A canonical schema for a generalised data model with

local interfaces
S. M. Deen

Department of Computing Science, University of Aberdeen, Aberdeen, Scotland

Based on the concept of a canonical data model, a global schema is proposed for a generalised data
base system capable of supporting interfaces to other systems—notably Relational, Codasyl and
Adabas—through appropriate local schemas and data manipulation languages. The proposed
global schema consists of enfries in the form of normalised relations describing data and data
relationships. The investigation of the Relational, Codasyl and Adabas interfaces demonstrates the
capacity of the model to support all of them effectively. However, the model is found to impose on
the local models certain constraints which help remove inconsistencies and enhance user facilities.
The findings of this study are being implemented in a prototype called PRECI.

(Received February 1979)

1. Introduction

There appears to be a general concensus of opinion that future
data base systems (DBSs) should provide both the Codasyl and
Relational facilities under the same umbrella. It is also believed
by many that a canonical data model that can interface not only
with the Codasyl and Relational models, but also with others—
notably Adabas, IMS, Total—would be a very useful facility,
particulary in a distributed environment where all users could
participate through their local interfaces. These considerations
prompted us to investigate the feasibility of such a canonical
data model with a global schema in a canonical form to be
described by normalised relations.

We chose this relational framework chiefly because of its
elegance, conciseness and convenience in data analysis and
data description (Maddison, 1978; DDSWP, 1978). It is
assumed that a canonical data model, such as the one we are
considering here, will be based on a three level architecture of a
global schema, a storage schema and local schemas or sub-
schemas (supporting the local interfaces) as shown in Fig. 1.
In this report we shall describe the content and the structure of
the global schema—also referred to as the canonical schema—
and its inherent capabilify to interface with the Relational,
Codasyl, and Adabas models. The plan of the paper is as
follows: in Section 2, we define a canonical data model,
followed in Section 3 by the description of our proposed
global schema. The three local interfaces are examined in
Section 4, with a conclusion in Section 5.

2. Canonical data model

We define a canonical data model as ‘a model of data which
represents the inherent structure and the usage constraints of
the data in a standardised form, independent of its local
models’.

The local models are the interfaced models as seen by the users
through the local schemas. Any existing data model should in
principle be able to act as a local model. The global schema of
such a canonical model should be composed of the following
entries:

(a) entity record descriptions

(b) entity relationship descriptions
(c) access constraints

(d) integrity constraints.

The first two entries describe the data and their inherent
characteristics and the last two the usage constraints that need
to be imposed for the protection of data from unauthorised
usage and from damage and corruption as discussed below.
‘Access constraints’ implies the constraints or controls that

The Computer Journal Volume 23 Number 3

Application Application Application Application
programs programs programs programs
Local schema Local schema Local schema Local schema
(Relational) {Codasyl) (Codasyt) (Adabas)
Query z Query
View GLOBAL SCHEMA Vien
Query Query
user user

Storage schema

ﬁﬁ% Physical storage

Fig. 1 Architecture of PRECI. The same global schema may support
more than one storage schema each with its own data base.
There can be any number of local schemas for every local
model, each local schema catering for an arbitrary number of
application programs

must be exercised to prevent unauthorised users from accessing
the data base. These constraints are usually imposed by
establishing locks or passwords on selected items or groups of
items (Deen, 1977a), and can be specified conditionally if
desired through predicates; their specification in a relational
global schema is fairly straightforward (Michaels et al, 1976;
Date, 1977). There are however other forms of access controls
particularly those relating to data ownerships and transfer of
authorisation, which seem to generate some open-ended
problems without any comprehensive theoretical foundation
(Griffith and Wade, 1976; Chamberlin et al, 1975; Fagin,
1978).

A data base must always be maintained in an error free and a
self-consistent state (Deen, 1977a; Hawley et al, 1975; BCS
DBAWG, 1975): 1t is preferable to apply all the necessary
controls at the global level so that the system can automatically
enforce them, rather than leaving them to the local level relying

201

¥202 Iudy 01 uo 1senb Aq £¢1G/¢/102/€/cZ/e101e/|ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

on the frailties of individual programmers. Some of these con-
straints such as the validation check on individual items for the
permissible characters and range of values can be specified and
enforced without much problem as has been done in the
Codasyl model, but others are not so easy to implement.
Although it is relatively trivial to state the validation and
consistency requirements for a given record occurrence, any
attempt to generalise them into an abstract form suitable for
specification in the global schema is likely to be difficult. There
is also a question of cost effectiveness, since it is often sub-
stantially cheaper if the enforcement of integrity controls is left
to the application programmers.

We use the term access path to imply facilities to access
entity records in specified orders, or by specified keys. Access
paths determine access efficiency, and therefore the data base
administrator (DBA) should be free to alter them periodically
to improve the overall performance of the data base (Deen,
1977a; BCS DBAWG, 1975), and as such they should be
invisible at the local level, that is the change of access paths
should not require changes in the local schema and application
programs. This means that the global schema is not the rightful
place for access path specification.

3. Global schema

In this report we shall consider only a basic global schema
consisting of entity records and their relationships, but not
usage constraint which will be dealt with in a separate docu-
ment later.

3.1 Representation of entity records .

Entity records in our global schema are represented as relations
in 4NF (Sharman, 1975; Fagin, 1977; Zaniolo, 1976), which
may be defined as

‘A normalised relation is in fourth normal form, if every multi-
determinant is a candidate key.’

If domain A multidetermines domain B, that is if B is multi-
valued dependent on A, then A is multideterminant. Both A
and B can be composite. Since the presence of fnultivalued
dependency and its subset (full) functional dependency can-
not be automatically deduced from the data by the system
(Chamberlin, 1976), it will be up to the DBA to ensure, by
using aids if available, the correct normalisation of the data. In
the remainder of this paper, we shall assume, unless otherwise
qualified, that all relations are correctly normalised, and hence
the terms (entity) record and tuple, and (entity) record type
and relation type are synonymous.

The occurrences of each entity record type in our model are
identified by the values of an Entity Identifier Domain (EID)
which is required to be visible at the local level so that the
application programmers can use its values when necessary to
identify entity records, and therefore EIDs must be specified in
the global schema. If an EID is composite, we shall assume the
order of the appearance of its components in the global schema
as the order of their concatenation (see Fig. 4).

Although it is increasingly recognised that the normalised
relation is the most convenient tool for representing data
(Maddison, 1978; DDSWP, 1978), there is a small number of
cases where this might be debatable. Consider, for instance,
the problem of representing data on bus routes, each route being
defined by a route number and a set of bus stop names.
Assuming that each route has exactly the same » number of
stops, then we can represent this data by a relation of n + 1
meaningfully named domains, including one domain for the
route number. However, if the number of stops vary from route
to route, then we must break this repeating group by allocating
to each bus stop a unique stop number, from 1 to n, in the
correct sequence for n number of stops. We can then represent

202

the data by a relation containing route number, stop number
and stop name. Additional domains containing other infor-
mation on each bus stop, such as the frequency of arrivals, can
also be included there.

In the above example, we had to create a bus stop number
which did not exist. If the problem was represented by a
record type with repeating group, then such creation would not
have been necessary; however we believe that the introduction
of an extra domain is a small price to pay for the convenience
of the relational representation. Besides it can be argued that
since sequencing is an inherent characteristic of that data, the
information on sequencing should ideally be represented as
part of the data, in the form of an extra domain containing
the relative position. The representation technique used in the
earlier example of a fixed number of bus stops should be
considered as an expedient, rather than rigorous, procedure.
That expedient works only if a fixed number of atomic
domains are involved. (Note that this problem can also
be solved without using bus stop numbers, if we represent a
pair of adjacent bus stops, rather than a single stop. Apart
from the redundancy introduced, it will not permit other
information on individual bus stops to be maintained; but it
can store information on the pair, for instance the distance
between them.)

The problem of the type discussed above will arise whenever
information on sequence is an inherent characteristic of data,
as found in the data for routes through a set of points, or for
shapes of irregular polygons derived from the vertex co-
ordinates (Brown, 1978).

3.2 Representation of entity relationship

Relationships among entities are categorised as one to many
(1:N), and many to many (M:N); these relationships are
logical in the sense that the same entity can participate in many
such relationships. Since an M: N relationship can be resolved
conveniently into two 1:N relationships, a generalised DBS
should at least facilitate an effective representation of 1:N
relationships. We shall consider below a representation
technique for 1:N relationships, followed by that of M:N
relationships.

1: N relationship

In a one to many relationship one record (owner) is logically

linked to N records (members). In general these related records

can belong to one or more record types, and in that respect they

may be subdivided as follows:

(a) a single record type contributing to both the owner and the
members

(b) two distinct record types, one for the owners, and the other
for the members

(c) several record types for owners, and several other record
types for members

(d) the same as (c), but owners and members being able to
share some or all of the record types.

Relationships of the type (a) and (b) are adequately represented

by what is sometimes referred to as the ‘single member’ set type

of the Codasyl model; its characteristics are:

[oeparTMenT| [pEPARTMENT. | [TEAHER | | TEAcHER | [TeAcHER |

[_starr | [crowo |} [recent) [aovisor | [weo)

[veacuer | [stuoent | [stuoewt | [stwoent | [teacher |

Fig. 2 Some codasyl set types

The Computer Journal Volume 23 Number 3

¥202 Iudy 01 uo 1senb Aq £¢1G/¢/102/€/cZ/e101e/|ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

a set name

one owner record type

one member record type

(the same record type may be declared as both owner and
member).

A set (occurrence) has one owner record, and zero, one or more
member records.

As an example let us consider the relationship among three

record types, DEPARTMENT, TEACHER and STUDENT
with the following five set types, each representing a collection
of 1:N relationships (Fig. 2).
In a university, each student is usually allocated a regent and
an advisor; the regent acts as the academic guardian, but leaves
it to the advisor to suggest suitable courses. It is assumed that a
student belongs to only one department (the department of
his/her Honours subject) which is not necessarily the depart-
ment of his/her regent or advisor. The Codasyl set type also
permits more than one record type as members (but only one
record type as owner). We wish to extend the scope of these
‘multi-member’ set types to fulfil the requirements in (c¢) and (d)
by introducing the concept of role sets as proposed by Bachman
(1977). Consider for instance two set types, TRANSPORT and
WORK-FORCE as shown in Fig. 3.

PROPRIETOR
TRANSPORT |

Fig. 3 Role sets

EMPLOYER

[wore-Force |

A proprietor can be a person, firm, or a government depart-
ment, whereas a vehicle can be a car, truck, or a van, each from
a different record type. Therefore PROPRIETOR and
VEHICLE represent not record types, but roles played by a
collection of record types. Similarly an employer can be a
person, a firm or a government department, and an employee a
person. There are a number of problems in such representations
which we intend to deal with, along with some other associated
issues, in a later document; in this paper we shall restrict our-
selves to the relationships of types (a) and (b) only.

1D NAME TYPE SIZE OWNER

REL DEPARTMENT

EID DNO CHAR 5

DOM DNAME CHAR 20

REL TEACHER

EID STAFF SET DEPARTMENT
EID TNO INTE 5

DOM TNAME CHAR 30

DOM HEAD SET TEACHER

REL STUDENT

EID SNO INTE 4

DOM SNAME CHAR 20

DOM CROWD SET DEPARTMENT
DOM REGENT SET TEACHER
DOM ADVISOR SET TEACHER
DOM YEAR INTE 4

Fig. 4 A canonical schema. Please note that SIZE here denotes the
logical, but not the stored, size of attribute values

The Computer Journal Volume 23 Number 3

An example of the proposed canonical schema with five set
types, STAFF, HEAD, CROWD, REGENT, and ADVISOR
is shown in Fig. 4. In our representation, set names are
replaced by domain names which contain the entity identifiers
of the owners. Assuming that TNOs are unique only within
department, the EID of relation TEACHER is (STAFF)
{TNO), that is (DNO><TNO).

Since the teacher’s entity identifiers include department’s
entity identifiers, the teachers—in the Codasyl term—are the
Automatic Fixed members of set type STAFF. which Kay
(1975) calls ‘dependent’ set type. In relation TEACHER, the
identity of two separate domains STAFF and TNO making the
EID is maintained, but this is not so in set domains REGENT
and ADVISOR (of relation STUDENT), each of which
contains the entity identifiers of teachers as a single attribute
concatenated from DNO and TNO. This protects the students
from automatically becoming members of his/her advisor’s and
regent’s departments, in addition to his/her own (through set
domain CROWD), and thus prevents confusion which will
otherwise ensue. If students are required to be members of
their regents’ department, then a separate set domain must be
provided for the purpose.

If in implementation every entity record in the data base is
given an unique internal identifier independent of storage, to be
referred to in this paper as surrogate (Hall et al, 1976), then in
storage the owner identifiers can be replaced by the appro-
priate surrogates. Note also that the storage characteristics of
the attribute values are meant to be specified in the storage
schema, the global schema gives their types and logical sizes
only.

Each 1: N relationship discussed above has an owner record;
in general, however, there can be logical collections of records
without having any owners. Consider for instance employee
records which can logically be grouped as employees on over-
time, employees on monthly salary, employees on commission
etc. These groups do not have any owners and are not neces-
sarily disjoint, and therefore suggest a need to extend the
capability of our set types to include ownerless sets, one set per
set type, which can be generated by storing special indicators
in the set domain, say 1 for the members of the set and 0 (or
space) otherwise.

M : N relationships

The entries discussed above show our technique of specifying
1: N relationships. To represent M: N relationships, we follow
the link record approach (Deen, 1977a) which involves splitting
a network into 2 one to many relationships. For instance if we
have COURSE and STUDENT records, where each course is
taken by a number of students and each student takes a number
of courses, then we create a third record type, often referred to
as LINK records, one link record for each pair of related
entities, each record basically containing two entity identifiers,
say course number (CNO) and student number (SNO).
Additional information, such as a student’s performance
(EXAM) in a course, can also be stored there. Using these link
records the network can be represented by two set types, say
CRS-SET and STD-SET, one owned by COURSE and the
other by STUDENT, with LINK records as members in both,
as shown below:

[sto-ser_J]

COURSE

203

¥202 Iudy 01 uo 1senb Aq £¢1G/¢/102/€/cZ/e101e/|ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

In the global schema we add the following entries:

ID NAME TYPE SIZE OWNER
REL COURSE

EID CNO CHAR 6

DOM CNAME CHAR 20

REL LINK

EID CRS-SET SET COURSE
EID STD-SET SET STUDENT
DOM EXAM INTE 3

The relationship between the student and the course is of
interest to us and hence can be assumed as an entity (Senko et
al, 1973), its entity identifier being made up of CNO and SNO.
It is up to the user to specify the order of concatenation, but
here we have arbitrarily assumed CNO as the major key. The
advantage of using link record approach is that it not only
simplifies network representation but also provides a proper
construct for storing information on the relationship itself.

4. Interfaces

The global schema specified above is capable of supporting
local interfaces to other existing models through appropriate
local schemas—to be constructed in accordance with the
specification of the local model, with minimal variation. The
local user should be able to access the data base for both the
retrieval and update purposes using the DML commands of
the local model. However there will be some inevitable
variations in the specification of those local schemas and DML
commands; the possible sources of these variations are:

1. Entity records

Local records may be constructed from some or all of the
domains of the global records, using surrogates to identify each
global record, particularly if EID’s are absent in the local
records. If local records must contain repeating groups, they
can only be provided by reconstruction, presumably only from
the Automatic Fixed class of set types.

2. Entity relationships

Most data base systems provide some form of 1:N relation-
ships, usually more restrictive than that for which we have
allowed. Our model is therefore upward compatible, except in
the case of Codasyl ‘multi-member’ set types and direct
representation of M: N relationships. It is however possible to
support both indirectly.

3. Access paths

The removal of access paths to the storage schema will affect
some of the current practices, and will require changes in the
affected areas of the local model. These changes may in fact
provide more flexibility in data manipulation.

4. Usage constraints

The need to impose access and integrity constraints on a piece
of data depends on the usage of that data, independent of the
model employed to process that data. If the model cannot
support all the constraints that need to be imposed, then some
of them will be left unattended, thus risking breach of access
and loss of data base integrity. A canonical schema of a
generalised data base system should therefore support as many
controls as feasible, irrespective of their impact on the local
models. Obviously the security of the data base must be
regarded as paramount, and cannot be jeopardised by relaxing
the constraints for a local model, just because it does not hap-
pen to support them; on the contrary, the local models must be
forced to conform to all the constraints that can be specified in
the canonical schema. This will imply some inevitable changes
in the local schemas and DML commands. For instance in

204

Adabas, one can delete the owner of a non-empty set, which we
might not allow. If a record type is declared as Automatic
Fixed member (see later) of a set type, no local user should be
able to violate it either. However since we have not yet specified
the access and integrity protection facilities in our canonical
schema, it is too early to consider this problem in this paper.

We shall examine in this section three potential local models,
namely Relational, Codasyl and Adabas as regards item (a), (b)
and (c) listed above. Of these, only the Codasyl interface will be
discussed in some depth.

4.1 Relational interface

Since the global schema consists of normalised n-ary relations,
a relational subschema will be the easiest to interface. Each
local relation may consist of only a subset of the domain in the
global relation interpreting set domains as foreign keys and
EIDs as primary keys. For instance one might specify relation
STUDENT as

RELATION STUDENT

PKEY SNO INTE 6
DOM REGENT CHAR 10
DOM CROWD CHAR 5

Renaming of global datanames should be permitted in the local
schema. The system however may not allow the deletion of an
owner tuple, unless all its member tuples (that is where this
tuple appears as the foreign key) are deleted first. Relational
algebra or a calculus based sublanguage can be used as either a
query language or a data manipulation language (with an
underlying host language) or both.

4.2 Codusyl interface

In considering a Codasyl interface, we shall confine ourselves
to only the major features of the Codasyl model (1975; 1978),
namely:

Records and sets.

Set membership class.

Set selection criteria.

Record keys and Search keys.

Set order criteria and set order keys.
Subschema entries.

AR e

Records and sets

The Codasyl model permits records with repeating groups
which, as indicated earlier, can be generated for our interface
without heavy overheads from the Automatic Fixed class of set
types. There should not be any problem in defining local
records from only a subset of the domains in the global records
with optional renaming and regrouping. Since our set types are
identical with Codasyl ‘single member’ set types, there is no
interfacing problem, except for the ‘multi-member’ set types
which at present can be supported only indirectly.

Set membership class
In the Codasyl models, records can be made members of a set
either automatically (the AUTOMATIC option) by the data
base control system (DBCS), or by the application programmer
(the MANUAL option) using the CONNECT commands.
The automatic option should not be viewed as a mere labour
saving device, because it contains an integrity declaration for
the DBCS which must ensure that all the entries of the relevant
set domain contain only valid owner identifiers, permitting
null values solely in the case of the Manual option.

Given a member record, its removal from the membership is
controlled by three Codasyl options: FIXED, MANDATORY
and OPTIONAL. If Fixed, the record cannot change its set

The Computer Journal Volume 23 Number 3

¥202 Iudy 01 uo 1senb Aq £¢1G/¢/102/€/cZ/e101e/|ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

(i.e. the owner within the set type) until the record is deleted; if
Mandatory, it can be switched from one set to another within
the same set type, but must remain a member of the declared
set type. If Optional, member records can be removed without
any restriction. Therefore they also represent integrity con-
straints. There is no doubt that membership class should be
supported in canonical global schema as part of integrity
constraints.

Set selection criteria

The set selection clause in the Codasyl model specifies criteria
for 'selecting the correct set occurrence of a set type by the
DBCS, for the following cases:

(a) to place an Automatic member in the correct set after its
insertion into the data base by the STORE command

(b) to change the set membership of a record by the MODIFY
command

(c) to select a record from a set type by the record selection
format 7 of the FIND command.

These are access facilities which depend not only on the local
model but also on the application, and hence should be
specified only on the local schema.

Record keys and search keys

The difference between a record key and a search key is that
while the former is used to access an occurrence of a record type
irrespective of its set types, the latter operates only within a
named set type; in other words, if a set domain is used as the
major key in a record key, then the result is a search key; and
yet in the Codasyl model, the record keys must be specified in
the Codasyl schema and search keys in the application pro-
gram, access to the data base being faster if the search key used
by an application program (in record selection format 7 of the
FIND command) happens to be supported in the storage
schema. Since both are access facilities and functionally
equivalent, we propose not to make any artificial distinction
between them—both must be declared in the application
programs irrespective of whether or not they are specified in
the storage schema.

Set order criteria and set order keys

In the Codasyl model, one can access the first, last, or n™
member record, or the next or prior member record with
respect to a given member record, of a set by using the record
selection format 4 of the FIND command. This selection of the
member record is made in accordance with the set order
criteria specified in the Codasyl schema. The options provided
for this criteria are: FIRST, LAST, NEXT, PRIOR,
SYSTEM-DEFAULT, WITHIN RECORD-TYPE, and
DEFINED KEYS. It seems that only the SYSTEM-
DEFAULT and DEFINED KEY options are really important.
Insertion of records into a set as FIRST or LAST in the set, or
NEXT or PRIOR to another member of the set, loses signifi-
cance due to subsequent updates as they are not sorted, and
thus become equivalent to the SYSTEM-DEFAULT option
which is unordered. The WITHIN RECORD-TYPE and
DEFINED KEY options are specified for sorting, a separate
KEY clause (referred to in this paper as set order key) being
defined under each member subentry. In the WITHIN
RECORD-TYPE option the members are sorted according to
the KEY clause within each record type, although the record
name may not necessarily be used as the major key; in the
DEFINED KEYS option, on the other hand, record name can
be specified as the major key, and if it is not specified then all
member records are sorted irrespective of record types. There-
fore the WITHIN RECORD-TYPE does not have much to
offer and hence can be dropped. We are thus left with only two

The Computer Journal Volume 23 Number 3

MAPPING DIVISION.

ALIAS SECTION.

AD CROWD BECOMES POP.
SN CROWD BECOMES MOB.
AD STAFF BECOMES DEPT.

STRUCTURE DIVISION.

SET SECTION.

SD STAFF
SET SELECTION THRU DATA-BASE-KEY EQUAL
TO DEPT.

SD REGENT
SET SELECTION THRU CURRENT OF SET.

SD MOB
SET SELECTION THRU STRUCTURAL
CONSTRAINTS POP EQUAL TO DNO.

RECORD SECTION.

01 STUDENT.
02 SNO PIC 9(4) COMP.
02 POP PIC X(5).
02 SNAME PIC X(20).
01 TEACHER.
02 DEPT PIC X(5).
02 TNO PIC 9(5).
01 DEPARTMENT.
02 DNO PIC X(5).
02 DNAME PIC X(20).
Fig. 5 A possible subschema (Title Division and Realm Section are
not shown)
options:

(a) an unsorted option which can be provided as an efficient
system default option

(b) a sorted option in accordance with a defined set order key,
(which might optionally include record name as the major
key if ‘multi-member’ set types are allowed).

The set order criterion is used to provide access paths and hence
should be specified in the storage schema. Access should be
faster if the key declared in the DML command ORDER
coincides with the storage schema specification. The scope of
the record selection format 4 could also be extended, in line
with the facilities of format 7, by including in it an optional
user defined key which may contain surrogate. As with search
keys, access should be faster if this key is present in the storage
schema; if format 4 is used without a key, then the DBCS
should automatically invoke the storage schema specification.

Subschema entries

Most subschema entries will remain unaffected in our model
except for the ALIAS SECTION and set selection criteria. To
avoid confusion between a set name and the possible use of the
same set domain as a data item in the record, we need to
provide additional renaming facilities. In the attached sample
subschema (Fig. 5) we have used SN as a new exclusive entry
for renaming set names, but alternative approaches are also
possible. Note that the system should be able to distinguish
between a set name and a domain name without requiring such
renaming. The set selection clauses used are drawn from the
provisions of the Codasyl schema (but with somewhat reduced
verbosity), except the data base key (that is surrogate) option
which we have retained as a useful facility although no longer
supported in the Codasyl schema.

4.3 Adabas interface

Like the Codasyl model, Adabas (Adabas, 1971; Olle, 1978)
also permits records with repeating groups and multiple record
keys (descriptors in the Adabas term) per record type. A

205

¥202 Iudy 01 uo 1senb Aq £¢1G/¢/102/€/cZ/e101e/|ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

descriptor itself can have repeating groups thus becoming
variable length. There does not appear to be any great advan-
tage in supporting these repeating groups in our interface,
particularly when the global records are normalised; but of
course one can provide them, if need be, through a special
mapping.

Like the relational model, 1:N relationships in Adabas are
represented by including owner’s key in the member records,
except that the uniqueness of the owner is not guaranteed. In
our Adabas interface it will be only sensible to restrict owner
key to EID (or surrogates), thereby guaranteeing uniqueness
of the owner. Adabas permits the direct representation of M: N
relationships, by including a repeating group of keys of the
first record type into the second, the occurrences of the first
record type then being accessible from the second, by a
variable length descriptor. In view of the more flexible
facilities of our model, we are dubious of the need to support
such M :N representations and variable length descriptors
in the Adabas interface, which can be provided only through
a special mapping.

The ISNs of Adabas are equivalent to our surrogates. The
incremental restructuring permitted in the Adabas can also be
facilitated, if our model is implemented properly.

5. Conclusion
We have developed a canonical global schema based on the

References and comments

ADABAS PUBLICATIONS (1971). Software ag, Darmstadt, W. Germany.

concept of a canonical data model which can support other
systems through local interfaces. Our global schema is incom-
plete in the sense that the access and integrity control facilities
have yet to be incorporated; its facility for set representation
can also be enhanced to include role sets. Within these limits
however, we have shown that this global schema is effective and
can potentially support local interfaces. We have not of course
examined the details of these interfaces—this can only be done
by implementing the ideas expressed here. We have indeed
undertaken a project called PRECI (Prototype of a Relational
Canonical data model with local Interfaces) (Deen, 1977b;
Deen et al, 1979) to construct such a system with Relational
and Codasyl interfaces and to study its effectiveness. PRECT is
expected to be used principally as a test vehicle for research
into the data base area (including distributed data bases).

In designing this canonical data model, one question which we -

faced repeatedly is ‘to what extent should such a model be
made to support some of the redundant and somewhat dubious
facilities of the local models, such as repeating groups and
M : N relationships (of the Adabas model)’. When the global
schema provides normalised nonduplicate tuples and better
structure for M : N relationships, is there really a good reason
for simulating the old facilities? We feel strongly that these
redundant facilities should not be supported when better
alternatives exist, unless one needs to provide a continuity to
the old user programs.

BAcHMAN, C. W. (1977). Why restrict the modelling capability of Codasyl data structure sets ?, Proc. National Computer Conference 1977,

p. 69.

BCS DATA BASE ADMINISTRATION WORKING GROUP (1975). BCS/Cadasyl DDLC DBAWG Report, June 1975, BCS.
BrownN, A. G. P. (1978). The irregular polygon problem first presented in a Codasyl DDLC working paper (ICL. WP 7801) as an example
of limitations of the relational approach; he favoured a repeating group solution.

CHAMBERLIN, D. D. (1976). Computing Surveys, Vol. 8 No. 1, p. 43.

CHAMBERLIN, D. D. et al. (1975). Proc AFIPS 1975 NCC, Vol. 44, p. 425.

CopasyL. Cobol Journal of Development, May 1975.
CobpAsYL. DDLC Journal of Development 1978.

Darte, C. J. (1977). Introduction to Database Systems, Addison-Wesley, second edition 1977, chapters 23 & 24,
DEEN, S. M. (1977a). Fundamentals of Data Base Systems, Macmillan, chapters 3 & 4.

DEEN, S. M. (1977b). PRECI, Report Number AUCS/7701.

DEEN, S. M., NIKODEM, D. and VASHISHTA, A. (1979). Design of a Canonical data model with local interfaces: (PRECI), Report Number

AUCS/TR-7902 (to be published).
FaGIN, R. (1977). ACM TODS, Vol. 2 No. 3, p. 262.
FacIn, R. (1978). ACM TODS, Vol. 3 No. 3, p. 310.

DDSWP (1978) Minutes of the BCS Data Dictionary Systems Working Party meeting, September 20-22, 1978. (Discussions at the 4th
International Conference on very large data bases, held in Berlin, 1978 also seem to indicate a preference for normalised relations.)

GRIFFITH, P. P. and WADE, B. W. (1976). ACM TODS, Vol. 1 No. 3, p. 242.

HALL, P. et al. (1976). Relations and Entities—Madelling in DBMS, edited by Nijssen North-Holland.

HAwLEY, D. et al. (1975). The Computer Journal, Vol. 18 No. 3, p. 201.

KAy, M. H. (1975). Data Base Description, edited by B. Douque and G. Nijssen (North-Holland 1975), p. 199.

MapDIsoN, R. N. (ed.). (1978). Discussions in the BCS symposium on data analysis for information system design. University of Lough-

borough, June 1978. Our own experience coincides with this.

MICHAELS, A. S. et al. (1976). ACM Surveys, Vol. 8 No. 1, p. 125.

OLLE, T. W. (1978). The Codasyl Approach to DBMS, Wiley, chapter 23,

SENKO, M. E. et al. (1973). IBM Systems Journal, Vol. 12, p. 30.

SHARMAN, G. C. (1975). Technical Report TR12.136, IBM Laboratory, Hursley, England.
ZANIOLO, C. (1976). Analysis and design of a relational schemata for data base systems, Ph.D. Diss., Tech Dep UCLA-ENG-7669, University

of California, Los Angeles, Calif, July 1976.

The Computer Journal Volume 23 Number 3

¥202 Iudy 01 uo 1senb Aq £¢1G/¢/102/€/cZ/e101e/|ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

