTOs og
similar constructs in coding a simple problem (the ‘hungry hare’}3
can have practical advantages over structured programming andﬁ
cite, in particular, the benefits of the FORTRAN 0 loglcal IFCy
construct. Their programming example is perhaps untypical in thaf
it contains no loops and no procedures which appear more than onc@
in the flow tree (Fig. 1).

The advantage of a balanced logical IF construct is that it leads t@
the most concise representation of the flow tree structure as is>
shown in the followmg ‘hierarchic’ coding where each level of thé‘;>
tree is described in turn:

(a) IF green THEN chop:GOTO b ELSE GOTO ¢
(b) IF juicy THEN grill ELSE roast

(¢) IF hard THEN peel:boil ELSE fry

In this coding the GOTOs perform no logical function, their job
being only to break down the text into manageable sentences. If

¥20c 4

[vegetable is . . .]

?
/g reen

chop
juicy? < <—yes/ no—> > hard?
grill roast peel:boil fry

Fig. 1

Fig. 2(a)

Fig. 2() g

each GOTO statement is replaced by the text to which it points then
the nested form of the program emerges automatically. This kind of
GOTO may be called ‘virtual’ because it affects neither logic nor
structure.

In my view the key to true unstructuredness lies in information, one
bit of which is released by each conditional element (node) in a flow
tree. If information is subsequently absorbed (at an ‘antinode’,
where two branches merge), then the flow diagram is no longer a tree
and unstructuredness occurs. This condition must exist if a loop is
present, but it may be possible to ‘internalise’ the unstructuredness
to a subdiagram, which can then be represented as a single condi-
tional or procedural element.

The WHILE-DO loop is a good example of an unstructured
construct which, because it has one entry point and one exit, may be
replaced by a procedure (branch) in a flow tree.

Reducibility of a task in a two-valued logic environment thus
depends on the availability of such constructs for internalising
processes which absorb information. This is a function of human
language conventions which appear ill equiped to deal with anything
more complex than IF-THEN, WHILE-DO and similar constructs,
as illustrated above.

Unstructuredness is not an inherent feature of any problem since a
flow tree, albeit infinite, can always be constructed. In the interests
of economy, however, it is felt desirable to identify similar condi-
tional and procedural elements in the tree.

In the example Fig. 1(a) of Williams and Ossher (1978), whose flow
tree is shown in Fig. 2(a), the urge arises to identify the two pro-
cedures B, which happen to be identical. This cannot be done with-
out losing structure unless the unstructuredness is internalised to a
complex conditional element as in Fig. 2(b). Although g* is a
feasible elementary construct words fail to describe it concisely and
the diagram remains, for practical purposes, unstructured.

It may be observed that the arc in Fig. 2(b) linking g2 and the
antinode represents a ‘real’ GOTO, which is quite distinct from the
benign ‘virtual’ kind. It is unfortunate that these two constructs,
share the same name and are thus tarred with the same brush. If,
for example, the ‘virtual’ GOTO is renamed REFER then the
confusion, and much of the acrimony, may be avoided since it is
possible to detect and flag the case where a label is referred to by
more than one REFER statement.

Yours faithfully
N. B. TAYLOR

‘Hook-a-gate’
Eversley Road
Yately, Surrey
26 September 1979

References

ARBLASTER, A. T., SIME, M. E. and GreeN, T.R. G.(1979) Jump-
ing to some purpose, The Computer Journal, Vol 22 No. 2,
pp. 105-109.

WiLLiaMs, M. H. and OssHer, H. L. (1978). Conversion of un-
structured flow diagrams to structured form, The Computeg
Journal, Vol 21 No 2 pp. 161-167.

To the Editor
The Computer Journal

Sir,

B//:Sd1Y WO} PapEojuM

Points and n-sided irregular figures
I have just noticed your correspondence about determining whether 8
point is inside or outside the given n-sided irregular figure and
would draw your attention to the great many solutions to this
problem that have been produced in the field of Urban and Regnon@
studies over the past seventeen years.

When the Department of the Environment considered this subj
in 1975 in their Research Report 2 (Point-in-Polygon Project Stage
they identified fourteen algorithms that solved the problem and (8
these nine had been published.
Yours faithfully,
MERVYN BRYN-JONI

Borough of Haringey
Hornsey Town Hall
The Broadway
Crouch End
London N8 9JJ
24 October 1979

Book review

Mini/Microcomputer Hardware Design by G. D. Kraft and W. N.
Toy, 1979; 514 pages. (Prentice-Hall, £12-80)

This book analyses different approaches to small computer design.
By concentrating on conventional small machines however, the
treatment must be incomplete. Important architectural features that
are traditionally software, but which increasingly affect the hard-
ware, e.g. semaphore control, are left out. And large machine
features such as virtual memory, which are becoming available on
micros, are given little attention.

Chapters 1 to 6 review the structure of microcomputers and some of
the earlier microprocessors (up to 8080, 6800). It shows how funda-
mental ideas, for example unified bus structures, and instruction
code formats, have been incorporated into different machines. The
text demands a basic understanding of computer systems by the
reader, for ideas and words are often used without introduction.
Chapter 7 describes the design of microcontrol units for micro-
program sequencing of instruction fetch and execution cycles. In
comparison with the rest of the book, this material is excessively

190

udy 01 uo 3senb Aq 2G628€/881/Z/cz/oRmIMe/|ul

detailed, and could usefully have been restricted to allow discussiog
of ROM-based microprogram techniques, which are excluded®
Chapters 8 and 9 discuss program controlled input/output and direct
memory access. The treatment of interrupts, for example, is compre-
hensive, but there is no discussion of modern programmable I/O
controllers or special purpose I/O processors. The book’s five year
gestation clearly shows.

The useful and interesting examples are peculiar in that many cannot
be tackled using this book. For example distributed computing is
recognised as important, and several examples deal with it. However,
there is only the briefest treatment of the subject in the text itself.
Likewise error control and testing are practically ignored except in
the examples. Perhaps there is a second book under way. Hence,
while its choice of material is too uneven to provide a complete study
of the subject, the book reviews and compares many approaches to
hardware design. It is clearly written, and would make a useful back-
up reference for system designers and students.

R. W. ProwsEe (Uxbridge)

The Computer Journal Volume 23 Number 2

