Fig. 2(a)

Fig. 2() g

each GOTO statement is replaced by the text to which it points then
the nested form of the program emerges automatically. This kind of
GOTO may be called ‘virtual’ because it affects neither logic nor
structure.

In my view the key to true unstructuredness lies in information, one
bit of which is released by each conditional element (node) in a flow
tree. If information is subsequently absorbed (at an ‘antinode’,
where two branches merge), then the flow diagram is no longer a tree
and unstructuredness occurs. This condition must exist if a loop is
present, but it may be possible to ‘internalise’ the unstructuredness
to a subdiagram, which can then be represented as a single condi-
tional or procedural element.

The WHILE-DO loop is a good example of an unstructured
construct which, because it has one entry point and one exit, may be
replaced by a procedure (branch) in a flow tree.

Reducibility of a task in a two-valued logic environment thus
depends on the availability of such constructs for internalising
processes which absorb information. This is a function of human
language conventions which appear ill equiped to deal with anything
more complex than IF-THEN, WHILE-DO and similar constructs,
as illustrated above.

Unstructuredness is not an inherent feature of any problem since a
flow tree, albeit infinite, can always be constructed. In the interests
of economy, however, it is felt desirable to identify similar condi-
tional and procedural elements in the tree.

In the example Fig. 1(a) of Williams and Ossher (1978), whose flow
tree is shown in Fig. 2(a), the urge arises to identify the two pro-
cedures B, which happen to be identical. This cannot be done with-
out losing structure unless the unstructuredness is internalised to a
complex conditional element as in Fig. 2(b). Although g* is a
feasible elementary construct words fail to describe it concisely and
the diagram remains, for practical purposes, unstructured.

It may be observed that the arc in Fig. 2(b) linking g2 and the
antinode represents a ‘real’ GOTO, which is quite distinct from the
benign ‘virtual’ kind. It is unfortunate that these two constructs,
share the same name and are thus tarred with the same brush. If,
for example, the ‘virtual’ GOTO is renamed REFER then the
confusion, and much of the acrimony, may be avoided since it is
possible to detect and flag the case where a label is referred to by
more than one REFER statement.

Yours faithfully
N. B. TAYLOR

‘Hook-a-gate’
Eversley Road
Yately, Surrey
26 September 1979

References

ARBLASTER, A. T., SIME, M. E. and GreeN, T.R. G.(1979) Jump-
ing to some purpose, The Computer Journal, Vol 22 No. 2,
pp. 105-109.

WiLLiaMs, M. H. and OssHer, H. L. (1978). Conversion of un-
structured flow diagrams to structured form, The Computeg
Journal, Vol 21 No 2 pp. 161-167.

To the Editor
The Computer Journal

Sir,

B//:Sd1Y WO} PapEojuM

Points and n-sided irregular figures
I have just noticed your correspondence about determining whether 8
point is inside or outside the given n-sided irregular figure and
would draw your attention to the great many solutions to this
problem that have been produced in the field of Urban and Regnon@
studies over the past seventeen years.

When the Department of the Environment considered this subj
in 1975 in their Research Report 2 (Point-in-Polygon Project Stage
they identified fourteen algorithms that solved the problem and (8
these nine had been published.
Yours faithfully,
MERVYN BRYN-JONI

Borough of Haringey
Hornsey Town Hall
The Broadway
Crouch End
London N8 9JJ
24 October 1979

Book review

Mini/Microcomputer Hardware Design by G. D. Kraft and W. N.
Toy, 1979; 514 pages. (Prentice-Hall, £12-80)

This book analyses different approaches to small computer design.
By concentrating on conventional small machines however, the
treatment must be incomplete. Important architectural features that
are traditionally software, but which increasingly affect the hard-
ware, e.g. semaphore control, are left out. And large machine
features such as virtual memory, which are becoming available on
micros, are given little attention.

Chapters 1 to 6 review the structure of microcomputers and some of
the earlier microprocessors (up to 8080, 6800). It shows how funda-
mental ideas, for example unified bus structures, and instruction
code formats, have been incorporated into different machines. The
text demands a basic understanding of computer systems by the
reader, for ideas and words are often used without introduction.
Chapter 7 describes the design of microcontrol units for micro-
program sequencing of instruction fetch and execution cycles. In
comparison with the rest of the book, this material is excessively

190

1dy 01 uo 1senb Aq £90£8¢/061/z/cz/RNE/ Ul

detailed, and could usefully have been restricted to allow discussiog
of ROM-based microprogram techniques, which are excluded®
Chapters 8 and 9 discuss program controlled input/output and direct
memory access. The treatment of interrupts, for example, is compre-
hensive, but there is no discussion of modern programmable I/O
controllers or special purpose I/O processors. The book’s five year
gestation clearly shows.

The useful and interesting examples are peculiar in that many cannot
be tackled using this book. For example distributed computing is
recognised as important, and several examples deal with it. However,
there is only the briefest treatment of the subject in the text itself.
Likewise error control and testing are practically ignored except in
the examples. Perhaps there is a second book under way. Hence,
while its choice of material is too uneven to provide a complete study
of the subject, the book reviews and compares many approaches to
hardware design. It is clearly written, and would make a useful back-
up reference for system designers and students.

R. W. ProwsEe (Uxbridge)

The Computer Journal Volume 23 Number 2





