
Some rules for introducing indexing paths in a primary
file

M. Hatzopoulos* and J. G. Kolliasf

A framework is developed which places in perspective with other approaches a model developed
by Kollias (1976) for the selection of indexing paths in a primary file. The paper extends the model
and proves a number of properties which characterise it. These properties not only simplify the solu-
tion of the model but they can also be used by file designers as rules when selecting indexing paths
for their applications.
(Received January 1979)

1. Introduction
It is a common practice to have as a design objective for an
efficient Information Processing System (IPS) the selection of
the file organisations which perform the anticipated users' data
processing requirements at an optimal number of disc references.
File designers are faced with two main difficulties when trying
to meet this design objective. The first difficulty is the result of
observing that there is a large number of file organisations
which makes it impossible to deal with every existing file
organisation. The second difficulty stems from the fact that file
organisations are always compared with respect to the type of
user transactions they are asked to serve. This implies that one
file organisation might be better than another in terms of
retrievals but might be worse in terms of updates.
A number of authors have tried to describe (Dodd, 1969),

formalise (Hsiao and Harary, 1970) and quantitatively to
evaluate (Lefkovitz, 1969) possible file organisations to assist
designers towards optimal decisions. Nevertheless these fail to
produce workable rules for assisting the determination of the
file organisations for new applications. Such a rule might state
that: 'When updates are more than 10% of the total trans-
actions and the file size is less than 2,000 buckets then apply the
multilist file organisation, otherwise the inverted one'. The
absence of any such break points (if such exist) among different
file organisations explains why it is common for file designers to
rely for the proper file organisation selection to intuition or
experience.

File organisations can be classified as primary or secondary
ones depending on whether or not they are used for queries
based on primary or secondary key values respectively. In this
study it is assumed that the primary file organisation problem
has a satisfactory solution (Knuth, 1973). The most common
approach to secondary file organisations is the introduction of
indexing paths in the primary file, commonly called secondary
indexes, which aim to improve the retrieval time because they
make it possible to find all the records in the file which satisfy
a query without accessing other records which do not. These
indexing paths introduce extra costs to the IPS when new
records are added, when old ones are deleted, or when updates
are performed. This is so because it is not only the primary file
that has to be modified (something that will be done in any case)
but the indexing paths as well.
In Kollias (1976) an IPS is considered which serves, during a

unit time period of operation, a number of transactions which
may be classified into queries, updates, insertions and deletions.
The IPS receives « types of query, QJt with expected respective
loads, qj,j= 1,2,.. . , n. Each query may contain in its qualifi-
cation part one or more secondary attributes which may
specify either a simple or a range of the values that they take.

Update transactions are identified as Uk, with a known update
load uk, k = 1, 2, . . . , s. Consideration is given to record
insertion, /, and deletion, D; loads are / a n d D respectively. A
model is developed which solves the problem of selecting
indexing paths by treating it analogously to the 'plant location'
problem in OR (Effroymson and Ray, 1966; Spielberg, 1969).
In this paper a number of properties are proved which

characterise the model. These properties may be utilised in the
following two contexts: (a) to introduce rules to be used by file
designers when selecting indexing paths for their applications,
and (b) to simplify the solution of the model. In the next
section a framework is developed which places the work in
perspective with other different approaches to the problem of
organising indexing paths.

2. Different approaches to file organisation
Advances in the area of IPS technology imply a better physical
structuring of the files in order to meet the users' data pro-
cessing requirements at a lower cost than any other previous
system. Related studies claim that such an improvement can be
achieved by research in the following two directions:

1. To modify established techniques of organising files and/or
to introduce new advanced techniques.

2. To improve the ways in which file organisations are selected
and/or implemented.

With respect to the first approach it is thought difficult to
develop some new technique for organising files which contri-
butes much to the problem of improving the IPS performance.
For supporting the argument a method of organising files
developed by Lum (1970) is quoted. The idea of the method is
that instead of inverting an attribute (simple inversion) two or
more attributes may be combined to invert on all of them
(compound inversion). This results in more efficient satis-
faction of queries which contain more than one attribute in their
qualification part. The method has been described by Knuth
(1973) as the third one in the rank of existing methods for
introducing indexing paths in a primary file (after the inverted
and the multilist one). Cardenas (1975) reports that the method
has never been used in actual practice, the reason being that its
fast retrievals cannot outweigh the high cost of its updates,
even for relatively static files (e.g. library indexes to documents,
etc). Therefore Lum's method is superior to widely used simple
inversion only under very restrictive IPS usage.

With respect to the second approach there are two trends.
One by Cardenas (1973, 1975) and Lum and Ling (1971), and
another by Senko (1968). Before presenting these two trends a
formal concept of IPS is introduced.
The parameters affecting the performance of an IPS can be

*Unit of Applied Mathematics, University of Athens, Athens, Greece.
fDepartment of Computer Science, University of Patras, Patras, Greece.

The Computer Journal Volume 23 Number 3 207

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/207/375139 by guest on 09 April 2024

File organisation level

Bucket size (in bytes) level

Access method level

512 1024 2015 4096

SAM DAM ISAM
Fig. 1 Some of the parameters affecting the selection of file

organisations.

hierarchically classified. In the higher level of this classification
might be a description of the users' view of data quite inde-
pendently of any implementation while the lower level might
include design parameters which are located very close to the
machine. A design parameter considered as an individual entity
at one level can be considered as a composite object at the next
lower level of greater detail.
Fig. 1 displays some parameters affecting the selection of file

organisations. At level 1 of this figure are all the candidate file
organisations to be considered. But within a particular file
organisation one can employ different bucket sizes on disc
(Level 2), where a bucket is taken to be the unit of transfer
between disc storage and core memory. Depending on the level
that the design possibilities are measured the solution space of
the problem can have a number of points. For example consider
a simple type of query to be satisfied either by the inverted or
by the multilist file organisation when all the parameters affect-
ing any decision are kept constant. The solution space of the
problem has just 2 points (i.e. inverted, multilist) since all the
design parameters to be found at the lower levels have shrunk
into single points. For example, it is assumed that the bucket
size is of constant length, say 512 bytes, and that the access
method employed (among those offered by the data management
part of the operating system) is, say, the Index Sequential
Access Method (ISAM) (Fig. 1).
The followers of the first trend claim that an improvement can

be achieved if instead of striving to optimise the design of IPS
at the lowest possible level, concentration is given to the file
organisation level. The research efforts are dictated either to
more careful implementation and the analysis of trading off a
limiting number of file organisations (Cardenas, 1973; 1975), or
in undertaking a more comprehensive view of the impact of
various file organisations within an IPS (Lum and Ling, 1971).
The creation of the FOREM model (Senko et al, 1968),

developed for simulating IPS performances, is the result of the
second trend. This trend holds that the inefficiencies of IPS are
due to the fact that few design possibilities are examined prior
to any implementation. (This case exists in general when
optimisation is performed at the file organisation level).
FOREM, for example, is capable of estimating the performance
of a file organisation by varying lower level parameters like
bucket sizes, access methods, etc. It is worth noting (a) that the
reported utilisations of FOREM in the IPS design search the
problem solution space by using educated guesses (Senko,
1972; Wang and Lum, 1971), and (b) no work is reported to
define the size of the solution space or how to search it
algorithmically.
It is now possible to describe precisely the approach to the

problem of introducing indexing paths in a primary file. The
same approach has been taken by Stonebraker (1974) and
Sckholnick (1975). Firstly, the approach will use established
techniques for organising indexing paths. Secondly, the source
of improvements is a careful examination of the alternative

possibilities at the file organisation level. All the lower level
parameters are taken as constant. Thirdly the above view of the
problem is applied to the operational environments presented
in Section 1. This shows that thousands of different design
possibilities arise even if the selection is made at the file
organisation level and even if it is restricted to a single file
organisation.
In Kollias (1976) it is shown that the problem solution space

can be searched by integer programming techniques. In this
study the properties of this integer programming model are
generalised and explored. Similar analysis was undertaken by
Grapa and Belford (1977) for the problem of placing copies of a
file at different nodes of a computer network (Casey, 1972).

3. The extended model
When indexing paths in a primary file are being planned
planners are faced with a number of policies which are called
(basic) policies. The first policy, pY is termed primary file policy
and serves every query with a time consuming serial scan but it
does not introduce extra storage and maintenance costs in the
IPS. To improve retrieval on secondary attribute values other
types of policy should also be considered. The first type corre-
sponds to the existence in the IPS of one indexing path for
every attribute appearing at least once in the qualification part
of the queries and is called simple type of policies.

Example
A primary file containing forestry data is to be considered
(Kollias, 1976). The file requires 9,091 buckets of storage and
consists of 100,000 records, each record corresponding to a
specimen tree. The attribute with the name NUMBER is the
primary key for purposes of storage and retrieval. It is assumed
that the application supports the types of transaction and
transaction loads described in Table 1. It is worth noting that
the 8th transaction ('Given ADDRESS update DATE-2'),
although of update type, has been identified as query (i.e. Q6).
This is because any update transaction based on secondary
attribute values is facilitated by the use of indexing paths, in the
same way as ordinary queries. Five additional candidate basic
policies p2 to p6 result from the usage displayed in Table 1.
These policies concern the existence in the IPS of an indexing
path for each of the attributes DATE-1, ADDRESS, WIDTH,
HEIGHT and REFERENCE respectively.
Assume now that the inverted type of file organisation has

been employed for structuring the indexing paths. Then the
cost of satisfying a query having two secondary attributes in its
qualification part can be reduced if the following searching
process is undertaken. Provided that both the indexing paths
exist in the IPS then two lists are formed. Each of these lists has
as elements the disc addresses of the records in the primary file
which contain respectively the specified in the query values for
the first and the second attribute. The buckets in the primary
file to be retrieved can then be determined by taking the inter-
section of the two lists. To accommodate the savings resulting
from this process, additional distinct candidate policies to those
which allow more than one indexing path to be used in the
searching process are incorporated. (Note: This type of policy
was not considered in Kollias (1976)).

From Table 1 it can be seen that the Q2, QA and Qs types of
query suggest that the next three policies plt pB and pg must
include respectively the three indexing path pairs ADDRESS
and DATE-1, HEIGHT and ADDRESS, and WIDTH and
REFERENCE. These policies are called multiple policies.
To present the model it is assumed that the types of query

dictate the consideration of m candidate policies, pt (i = 1, 2,
. . . ,m). Let c,j = the cost of satisfying the y-th type of query
under the /-th policy. When a policy is incapable of satisfying
a query it is marked with a prohibitively large cost, cu = L;

208 The Computer Journal Volume 23 Number 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/207/375139 by guest on 09 April 2024

c'lk = The cost of satisfying the jfc-th type of update under the
z'-th policy. This cost is zero when the A>th update does not affect
the indexing paths involved with the i-th policy; C,(C"j) = The
cost of performing an insertion (deletion) to the i-th policy.
Two decision variables are required: xtj = 1 if the policy pf

satisfies the type of query Qjt = 0 otherwise; yt = 1 if the
policy pi is employed, = 0 otherwise. To every basic policy
there corresponds a fixed cost, fit associated with its mainte-
nance. By taking the fixed costs to be

ft = £
k =

ICI+ DC]

the problem of selecting indexing paths can be formulated as:
Minimise

i = 1 j = 1

subject to the constraints

which assist file designers to handle (LP). Before doing so the
following observation is made. A closer look at the policies p-,
and pa shows (a) that these two policies satisfy the Q2 and g 4

types of query respectively at the optimal possible cost, and (b)
that they contain a common indexing path. Their first charac-
teristic suggests that it is likely to be included in the optimal
strategy, while the second indicates that the extra maintenance
cost needed is equal to the sum of the corresponding costs
when maintaining the indexing paths for the ADDRESS,
DATE and HEIGHT attributes. But any combination of
policies considers that the maintenance required is the sum of
the costs needed by each basic policy appearing in it. This
implies that the policy combination pn and/>8 might be rejected
as uneconomical on the assumption that it contains four
indexing paths instead of three, which is indeed what the
combination requires. For these reasons another candidate
policy, p10, has to be incorporated in the model, termed
combined multiple policy. This policy involves indexing paths
for the attributes ADDRESS, HEIGHT and DATE-1.

(LP)
7 = 1

yt = 0 or 1 , 0 < Xu < 1
(LP) is known as the 'simple plant location' problem which
has 2m possible solutions, where m is the number of candidate
policies. But 2m grows exponentially, which implies that the
efficiency of any algorithm (Effroymson and Ray, 1966;
Spielberg, 1969) declines as the number of candidate policies
increases. In the next section we introduce a number of rules

Table 1 Type and load of user transactions
Transaction

No. Type Description Load

1 Qx Given range of DATE-1 retrieve records qY

2 Q2 Given ADDRESS, DATE-1 retrieve records q2

3 Q3 Given WIDTH retrieve records q3

4 g 4 Given HEIGHT, range of ADDRESS
retrieve records qA

5 Qs Given WIDTH, REFERENCE retrieve
records qs

6 Uv Given NUMBER update DATE-1,
HEIGHT, WIDTH M,

7 U2 Given NUMBER update ADDRESS u2

8 Q6 Given ADDRESS update DATE-2 q6

9 / Insert a record INS
10 D Delete a record DEL

Example
•In Table 2 are listed all the parameters related to the basic
policies resulting from the usage displayed in Table 1 along with
the cost of performing one user transaction under each candi-
date policy. These costs are expressed in terms of bucket
accesses to disc and have been estimated by considering that
the inverted type of file organisation has been employed to
structure indexing paths. The formulae applied are reported in
Kollias (1976). (Note: The range of values which appear in g i
and QA (Table 1) is assumed to have the values 3 and 5
respectively).

4. Rules and properties
In the previous section it is seen that the complexity of (LP) can
be expressed by the 2m where m is the number of candidate
policies. In practice it is likely that the queries supported by the
IPS can be partitioned into k disjoint sets, each set requiring its
own candidate indexing paths quite independently from the
queries belonging to the other sets. If this is the case it can
relate to every set of queries a distinct problem of the form (LP)
instead of just one problem. For example the queries appearing
in Table 1 suggest that two optimisation problems can be
formed. The first one is dictated by the queries Qu Q2, 0 4 and
Q6 while the second problem is instructed by the Q3 and Qs

types of query. This is because the attributes DATE-1,
ADDRESS and HEIGHT which appear in the qualification
parts of the first set of queries do not intersect with the attri-
butes WIDTH and REFERENCE belonging to the second set.

Table 2

Pi

Pi
Pi
P3
PA

Pi
Pe
Pi
PB

P9
Pio

Parameter and performance values related with basic policies

Indexing
paths*

None
D
A
W
H
R

A, D
A, H
W, R

A,H, D

Cn

9091
311

L
L
L
L

311
L
L

311

Ci2

9091
111
211

L
L
L

23
211

L
23

9091
L
L

261
L
L
L
L

261
L

CiA

9091
L

1011
L

411
L

1011
26
L

26

Cl5

9091
L
L

261
L

411
L
L

23
L

9091
L

211
L
L
L

211
211

L
211

c'n

0
24
0

24
24
0

24
24
24
48

c'n

0
0

24
0
0
0

24
24
0

24

c,
0

12
12
12
12
12
24
24
24
36

c,
0

12
12
12
12
12
24
24
24
36

/ .

0
48
48
48
48
24
96
96
72

144

*A, H, W, D and R within the column stands for the attribute names ADDRESS, HEIGHT, WIDTH, DATE-1 and REFERENCE
respectively.

The Computer Journal Volume 23 Number 3 209

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/207/375139 by guest on 09 April 2024

If it is assumed (a) that the original (LP) problem involves m
candidate policies m — 1 of which correspond to indexing
paths and the other one is the primary file policy, and (b) each
of the resultant k problems introduces mx + \,m2 + 1
mk + 1 candidate policies, where mum2,...,mk denote policies
involving indexing paths (i.e. m, + m2 + . . . + mk = m — 1)
and the l's relate to the primary file policy then the computa-
tional effort to be extended after following the property is pro-
portional to 2mi + 1 + 2m2+1 + . . . + 2m"+1 as opposed to 2m.
With reference to (LP) the property can be translated to the
following rule.

Rule 1
If for / = 2, . . . , m there is a column/row permutation of the
cost matrix cti that transforms the matrix to a block diagonal
type of the form

T
I 1

r
m2

t
m3

r
/nfc

z,
c3

where ml + m2 + . . . + mk = m — 1, nv + n2 + . . . + nk =
n and all the elements which are not equal to L are on the
diagonal blocks then (LP) can be transferred to k indepen-
dent problems.
The above rule applied to Table 2 shows that the two problems

defined involve respectively 7 (i.e. pup2,p3,ps, pn,p8 andpl0)
and 4 (i.e. pt, />4, p6 andp9) candidate policies. This implies that
the computational effort for deciding on the optimal selection
of indexing paths to support the usage in Table 1 can be
dropped from 210 to 27 -I- 24.

Let Im denote the set of all the m candidate policies and /is the
set of policy indexes representing a given selection of indexing
paths (i.e. / = {/1 y(= 1}). (LP) can then be written as:
Choose the set / that minimises

C(D = £ <?; mine,, +
j - \ kel kel

Theorem 1
If for some query j

and

= mine
k e lm

*,-

min ck •

0)

(2)

(3)

then the i-th policy appears in the optimal strategy.

Proof
Let /be the optimal solution of (1). Assume that the i-th policy
satisfies (2) and (3) for some queryy and that it is not included
in /. Let / ' = / u {/}.
From (1):

C(/) = £-q. mine* + £ / t . By definition of/':
= 1 keI k eI

1 = 1 k€,

n

= C(/) + / , + S 1j (mine*,- - minckJ)
j 1 I / ' k /

(4)

Since / c / ' the relation mine*,- — mine*.- ^ 0 is satisfied for
k e / ' k e /

every /
So from (4):

(mmckJ - minckJ)
kel' k el

= C(I) +f,+ qj (cy - minc)̂
k I

From (3):

^)
k e I

(from (2))

<li Cij +ft< qj minckJ < q} mmckl
t e / m - { / } kel

i.e. C(/') < C{I). This contradicts the assumed optimality of/.
The above theorem can be translated to the following rule.

Rule 2
If a query is satisfied by the /-th policy and the cost of maintain-
ing this policy is smaller than the smallest possible cost of
satisfying the query by other policies then the /'-th policy is
included in the optimal strategy. With reference to Table 2 it
can be seen that the indexing paths involved in the 9-th policy
have to be included in the optimal solution. A theorem is
proven which allows policies which cannot coexist in the
optimal strategy to be located.
The following notation is used:

. ,
ia)+= 0ifa<0

Theorem 2
If the i-th and /-th policies satisfy

ft (5)

then these policies cannot both be included in the optimal
strategy.

Proof
Let /be an arbitrary selection of policies that do not include the
indexing paths involved in pt and p,.
Let / ' = / u {1} and /" = / ' u {/}. In fact, it need only show
that C(/") > C(/'). Then:

- minckJ)
kel'j = 1 kel"

From (5) we get

+ £ ?; [fa; - cy)+ + mine*,. - mmckJ.]
j 1 kl" k l 'kel" kel'

But every term
m\nckJ - mmckJ 7* 0
kel" k e r

(6)

Inequality (6) can be verified by checking cases, (a) if mine* .• /
kel"

c^ then the last two terms of (6) cancel and (6) is satisfied
(because by definition (ctj — cfJ)+ ^ 0), and (b) if minctj- = ctj

k el"

then c,j - Cij + ci} — mine*, ^ 0 and (6) is again satisfied.
k l'

c,j
k el'

Hence C(/") > C(/') which proves the theorem.
By applying the theorem to the data of Table 2 it can be seen

that the policies p2 or p3 (simple type) cannot coexist in the
optimal solution of (LP) with p7 (multiple type) and/or with
pl0 (combined multiple). A characteristic of these policies is
that they contain either indexing path for the attribute DATE-1
(i.e. p2, pn, pi0) or a path for the attribute ADDRESS (i.e. p3,
pn, p10). This introduces the following rule:

210 The Computer Journal Volume 23 Number 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/207/375139 by guest on 09 April 2024

Rule 3
A multiple or a combined multiple policy cannot coexist in the
optimal strategy with none of the simple policies they contain.
If it is assumed that all/f's in Table 2 are equal to zero (i.e. there
is no maintenance to IPS) then Rule 2 shows that pg and pi0

have to be in the optimal solution. But from Rule 3 it follows
that p9 and p10 are the optimal strategy for the usage con-
sidered. If it is assumed now that all qs = 0 (i.e. there is no
querying to the IPS) then it is clear that no indexing path is
profitable.

Rule 4
If only queries and no maintenance are performed then all the
candidate indexing paths are included in the optimal strategy

whereas if maintenance only is done, no indexing path appears
in the IPS.

5. Conclusions
A file designer who cannot determine the effects of each
alternative decision is bound to make subjective or intuitive
design judgements instead of objective ones. The properties
and rules stated (a) provide the means to improve the perfor-
mance of IPS by expanding the current spectrum of alternative
indexing paths examined prior to making any implementation
decision, and (b) provide for increased confidence in the
decision made. In Kollias (1979) (LP) is extended to cover the
case where the user transactions follow periodic variations
known in advance.

References
CARDENAS, A. F. (1973). Evaluation and selection of file organization—A model and system, CACM, Vol. 16 No. 9, pp. 540-548.
CARDENAS, A. F. (1975). Analysis and performance of inverted data base structures, CACM, Vol 18 No. 5, pp. 253-263.
CASEY, R. G. (1972). Allocation of copies of a file in an information network, Proc. AFIPS, SJCC, Vol. 40, pp. 617-625.
DODD, G. G. (1969). Elements of data management systems, Computing Surveys, Vol. 1, pp. 117-133.
EFFROYMSON, M. A. and RAY, T. L. (1966). A branch and bound algorithm for the plant location, Oper. Research, Vol. 13 No. 3, pp.

361-368.
GRAPA, E. and BELFORD, G. G. (1977). Some theorems to aid in solving the file allocation problem, CACM, Vol. 20 No. 11, pp. 878-882.
HSIAO, D. and HARARY, W. F. (1970). A formal system for information retrieval from files, CACM, Vol. 13 No. 2, pp. 67-73.
KNUTH, D. E. (1973). The art of computer programming, Vol. 3, Sorting and Searching, Addison-Wesley.
KOLLIAS, J. G. (1976). The selection of secondary file organizations, Management Datamatics, Vol. 5 No. 6, pp. 241-250.
KOLLIAS, J. G. (1979). File organizations and their reorganization, Information Systems, Vol. 4 No. 1, pp. 49-54.
LEFKOVITZ, D. (1969). File structures for on-line systems, Spartan Books, New York.
LUM, V. Y. (1970). Multiattribute retrieval with combined indexes, CACM, Vol. 13 No. 11, pp. 660-665.
LUM, V. Y. and LING, H. (1971). An optimization problem of the selection of secondary keys, Proc. ACM Nat. Conf., Vol. 26, pp. 349-

356.
SCKHOLNICK, M. (1975). The optimal selection of secondary indices for files, Information Systems, Vol. 1, pp. 141-146.
SENKO, M. E., LUM, V. Y. and OWENS, P. (1968). FOREM—A File Organization Evaluation Model, Proc. IFIP, North Holland, Amsterdam,

pp. C19.C23.
SENKO, M. R (1972). Details of a scientific approach to information systems, Courant Symp. in Data Base Systems, pp. 144-174.
SPIELBERG, K. (1969). Algorithms for the simple plant location problem with some side conditions, Oper. Research, Vol. 17, pp. 85-111.
STONEBRAKER, M. (1974). The choice of partial inversions and combined indices, Int. J. Comp. Inform. Sci., Vol. 3 No. 2, pp. 167-188.
WANG, C. P. and LUM, V. Y. (1971). Quantitative evaluation and design trade-offs in file systems, Proc. of the Symp. of Inf. Star, and Retr.,

pp. 155-162.

Book review
A Programming Metholodology in Compiler Construction Part I:

Concepts by J. Lewi, K. De Vlaminck, J. Huens and M.
Huybrechts, 1979; 308 pages. (North-Holland, $41.50)

In the late 1950s the task of compiler construction was considered a
major undertaking. The first FORTRAN compiler, for example,
took 18 man-years to implement (Backus et al, 1957). Now, in the
late 1970s, such a task is considered a reasonable computer science
student project. The factors that have led to this over the last twenty
years are (a) the comprehension of the organisation and modular
design of the compilation process, (b) the development of systematic
techniques for handling the majority of the important tasks that
occur during compilation and (c) the construction of software tools
that assist in the implementation of compilers and compiler com-
ponents. Implicit in all these three developments is the closing of the
gap between theory and practice. This book is the first part of a two-
part description of an environment utilising a completely closed gap.
Part I introduces the basic theoretical models whilst part 2 will
consider the more practical aspects of the engineering of the environ-
ment (namely the language implementation laboratory [LILA]).
The book progresses in a formal manner from the theory for

iterative language constructs (regular [translation] syntaxes) through
nested language constructs ([extended] context free [translation]
syntaxes) to attributed language constructs (attributed [translation]
syntaxes). Within each language construct it develops, from an
abstract theory model (acceptors [transducers]), an acceptor
[transducer] program and then develops a generator program to

produce systematically acceptor [transducer] programs from the
associated syntax. As such, each section is the logical progression of
the previous and the methodology used in each section is a reflec-
tion of the methodology of the previous section. Hence the book is
structurally pleasing and easy to read.
In conclusion, the book is ideally suited to the software engineer

who is actively involved in the application of language theory to
compiler construction (or the construction of any systems software
(Richards, 1979; Sassa, 1979)) and who seeks a well laid out
methodology for doing so. It would also be useful to the theorist
who is looking for a specific area of application. As an introduction
to theory or compiler construction the reader would be better
advised to do some introductory reading in other compiler con-
struction literature (Gries, 1971; or Aho and Ullman, 1978) and the
book gives a very satisfactory reference listing for this purpose.

S. K. ROBINSON (Uxbridge)

References
AHO, A. V. and ULLMAN, J. D. (1978). Principles of Compiler Design,

Addison-Wesley.
GRIES, D. (1971). Compiler Construction for Digital Computers,

Wiley, New York.
RICHARDS, M. (1979). A Compact Function for Regular Expression

Pattern Matching, Software—Practice and Experience, Vol. 9,
527-534.

SASSA, M. (1979). A Pattern Matching Macro Processor, Software-
Practice and Experience, Vol. 9, 439-456.

The Computer Journal Volume 23 Number 3 211

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/207/375139 by guest on 09 April 2024

