RCC—A user-extensible systems implementation

language

R. B. E. Napper* and R. N. Fishert

RCC, an acronym for the Revised Compiler Compiler, was designed as a comprehensive revision of the
original Brooker-Morris Compiler Compiler. Because of the inherent ability of the Compiler Compiler
to generate an extensible compiler, implementing RCC in RCC has meant that it is itself extensible.
The language provided by RCC has been designed at as high a level as possible consistent with the
generation of efficient object code. Although the language processing facilities which are available
mean that using RCC as a compiler compiler is still a major application area, the emphasis has now
changed to that of providing a more general systems implementation language in which the user can
make powerful extensions to the syntax and semantics with comparative ease and without significant

loss of efficiency.
(Received July 1978)

The Revised Compiler Compiler, RCC, was designed in the late
1960s as a comprehensive revision of the Compiler Compiler of
Brooker and Morris (Brooker et al., 1963). The main aims were
to turn the basic language of the Compiler Compiler into a more
conventional and high level form, and to redesign the imple-

- mentation to remove certain inefficiencies in the system
(Napper, 1968). In fact the basic language has been completely
replaced, and the special-purpose language-processing machi-
nery has been revised and extended considerably, so that only
the basic ideas are easily recognisable as deriving from the
Compiler Compiler.

RCC provides a Systems Implementation Language (SIL)
suitable for general systems and non-numeric applications,
together with special facilities designed to help compiler writing,
i.e. it is a classical compiler compiler. In particular it provides a
formal language for defining, recognising, analysing and
synthesising syntactic elements, based on an extended BNF,
using a new data type phrase.

However RCC is implemented in RCC, using its formal
language-processing facilities, and as a result any user who
understands the use of phrase variables can make powerful
extensions to the syntax and semantics of RCC with compara-
tive ease and without significant loss of efficiency.

Therefore the emphasis of RCC has changed from that of
providing a compiler compiler to that of providing a SIL with
a high degree of user extensibility, which enables highly
descriptive programs to .be written with minimal loss of
efficiency compared with hand coding. This feature of RCC is
of course independent of the application for which it is being
used. Moreover RCC provides special facilities for writing
compilers, and for carrying out general manipulation and
transformation of language.

The most familiar mechanism of extensibility is the ‘primary’
routine, which adds a new statement to the RCC language,
with its own syntax and semantics. At its simplest such a
routine reads like a syntax macro. However it is possible for a
user to write powerful extensions to the language by using the
language-processing facilities, but without needing to know
about the detail of the RCC implementation. The implementa-
tion automatically integrates such primary routines into the
compiler in such a way that the generation of the in-line code
corresponding to an occurrence of a new statement is carried
out as simply and efficiently as if the statement had been part of
the original language.

An unusual mechanism of extensibility is the unified organisa-
tion of the RCC system, in particular using ‘master sections’,

whereby the user’s program and even the user’s data are formally
compiled as an extension to the implementation of RCC itself.
Coupled with primary routines, this mechanism provides a
continuous spectrum of extensibility techniques, permitting
more and more sophisticated extensions, leading to redefinition
of parts of the RCC language and compiler.

A second unusual feature is the ability to make purely syn-
tactic extensions in the conventional subroutines of the user
program, i.e. ‘secondary’ routines. Since formal parameters can
be of type phrase, the user can define new syntax specifically for
a particular routine, thereby significantly enhancing the level of
language used in his program, but without significantly losing
efficiency.

RCC has been implemented on a few machines, and has been
used for a number of years by a number of people, mostly in
connection with the authors’ research. Despite its old design
(mostly 1968), it still seems to have a number of features that
are unusual and interesting, and the system has been shown to
work in practice as it was designed to do. This paper gives a
general description of the language and in particular of its more
interesting features, and summarises the experience gained from
it so far and its relationship with other systems. Knowledge of
the Compiler Compiler is not assumed.

The basic language

The basic language of RCC is at a moderate level, leaving out
various features that are now commonplace, and including
features that are unusual.

Variables are untyped, being effectively integers, bit patterns,
or addresses as convenient to the user. An identifier can be
declared as a constant or as a variable. The storage of a scalar
can be allocated automatically, or it can be specified by the user
to be in a specific store address or in a central register. Thus, if
necessary, the user can have complete control over storage
allocation by using machine dependent options in declarations.

There is a notation for indexed addresses, e.g. (@ + i) and
a(i), which (both) refer to the location whose address is given by
adding i to a. There is no formal type array. Statements are
provided to specify static, dynamic and preset arrays, but the
associated identifier (e.g. a above) is treated as a scalar con-
stant or variable whose value is preset to the address of the base
of the array.

Expressions have no subexpressions, no user defined functions,
and no operator precedence. The operators are + and —,
together with those logical and shift operators available on the
machine of implementation. Evaluation is left to right.

*Department of Computer Science, University of Manchester, Manchester M13 9PL
tDepartment of Computational Science, University of St Andrews, St Andrews, Fife, Scotland KY16 9SX

212

The Computer Journal Volume 23 Number 3

¥20z Iudy || uo1senb Aq 911G/ ¢/ L 2/g/ez /eI e |ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Multiplication, division, and any shift operators not available
are provided by separate statements. Whilst these restrictions
are severe for a user familiar with more powerful forms of
expressions, they enable the implementation to be efficient and
to avoid use of the stack.

Control

The organisation of control in RCC is unusual, with a formal
clause and sentence structure being used to specify implicit
control, replacing the lowest level of compound statement
bracketing. Non-declarative statements are divided into
imperative statements, conditional clauses, and FOR clauses.
There are two levels of statement terminator, ‘major’ (newline)
and ‘minor’ (; and :, possibly followed by newline). A sentence
consists of a set of statements separated by minor terminators
and finishing in a major terminator, and there are a number of
rules specifying the permitted clause structure within a
sentence.

Compound statement brackets ‘{*and’}’ are provided to allow
a set of sentences to be treated as a single imperative statement
within a sentence.

A conditional sentence consists of one or more conditional
clauses followed by one or more imperative statements. If there
is more than one conditional clause, they must be linked
consistently by either AND or OR. The conditional clause (or
combined set of clauses) qualifies all imperative statements up
to the end of the sentence. However the imperatives may con-
tain a single OTHERWISE, with obvious effect. There is no
formal type Boolean in RCC. Instead, a number of basic
conditional clauses are provided in the language, and further
clauses can be defined by the user, either as ‘secondary’
routines (effectively Boolean functions) or ‘primary’ (macros).

For example, given that

IF <expression) IS BETWEEN (expression) AND
{expression):

is a user defined conditional clause:

IFa =b + 1; ANDIF g > r; AND IF d(i) IS BETWEEN
qg — xANDg + x:
d(i) =d@) + a;di + 1) =0:
OTHERWISE: d(i + 1) = d(i) — d(i — 1);d(i) =0
¢f. ALGOL 60:
ifa=2>5+ 1and g > r and between (d[i],q —
begin d[i] := d[i] + a;d[i + 1] := 0 end
else begin d[i + 1] := d[i] — d[i — 1];d[i] := O end
The brackets ‘{" and ‘}’ are also used to enable a general
‘Boolean expression’ of conditional clauses to be written as a
single clause, e.g. the above combined set of conditional
clauses could be written as a single clause:
IF{a=5+1;ANDg > r; AND d(}) IS BETWEENg — x
AND g + x}:

X, q + X) then

Or, avoiding the IS BETWEEN statement:
IF {a =56 + 1; ANDg > r; AND
{{d(i) > g — x; AND d(i) < q + x};
OR {d(i) < g — x; AND d(i) > q + x}}}:

A FOR sentence consists of a FOR clause followed by a set of
imperative statements, which form the ‘body’ of the cycle. A
number of FOR clauses are provided in the language, and
further ones can be added by users (using ‘primary’ routines
only). If the key word CYCLE is used instead of FOR, the body
of the cycle is specified explicitly as all following sentences up to
the statement END OF CYCLE (name), where the {(name),
e.g. i, is the controlling variable of the cycle. Also imperative
statements FINISH CURRENT {name) and FINISH EACH
{name) can be used anywhere within the body of a FOR or
CYCLE statement (including within nested cycles) to mean

The Computer Journal Volume 23 Number 3

respectively jump to the end of the current iteration and jump
to the next statement after the cycle body.

For example consider a sequence which, given a vector of
vectors, counts the number of vectors whose positive elements
add up to less than 1000, but which stops altogether if a very
large or small number is found.

CYCLE | =1TO n:

a = iliffe(i); 1t =0

FOR j = 1 TO length(i):

{IF a(j) <min; OR IF a(j)>max: FINISH EACH i
IF a(j) <0: FINISH CURRENT j
t =t + a(j)
1F ¢+ > 1000: FINISH CURRENT i}

count = count + 1

END OF CYCLE

A less formal cycling method is provided by REPEAT or
REPEAT UNTIL <{condition) as the last statement in a
compound statement. This causes control to be returned to the
start of the compound statement (only if the ‘condition’ is false
in the latter case).

There is no case statement in RCC, only a simple FORTRAN-
like switch. Labels and GO TO statements are permitted.

Subsequences are provided, i.e. local parameterless sub-
routines implemented very efficiently, A subsequence is label-
led by SUBSEQUENCE <name) with dynamic return
FINISH {name), and it is called by PERFORM <{name).

In general the implementation of control is very efficient, even
when ‘primary’ routines are being used. Conditional control is
organised in terms of control operations and not the evaluation
of Boolean expressions. The operation code of a conditional
machine code jump is not filled in till the next machine code
instruction is known, to ensure that the correct test {(e.g. = or
#,2 or <)is chosen. In general control addresses are not filled
in until the final destination is known (i.e. there is no jumping
to unconditional jumps). Thus if the above piece of code was
followed by ‘GO TO tidy up’, the control jumps for ‘a(j)<min’
and ‘max<a(j) would both be direct to label ‘tidy up’.

Therefore given the attention paid to control in both lan-
guage and implementation, together with the restrictions on the
complexity of expressions, a user can write a program at a high
level knowing that the efficiency of the underlying code will be
extremely close to hand coding.

Routines

There are a number of different types of routine in RCC. The
type that corresponds to the conventional routine in a con-
ventional programming language is called a ‘secondary’
routine. Other types are ‘master’, ‘class’, ‘format class’ and
‘primary’, and these will be described later.

A secondary routine does not have an identifier as its name,
but a ‘format’, i.e. a string of fixed symbols interspersed with
parameters in fixed positions. In the routine heading the
complete specification of the formal parameter is given in the
appropriate position, enclosed in square brackets.

e.g. ROUTINE

INTERCHANGE [V x] AND [V y].

LOCAL dummy

dummy = x; x = y; y = dummy
Here e.g. [V x] specifies a formal parameter of type integer
with local name ‘x’. There are three ways in which parameters
can be passed, all by ‘value’. E means actual parameter is
copied to formal on entry to the routine, R means formal para-
meter is copied to actual on exit, and V combines the two
copies.

A routine call comprises the given set of symbols interspersed

with appropriate actual parameters, i.e. an integer expression
for E or variable for V and R. Note that any symbols can be

213

¥20z Iudy || uo1senb Aq 911G/ ¢/ L 2/g/ez /eI e |ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

used in the fixed part of a format, but capital letters are
recommended rather than small letters, to avoid ambiguity
with identifiers.

Thus a call on the above routine might be

INTERCHANGE a(i) AND a(i + 1)

A secondary routine can have one of three characteristics to
specify the way it is called (default STANDARD):

BASIC means that no stacking/destacking takes place on
entry/exit.

STANDARD means that certain information, including
values of central registers and the system stack front, is
stacked/destacked on entry/exit.

RECURSIVE provides the STANDARD facilities, but in
addition formal parameters and automatically allocated local
scalars are allocated storage on the stack and not in unique
static storage (i.e. effectively own) as is the usual case.

A secondary routine can have one of two characteristics to
specify its control type (default IMPERATIVE):

IMPERATIVE means that a call of the routine is treated as
an imperative statement. Inside the routine dynamic return is
specified by the imperative FINISH, and is implicit at the end
of the routine.

IF means that a call on the routine is treated as a conditional
clause. The format does not include the IF itself and the
routine can be called in any context that a basic conditional
statement can be used in. Dynamic return is specified (always
explicitly) by either imperative CONDITION SATISFIED or
CONDITION NOT SATISFIED with obvious meaning.

e.g. ROUTINE
BASIC IF: [E @] IS BETWEEN {E 5] AND [Ec]: ...
IF a >b: {IF a < ¢: CONDITION SATISFIED:
OTHERWISE: CONDITION NOT
SATISFIED}
IF a <b; AND IF a>c¢: CONDITION SATISFIED
CONDITION NOT SATISFIED

Program structure
RCC is a one pass language; all entities must be declared before
they are used.

The text of an RCC program is divided into sections all at the
same level. There are only two ‘scopes’ in RCC (except for
global data declarations), viz. local to a section and global. For
sections specifying global information the scope is all the
following sections; for statements specifying information local
to a section, the scope is the rest of the section. Routines are not
nested within routines and there are no blocks.

Each section is called a ‘master section’ and is headed by an
identifier comprising underlined capital letters on a line of its
own, a ‘master heading’. The commonest type of master head-
ing is ROUTINE, which gives a routine definition. The head-
ing is followed by the specification of the routine on the next
line, and then the routine body.

The heading GLOBAL introduces declarations of identifiers
with global scope. These can include STATIC or PRESET
arrays.

The heading FORMAT introduces a set of routine specifica-
tions (for secondary, primary, or format class routines). Each
specification gives in effect the first line of the routine definition,
except that names of formal parameters can be omitted. Such a
specification in a FORMAT section is optional, and it allows a
routine call to occur in a subsequent routine even if the
specified routine has not yet been defined.

User master sections
The running of a user program is also controlled by master
sections. The user data is in general split into any number of

214

master sections each headed by one of a set of underlined
capital names defined by the user. For each of these ‘master
names’ a corresponding ‘master routine’ must be defined by the
user. The name of the master routine is the master name it is
defining,

Whenever a master heading is met in the input stream the
system passes control automatically to the corresponding
master routine. This routine should then process all the source
text up to the next master heading. The system automatically
replaces a master heading by a special symbol code which acts
as a terminator which can be detected but not read beyond.

In a simple program the user defines just one master name,
e.g. SORT, His program consists of a SORT master routine
together with any routines called by it. Its action is to recognise,
sort and output a set of numbers. His program data consists of
one or more sections headed SORT, and finishes with the
system master heading STOP.

e.g. ROUTINE
MASTER : SORT

SORT
487
2976
243
SORT

STOP

The language processing machinery

The formal language for processing syntactic elements is based
on the data type phrase. The user can define any number of
‘classes’, corresponding to non-terminal symbols of BNF.
These are contained in master sections with heading CLASS.

e.g. CLASS :
[DIGIT] =0,1,2,3,4,56,7,8,9
= [DIGIT][N], [DIGIT]
{MONTH] = JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC
[DATE] = [N][MONTH][N], [N] :[N] :[N]

A ‘phrase variable’ is a variable with an associated class, for
example ‘m’ with class [MONTH] and ‘d’ with class [DATE].
However, scalar identifiers are not declared to be of type phrase
with associated class given e.g.

PHRASE m, ml [MONTH]; PHRASE d [DATE]
Instead they are declared as ordinary (integer) scalars and
where they are used as phrase variables the associated class is
given every time the identifier is referred to, e.g.

LOCAL m, ml, d
with all references as [MONTH m], [MONTH ml], [DATE
d]. (This is to avoid problems of syntactic ambiguity in the non-
terminal {matching phrase expression)>—see later).

The value of a phrase variable is any valid symbol string
according to the definition of the associated class. Thus a
phrase variable [MONTH m] can have only 12 possible values,
viz ‘JAN’, ‘FEB’, .. ., ‘DEC’. A phrase variable [DATE d]
can have an indefinite number of values of one of the two given
forms, e.g.

‘12 MAR 78’ or ‘12:3:7%’

The statements provided to operate on phrase variables are as
follows:

input IF RECOGNISE {explicit phrase)
Here an {explicit phrase) is a string of symbols maybe inter-

The Computer Journal Volume 23 Number 3

¥20z Iudy || uo1senb Aq 911G/ ¢/ L 2/g/ez /eI e |ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

spersed with phrase variables, e.g.

IF RECOGNISE COME TO ROOM [Nr] AT [N Ars] HRS
ON [DATE d]:

This checks the current head of the input stream to see if it is of
the given form, i.e. if it starts with the given string of symbols
but with any valid string of the associated class occurring in the
corresponding position for each phrase variable. If there is a
match, the input pointer is advanced over the matched portion
and the phrase variables are set to the corresponding sub-
strings, e.g. given the input string starting with

COME TO ROOM 15 AT 1600 HRS ON 1:4:84 PLEASE
it would be left starting at PLEASE with [N r] set to ‘15°, [N
hrs] to ‘1600°, and [DATE d] TO ‘1:4:84".

If a full match is not achieved the input pointer is not
advanced and no phrase variables are reset.

output PRINT : {explicit output phrase)

Here {explicit output phrase) is a string of symbols maybe
interspersed with phrase variables and/or specifications of
formatted output of integer data, e.g.

PRINT : GO TO ROOM [N r] AT [E (SL 6) t]JON [DATE d]

The current value of any phrase variable is output at the cor-
responding points, and any integer data generated appro-
priately, e.g. for [E (SL 6) t] the current value of ‘¢’ as an
integer in a field width of 6 columns with Spaces to the Left.

analysis Given a phrase value, possibly from an IF
RECOGNISE statement, it is often necessary to break down
its structure and, if required, convert it to integer form. Three
facilities are provided to do this. :

(a) The basic function CATEGORY OF {phrase variable)
yields the serial number 1, 2, 3, . . . of the alternative in the
associated class definition to which the current value of the
phrase variable belongs, e.g. for [MONTH m] set as
‘MAR’, CATEGORY OF [MONTH m] is 3, and for
[DATE d] set as ‘12 MAR 78, CATEGORY OF [DATE
d]is 1.

Where the associated class is a simple one, without sub-
classes, e.g. [MONTH], this obviously provides a con-
venient and unique integer for every possible phrase value.
If however the class has subclasses, e.g. [DATE], then the
category only specifies to which alternative subset of
possible strings a phrase value belongs.

(b) RESOLVE (phrase variable) INTO {matching phrase
expression)

This is an imperative statement which enables a phrase
variable whose associated class contains subclasses to be
resolved into its constituent phrase variables, e.g. given
[DATE d] currently as ‘12 MAR 78’
RESOLVE [DATE d] INTO [N day][MONTH m]
[N year]
will reset [N day] to ‘12°, [MONTH m] to ‘MAR’, and [N
year] to ‘78’

The statement is undefined if the current value is not of the
given form, e.g. for [DATE d] as ‘12:3:78’.

The {(matching phrase expression) can be any sentential
form of the associated class of the {phrase variable).
Formally, it must either be a phrase variable of the asso-
ciated class, or one of the alternatives in the definition of the
class but with each subclass in the alternative replaced by a
{matching phrase expression) for the appropriate sub-
class. Thus the following are also valid statements at com-
pile time:

RESOLVE [DATE 4] INTO [DATE p]

RESOLVE [DATE 4] INTO [N day][MONTH m]

The Computer Journal Volume 23 Number 3

[DIGIT J4l][DIGIT 42]
RESOLVE [DATE d] INTO 1[DIGIT dm] MAR 78

For the value ‘12 MAR 78’ they will also be defined at run-
time, but for value ‘12:3:78° only the first statement is
defined. Note that the first statement is equivalent to setting
scalar p equal to 4.

(¢) IF {phrase variable) = {matching phrase expression):
To avoid obeying undefined RESOLVE statements at run
time it is usually necessary to check that a given phrase
variable is of the given form beforehand, e.g. by testing the
category. This conditional statement does this auto-
matically, i.e. it first checks if the phrase value is of the
given form specified by the {matching phrase expression)
and if it is, it carries out the resolution as in (b); if it is not,
the condition is not satisfied and no phrase variables are
reset.

synthesis Two statements are provided to carry out the
reverse operations to analysis, e.g. to create phrase values from
integer information, or from existing values of component
phrase variables.

CATEGORY OF {phrase variable) = {expression)>

resets the value of the (phrase variable) to the alternative string
in the associated class definition specified by the integer
{expression), e.g.

CATEGORY OF [MONTH m] =7

will set [MONTH m] to ‘JUL’. The statement is undefined if
the specified alternative does not exist or contains subclasses.

SET (phrase variable) = {matching phrase expression)

sets a new value for the {phrase variable) to the string specified
by the {matching phrase expression), with the current value of
each component phrase variable inserted at the corresponding
point,
e.g. given [N dm] as ‘12’ and [N m] as ‘3’

SET [DATE d] = [Ndm] : [N m] : 78
will reset [DATE d] to ‘12:3:78’.

Storage of phrase variables

A phrase value is stored, not as a symbol string, but as a tree (or
‘analysis record’) which reflects the relationship of the string to
the definition of its associated class. The phrase variable is set
to the address of this tree; the first node in the tree gives the
category number of the alternative followed by the addresses of
the trees for each constituent subclass in the alternative. How
efficient this is in storage compared with symbol string storage
depends on the class definition, e.g. [N] will give less efficient
storage, but [MONTH] more efficient.

A particular point to note however is that the RESOLVE and
IF analysis instructions do not require any extra storage, and
are efficient provided that the resolution is carried out at the
level of an alternative of the associated class definition, e.g.

IF [DATE d] = [N day][MONTH m][N year] : ...
is implemented as
IFd@0) = 1:day = d(1); m = d(2); year = d(3); . . .

Special class definition facilities
There are a large number of enhancements to the basic BNF-
based class definition mechanism, which enable programs to be
written more conveniently and/or efficiently. Many of them did
not occur in the original Compiler Compiler, or occurred in less
satisfactory forms.

The formal parsing algorithm is top-down, left-to-right, and
fast-back (which imposes the usual constraints on the way
classes are defined). It can be modified in a number of ways.

215

¥20z Iudy || uo1senb Aq 911G/ ¢/ L 2/g/ez /eI e |ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

A class used in an alternative of the definition of another class
can be modified by adding ‘qualiﬁcations’—‘ ? to specify an
optional occurrence (category 0), r’ to specify that the analysis
record of the subclass is to be suppressed, and/or ‘a’ to specify
that the input position is not to be advanced over the substring
recognised for the class.

A class in which all alternatives start with one or more
symbols (i.e. not a subclass) can be specified as ‘restricted’ in a
number of ways. In this case initial recognition is bottom up
using a hash algorithm.

The case of a class which defines a list of strings, possnbly with
separators, is acknowledged explicitly in the definition mach-
inery, instead of relying on recursive definition. Similarly the
analysis record is stored in a straightforward manner, with the
first node giving the number of strings in the list followed by
the set of values of the subclasses in order as they occur,

e.g. CLASS

[N] = LIST OF [DIGIT]

[BOUNDS] = LIST OF [N]:[N], SEPARATED BY,

[ARRAY LIST] = LIST OF [IDENTIFIER] ([BOUNDS])),

SEP; [END OF LINE?]

Thus a value for [ARRAY LIST 4] might be ‘x(3:15); »(1:8,
1:8); 2(0:1023)

There are also a number of facilities to help automatic trans-
formation of language without having formally to program the
transformation using the analysis and synthesis statements, as
demonstrated by Lindsay (1975), i.e. where the controlling
program is of the form

IF RECOGNISE [CLASS 5s]: PRINT: [RELATED CLASS 5]

Class routines

A particularly useful facility is to be able to define a class by
algorithm. Such a class has an associated routine, whose name
is the class name, and this routine operates directly on the input
stream according to given conventions. It is called auto-
matically by the parser, and it returns control by imperatives
RECOGNISED or NOT RECOGNISED as appropriate,

e.g. ROUTINE
CLASS : [SMALL LETTER]
LOCAL symbol
symbol = (input symbol position)
IF symbol < ‘a’; OR IF symbol > ‘2’
NOT RECOGNISED
ADVANCE input symbol position
STACK symbol — ‘@ + 1 AT main stack front
RECOGNISED

The information recorded by the class routine can be of any
size, and is simply put on the main system stack. The informa-
tion is recovered on subsequent processing by treating the
scalar of the associated phrase variable as an array name to
access the information.

In fact the language contains a further basic function and
statement analogous to CATEGORY OF, i.e. VALUE OF, to
deal with the common case where the information associated
with a class routine is a single word. Thus VALUE OF
[SMALL LETTER s] will return the serial number 1 to 26
planted by the routine, and VALUE OF {SMALL LETTER
s] = p will set up a phrase value for [SMALL LETTER s]
equivalent to a class routine having planted the number p.

Class routines are typically used where a set of alternatives
start with related system symbol codes (as for [SMALL
LETTER]) and/or where the syntactic element being recog-
nised is an indivisible unit of the language being processed, e.g.
a constant or identifier. Here it is often more convenient and
efficient to carry out the conversion and/or packing that will
eventually be required directly, as part of the recognition
process, rather than at a later time by processing a formal

216

analysis record using the formal analysis instructions.

Another enhancement of the class definition machinery, which
has particular relevance to class routines, is that class words
occurring in definitions of other classes can have ‘parameters’,
i.e. a string of symbols and/or class words. These can be used
by class routines to modify their behaviour. In particular there
is a system class [Q], which always requires a parameter, in the
form of a simple class definition, i.e. one or more symbol
strings separated by commas. This is useful for avoiding formal
class definitions, e.g. [Q/(AND, OR)], and for specifying
abbreviations in syntax, e.g. IMP[Q/(ERATIVE) 7r] to allow
IMP or IMPERATIVE at some given point in a syntax.

Phrase parameters
Phrase variables are permitted as formal parameters to routines.
They are specified in the same way as integer parameters,
except that the associated class is given between the ‘[’ and the
E, V or R specification. In the case of an E specification, the
actual parameter can be any (matchmg phrase expression) for
the associated class. The effect is to

SET (formal parameter) = {matching phrase expression)
on entry to the routine. For V and R parameters, the actual
parameter must be a phrase variable with associated class the
same as the formal parameter, and the effect is simply to copy
the underlying integer variable. If the parameter call type for a
phrase parameter is E, the E can be omitted.

An obvious context for requiring phrase variables as para-
meters is in processing text that has been read in by IF
RECOGNISE. Particularly if the input text is in the form of a
‘language’, i.e. a set of strings each belonging to one of a
significant number of alternative formats, the natural structure
of the program is to process the input in a set of routines, one
for each alternative. The parameters of these routines would be
the component syntactic elements of the alternatives (i.e. the
subclasses).

Of course, where different alternatives contain the same syn-
tactic elements, which require similar processing, further sub-
routines are likely to be created which have a phrase variable
of the appropriate class as a formal parameter.

Format classes
RCC provides a facility specifically for the situation where each
alternative of a given class is always processed in the same way,
preferably by a separate routine for each alternative. In this
situation, the parameters of a routine will tend to be the sub-
classes of the corresponding alternative, and indeed the format
of the routine will tend to be the same as the alternative, pos-
sibly preceded by a general verb, e.g. PROCESS or TRANS-
LATE. A class defining the set of possible statements in a
‘language’ is typically of this nature, e.g. [FORTRAN].

Such a class can be introduced as a ‘format class’ using a
special master section,
e.g2. FORMAT CLASS

[FORTRAN]

Then subsequently any number of ‘format class routines’ can be
defined as belonging to this format class,

e.g. ROUTINE
[FORTRAN] : [VAR v]

= [EXPR €]
ROUTINE
[FORTRAN] : DIMENSION [DIM LIST ds]

The effect of such a routine heading, or of the corresponding
specification in a FORMAT section, is two fold. First, it
introduces a new routine in the program, with characteristic
‘format class routine’. Second, it adds the format as a new
alternative to the definition of the associated format class.

The Computer Journal Volume 23 Number 3

¥20z Iudy || uo1senb Aq 911G/ ¢/ L 2/g/ez /eI e |ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

A format class can be treated in most respects just like an
ordinary class, e.g. as if it had been defined as

[FORTRAN] = [VAR] = [EXPR], DIMENSION
[DIMLIST],

Thus the conditional statement IF RECOGNISE [FORTRAN
JSJ[EOL r] (where [EOL] recognises ‘end of line’) will attempt
to recognise one of the alternatives of [FORTRAN] and if
successful it will set phrase variable [FORTRAN f].

However in addition the imperative statement PROCESS
{phrase variable) is available for format classes. This auto-
matically passes control to the format class routine correspond-
ing to the current alternative of the phrase variable, and
initialises its formal parameters to the appropriate subvalues in
the alternative. Note that parameters can only be of type phrase
with characteristic E. Thus the sentence

IF RECOGNISE [FORTRAN f] [EOL 1] : PROCESS
[FORTRAN f]

does the complete job of trying to recognise a FORTRAN
statement and if successful passing control to the corresponding
processing routine. This would otherwise be done by a large
switch on the category of [FORTRAN f] and the programmer
would have to invent a format for each different alternative,
which did not clash with the current language, and call the
appropriate routine at each point in the switch..

Note that a format class routine, e.g. [VAR] = [EXPR]
cannot be called directly in the program, i.e. it does not become
part of the current RCC ‘language’ (i.e. the basic language plus
user secondary routine formats). The only way a particular
format class routine can be called is by the statement

PROCESS ({classname)) {matching phrase expression)
e.g. PROCESS ([FORTRAN]) [VAR v] = 1
This is equivalent to

SET [FORTRAN dummy] = [VAR v] = 1
PROCESS [FORTRAN] dummy

RCC as a compiler compiler

RCC is designed to provide the user with a powerful compiler
compiler, provided he wishes to write a compiler for a language
which consists of suitably.sized ‘pieces’, e.g. statements, each of
which has a context free syntax. Note that ALGOL 60 and
PASCAL can be described in ‘pieces’ relatively easily, using
straightforward semantic checks that they form a consistent
program, but ALGOL 68 cannot.

The class definition machinery permits straightforward
definition of syntax, and IF RECOGNISE . . . provides auto-
matic recognition of pieces of source text, together with an
analysis record. The analysis instructions provide an efficient
and readable mechanism for extracting semantic information.
The format class mirrors the characteristic top level structure
for a language, with a controlling routine continuously
recognising a piece of source text and passing control auto-
matically to the appropriate processing routine. Ancillary
routines are written as secondary routines, which can have both
integer parameters, and, where syntactic elements are involved,
phrase parameters,

Note however that RCC does not provide an automatic
itemisation/lexical analysis phase.

Fig. 1 shows part of a FORTRAN compiler (somewhat
simplified), giving a sample set of formats for both secondary
and format class routines, the controlling routine, and the
processing routine for the computed GO TO switch.

The context of the undefined routines illustrated should be
essentially self explanatory. LOAD [TYPE][EXPR] INTO
REGISTER [E] is a key code generation routine of the com-
piler, and SKIP R [E] INSTRUCTIONS is a specialist rou-
tine to plant the appropriate machine code for organising a

The Computer Journal Volume 23 Number 3

FORMAT CLASS
[FORTRAN]

FORMAT

STANDARD : REJECT REST OF LINE.

[FORTRAN] : [VAR] = [EXPR]

RECURSIVE : LOAD [TYPEJ[EXPR] INTO REGISTER
[E].

STANDARD : SKIP R [E] INSTRUCTIONS.

[FORTRAN] : DIMENSION [DIM LIST]

[FORTRAN] : GO TO [LABEL]

[FORTRAN] : GO TO ([LABEL LIST]), [VAR]

STANDARD : INITIALISE.

STANDARD : TIDY UP.

ROUTINE

MASTER : FORTRAN

LOCAL f —

INITIALISE

{IF RECOGNISE [FORTRAN f] [EOL] :
PROCESS [FORTRAN/]:

OTHERWISE : REJECT REST OF LINE

REPEAT UNTIL RECOGNISE 4 4 # #}

TIDY UP

ROUTINE
[FORTRAN] : GO TO ([LABEL LIST /7),
[VAR switch no]

LOCAL

LOAD INTEGER [VAR switch no] ~1 INTO REGISTER
6

SKIP R6 INSTRUCTIONS

FOR i = 1 TO CATEGORY OF [LABEL LIST /1]:
PROCESS ([FORTRAN]) GO TO [LABEL /i(i)]

Fig. 1

switch on the given machine. The switch processing routine
operates by setting up the appropriate machine code switch and
then calling the processing routine for GO TO [LLABEL]
repeatedly to plant the following jumps.

An important effect of the format class machinery is that it
makes it easy to extend the language and its compiler. If a new
statement is to be added to the language, it is sufficient to add,
at the end of the compiler, a new format class routine together
with any new class definitions required. This both extends the
syntax of the language being compiled and specifies how to
process the new statement. There is no need in general to alter
any other part of the compiler to accommodate the new
statement.

Further, it is easy to write the processing routine itself if the
new statement is easily describable in terms of the existing
language. Using PROCESS (as in the computed GO TO
processing routine), the processing routines of the existing
language can be called directly in a readable manner, passing the
syntactic elements through from the new statement to calls on
existing statements using phrase variables.

This method of extensibility was investigated and formalised
in the design and implementation of the language ALEC
(Napper and Fisher, 1976).

Extensibility in RCC

The design of RCC facilitates the writing of compilers for
extensible languages. RCC is implemented in RCC. So it is not
surprising that RCC is itself extensible.

The most obvious method of extensibility is the analogue of
the format class mechanism, illustrated in Fig. 1 for
FORTRAN. The user can write a ‘primary’ routine which will
be entered automatically by the compiler on each subsequent

217

¥20z Iudy || uo1senb Aq 911G/ ¢/ L 2/g/ez /eI e |ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

recognition of a source statement matching the format. This
contrasts to the secondary routine, where a cue is compiled to
the corresponding routine, which is obeyed at run time. Thus
the primary routine must describe how to compile the code
required to effect the statement at run time, whereas the
secondary routine gives the code directly.

In general the addition of a primary routine does not require
any alteration to the RCC implementation, or any detailed
coding in the routine to link it into the implementation.

At its simplest, the primary routine behaves like a conven-
tional syntax macro, although its implementation is by com-
piler extension and not by a preprocess. However there are a
number of levels of sophistication beyond the straightforward
syntax macro at which primary routines can be used to extend
the language.

In addition there are a number of other mechanisms of
extensibility in RCC, notably syntactic extensibility in both
primary and secondary routines, and the overall unity of the
stages of compiler-compile, compile, and run time. This unity
means that even a piece of run time data is formally an exten-
sion to the implementation of RCC.

Simple primary routines

The description of routines in the basic language left out a
further characteristic of routines, that is whether a routine is
SECONDARY (the default) or PRIMARY. For a PRIMARY
routine the parameters are restricted to type phrase with
characteristic E; option BASIC is not available, but a number
of addition control characteristics are available beyond
IMPERATIVE and IF, notably CYCLE.

A primary routine is entered whenever a statement matching
its format is met in subsequent routines. Therefore in general it
describes how to compile the appropriate in-line code. The
language it is written in is, as for all types of routine, full RCC.

Where the user wishes to use another RCC statement to cause
an appropriate piece of code to be compiled, he uses the routine
COMPILE {[RCCBL]}, where [RCCBL] is the set of for-
mats of the RCC language plus the user’s primary and second-
ary routine formats. [RCCBL] is analogous to the format class,
e.g. [FORTRAN], and COMPILE to PROCESS, in the typical
use of RCC as a compiler compiler. They are different from the
standard format class machinery to cater for the special (and
known) requirements of the system language. In particular
COMPILE also carries out the automatic processing of control
to link together successive statements being compiled, using
their control characteristics, and arranges to set up a new
control level for each macro call.

The actual parameter corresponding to [RCCBL] in a call of
COMPILE can be any sentential form of [RCCBL] sinceitisa
type E phrase parameter. An extended version allows a string of
[RCCBL]s with major or minor terminators separating them
as usual.

Example 1
ROUTINE
PRIMARY IMPERATIVE : INTERCHANGE [V a] AND
[V b].
MACRO LOCAL dummy
COMPILE {[NAME dummy] = [V al; [V a] = [V b];
[V b] = [NAME dummy]}
Note that MACRO LOCAL reserves a storage location which
is used always and only by the in-line sequences generated by
the routine; it can be referred to inside the COMPILE state-
ments as e.g. [NAME dummy]

Example 2

ROUTINE
PRIMARY IF : [E 4] IS BETWEEN [E 5] AND [E c]: . ..

218

COMPILE {IF [Ea] > [Eb] : (IF[Ead] < [Ec]:...}

“IF[Ed] < [Eb]; ANDIF[Ea] > [Ec]:.. }.
Note here “: . . .” standing for ‘:CONDITION SATISFIED:
OTHERWISE : CONDITION NOT SATISFIED’. This
abbreviation can be used in primary or secondary routines, but
in primaries, when used at the end of the in-line sequence, it
ensures complete efficiency in linking up with the control
environment of each call on the macro.

Syntactic extensibility using primary routines

The format of a primary routine is any symbol string with any
phrase parameters embedded. The string matching a phrase
parameter can be any string definable by the RCC class
definition machinery. Therefore a new primary statement in
RCC can have any syntax the user cares to define (provided
ambiguity with the existing language is avoided).

Note that classes can be defined by the user for the purpose of
extending the RCC language in routine formats just as much
as they can be used to define language to be recognised in
master sections.

Of course where new syntax is created the problem of
specifying the code to be compiled becomes less straight-
forward. However the type phrase has been designed speci-
fically to facilitate the extraction of information from syntactic
elements.

If the user can break down the new syntax into classes of the
RCC language and then express the required in-line code as a
set of COMPILE statements, then he can define a primary
routine without any knowledge of compiler implementation in
general and the RCC implementation in particular. The routine
then reads as a simple language transformation.

The key rule to follow is that the set of COMPILE statements
generated by any call in the primary routine, when strung
together, should form a coherent routine.

As a comparatively simple example of syntactic extension in
primaries, consider an instruction that, given a list of integers
and an explicit sequence of integers, checks if the sequence
occurs anywhere in the list. The list may be specified (say)
either as two store addresses, pointing to the first and last
integers on the list, or by a single address pointing to a vector,
e.g. v, where by convention the element v(0) gives the number of
integers in the list, e.g. n, and they follow on from v(1) to
v(n).

The required extra syntax is:

CLASS

[LIST] = STORE FROM [E] TO [E], VECTOR [NAME]

[ELEMENTS] = LIST OF [E], SEPARATED BY,

An appropriate routine is given in Fig. 2. Examples of calls

might be

(a) IF SEQUENCE O, 1, 0 IN STORE FROM fTO g + 1:

(b) IF SEQUENCE a — x,a + x IN VECTOR p:

(¢) IF {a = 0; OR {SEQUENCEgq, r, s, t IN VECTOR b;

AND r IS BETWEEN g AND s}}:

(d) REPEAT UNTIL SEQUENCE °‘FE’, ‘N’, ‘D’ IN STORE
FROM st(i) TO fin(i)

The in-line sequence compiled for case (@) would be in effect

finish = g + 1

FOR i = fTO finish —2:

{IF(i)=0;ANDIF(+ 1) =1; ANDIF (¢ + 2) = 0;

CONDITION SATISFIED}

CONDITION NOT SATISFIED
The sequence compiled for case (b) would be in effect
finish = p + (p)

FOR i= p + 1TO finish —1:

{IFG@) =a - x; ANDIF(@ + 1) =a + x;

CONDITION SATISFIED}

CONDITION NOT SATISFIED
CONDITION SATISFIED and CONDITION NOT SATIS-

The Computer Journal Volume 23 Number 3

¥20z Iudy || uo1senb Aq 911G/ ¢/ L 2/g/ez /eI e |ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

ROUTINE
PRIMARY IF : SEQUENCE [ELEMENTS els] IN
[LIST 7. ..
LOCAL start, f, v, n, nl, j, j1
MACRO LOCAL finish, i
IF [LIST /1 = STORE FROM (E start] TO [E f]:
COMPILE {[NAME finish] = [Ef]}:
OTHERWISE : -
{RESOLVE [LIST /] INTO VECTOR [NAME v]
SET [E start] = [NAME v] + 1
COMPILE {[NAME finish] = [NAME v] +
B (INAME v])}}
n = CATEGORY OF [ELEMENTS els] (number of
elements)
o VALUEOF [Nnl]l=n -1
COMPILE {FOR [NAME (] = [E start] TO
- [NAME finish] — [N nl1]:
{IF ((NAME i]) = [E els (1)];}
UNLESS 7 = 1: {FORj =2TOn : -
VALUE OF [Njl] =j — I;
COMPILE {AND IF ((NAME] + [Njl1]) =

[E els()];:}}
COMPILE {CONDITION SATISFIED}
“CONDITION NOT SATISFIED}

Fig. 2

FIED would link into the control surrounding the call without
loss of efficiency. In particular the NO exit from the sequence
will automatically be a jump direct from the test on i terminat-
ing the cycle to the required destination implied by the sur-
rounding control, e.g. in (d) to the beginning of the compound
statement enclosing the REPEAT UNTIL statement.

Syntactic extensibility in secondary routines

It is equally true of secondary routines that a secondary state-
ment in RCC, i.e. a conventional routine call, can have any
syntax the user cares to define. Secondary routines can have
phrase parameters, and again class definitions can be made
solely to provide syntactic extension.

Of course where phrase parameters are used for this purpose it
will in general be necessary to use analysis instructions to
‘decode’ the actual parameters before giving the algorithm
required to effect the statement. However provided that the
new syntax is defined and decoded sensibly, the loss of effi-
ciency will be very small compared with decoding the same
information given in purely numeric form.

A particular feature is that integer parameters can be embed-
ded in phrase definitions and passed as E, V or R parameters as
required. This is of course in addition to the standard use of
integer parameters declared in their own right. Such embedded
parameters are specified in class definitions by the classes
[E'], [V'], and [R'], with effective syntax [E], [V] and [V]
respectively. The decoding mechanism is to use analysis
instructions to uncover any such phrase values, e.g. [E’ 4], and
then the underlying integers can be accessed (for [E'] and [V'])
or reset (for [V'] and [R’]) by using the accessing function
‘value of’, e.g. ‘value of (a)’.

Thus it is possible to define a routine such that a call on it may
have an indefinite number of integer parameters. Again the loss
of efficiency in using this mechanism is small.

As an example, the primary routine defined in Fig. 2 could
equally have been defined as a secondary which had the same
range of possible calls.

The associated syntax might now be defined as

CLASS
[LIST] = STORE FROM [E'] TO [E"], VECTOR [E’]
[ELEMENTS] = LISTOF [E’], SEPARATED BY,

The Computer Journal Volume 23 Number 3

Note that in fact VECTOR [E’] allows a general expression in
a call instead of just VECTOR [NAME] as in the primary
version.

An appropriate definition for the secondary routine is given in
Fig. 3. In fact it is inefficient in that the extraction of an embed-
ded integer in the [ELEMENTS] sequence is repeated for each
comparison. However further types of phrase exist, i.e. [E'*],
[V'*] and [R"*] to cover lists of integers directly without this
inefficiency and the special definition [ELEMENTS] is not
necessary.

As an example of an embedded output parameter, consider
modifying the statement so that it will optionally return the
address of the start of the matched string.

In the primary version this could be achieved by adding the
class

[ADDRESS] = AT [V]
and adding [ADDRESS?] at the end of the format, thus
permitting a call like
IF SEQUENCEO, 1,0INSTORE FROM fTO g + 1 AT p:
The required modification to Fig. 2 is to insert before
COMPILE {CONDITION SATISFIED}
the sequence
IF [ADDRESS? at] = AT [V ad] : COMPILE {[V ad] =
[NAME i];}
For the secondary version the extra class would instead be
[ADDRESS] = AT [R]
and the modification to Fig. 3 is to insert before CONDITION
SATISFIED
IF [ADDRESS? at] = AT [R’ ad]: value of (ad) = i

Unity of compiler-compile, compile and run time
In RCC, in its most general form, the following stages are
continuous and indistinguishable:

1. Compiling the RCC compiler (in its finally bootstrapped
form).

2. Compiling a user program.
3. Running a user program.

The RCC compiler has the property that its description (in
RCC) can be fed through itself without altering itself. Classes
and routines can be redefined at any time, and a redefinition
takes place immediately the class or routine has been processed.
An exception is that FORMAT redefinitions are treated as
errors. The recompilation is a continuous renewal of the exist-
ing system, and not a compilation of a separate core image
which behaves identically.

ROUTINE
SECONDARY IF : SEQUENCE [ELEMENTS eis] IN
[LIST 1]:. ..
LOCAL a, b, start, finish, base, n, i, j, el
IF [LIST /] = FROM [E’q] TO [E’b]:
start = value of (a); finish = value of (b):
OTHERWISE : {RESOLVE [LIST/JINTO VECTOR [E'a]
base = value of (a); start = base + 1; finish = base + (base)}
n = CATEGORY OF [ELEMENTS els]
CYCLE i = start TO finish — n + 1:
FORj = 1TO n:
{SET [E'el] = [E'els(j)]
IF value of (el) [= (i + j — 1): FINISH CURRENT i}
CONDITION SATISFIED
END OF CYCLE i
CONDITION NOT SATISFIED

Fig. 3

219

¥20z Iudy || uo1senb Aq 911G/ ¢/ L 2/g/ez /eI e |ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

The job that any RCC program can do is defined by the set of
jobs the individual master routines can do. Different master
routines may do independent tasks, or all or some of them may
co-operate. The language for programming the set of jobs is
that used within ROUTINE master sections, i.e. [RCCBL].
[RCCBL] consists of the set of formats of the basic RCC
language plus the primary and secondary formats defined by
the user. Auxiliary language definitions are contained in CLASS
definitions, to define the classes contained in the routine for-
mats, or to define syntax used in the master sections. Primary
routines are characteristically obeyed at compile time, and
secondary routines at run time when called by the master
routines processing the program data.

RCC as written in RCC also has this structure. The set of
primary formats is the basic RCC language, and the secondary
formats are the subroutines of the implementation. The master
routines are of course FORMAT, ROUTINE, CLASS,
GLOBAL, etc, and the ‘run time’ data of the implementation is
the user program, which consists of a collection of such master
sections.

However in stage (2) the user’s program is compiled as an
extension of the RCC compiler. New primary and secondary
formats are added to those of the system. Note that the
secondary formats of the RCC implementation refer both to
routines that are generally useful to the user, e.g. input/output
routines, and those that are concerned only with the detailed
implementation of the compiler. As with the formats, user class
definitions are added to the system class definitions, and user
master routines to the system master routines.

As soon as a new primary routine is processed, the language is
extended, and a statement invoking it can be used immediately
in the next ROUTINE master section. As soon as a new master
routine has been defined, a corresponding master section can
occur immediately, even as the following master section. In
either case any secondary (or primary) routine used in the
primary or master routine must have been defined before the
routine is invoked.

There is no restriction on the order in which master sections
occur, be they system or user, except that their master routines
are fully defined. There is no restriction on what order primary
or secondary routines of the system or the user can be defined
or redefined, except that they must be fully defined before they
are used. The RCC system can be halted, and if required
suspended as a binary image, after any master section.

Therefore the three stages of compiler-compile, compile, and
run time, in terms of the source text, or program execution, do
not exist as separate units. The only unit which exists any-
where throughout all three stages is the master section.
Classifications can only be made on individual master sections
relative to the other parts of the system. Without knowing the
full story of a particular instance of an RCC section there is no
certain way of classifying a particular section of program. A
master section headed ROUTINE is likely to be in effect in
stage (2). But it could be a redefinition of part of the RCC
implementation (stage (1)) or it could be the source data for an
RCC translation program or cross-compiler (stage (3)). A
master section headed FORTRAN s likely to be in effect in
stage (3). But it could be due to an extension made to RCC to
allow routines of RCC programs to be written in FORTRAN
(stage (2)), or a rewrite of part of the RCC implementation
using this extension (stage (1)).

In practice the system is not often used as flexibly as implied
above. The user’s program will start with any primary routines
he is using plus the list of secondary formats and any class
definitions required, either for his formats or to recognise his
source data. The program will then continue as a set of rou-
tines, or GLOBAL definitions. Then will follow his data as a
set of user master sections.

220

Facilities also exist for removing parts of the RCC system at
appropriate points. Thus at the end of stage (1) most of the
names and formats internal to the RCC implementation may
be removed—but not the routines themselves. At the end of
stage (2) those routines of the RCC system not required by the
set of user master routines can be removed. In particular, for a
production program where the user wishes to dispense with
master sections in his data, the last routine of his program is
likely to be a redefinition of the RCC master controlling routine
as the user’s main program.

Further extensibility in RCC

The unified structure of the RCC implementation means that
there is a wide spectrum of extensibility beyond the straight-
forward syntactic extensions illustrated in Fig. 2.

The first level of sophistication is that a primary routine may
contain a non-trivial algorithm in RCC to work out what code
to compile (e.g. what string matching algorithm to use in Fig.
2). 1t may need to acquire storage and it may need to com-
municate between different instances of the same statement or
with instances of other statements within a package of related
statements.

The next level of sophistication is to write primary routines
which require to use routines of the RCC implementation not
usually used by an ordinary user, for example a routine which
compiles an expression into a given central register. This may
happen simply to improve the efficiency of in-line code pro-
duced by a statement which can be expressed in terms of the
existing statements. However it is particularly likely when
statements are being defined which cannot be so expressed, for
example when adding a floating point package to RCC. It is
easy for both secondary and primary routines to obey special
machine codes, by using OBEY [MCI] or COMPILE {OBEY
[MCI]} respectively, where [MCI] is a machine code instruc-
tion on the host machine. However to integrate such new code
into the language satisfactorily usually requires direct use of
specialised routines of the implementation. Therefore a pack-
age of such routines, i.e. their formats and a specification of
their action, is made available to the user.

At the next level of extension, it may be necessary to make
small alterations to routines of the RCC implementation itself,
e.g. in adding a new control type like a case statement which, in
addition to the primary routines for the new statements, will
require small alterations to be made to the RCC control
machinery to integrate it into the language. It is possible to
redefine a system routine at any time, and RCC is implemented
in RCC at a high level of language and generality. Therefore
given the documentation of the implementation and its source
text, it is made as easy as possible to carry out such an
extension.

The next level is to make significant changes in the imple-
mentation of RCC, involving the rewriting of one or more
routines. The system will accept a rewritten routine without any
fuss, but it is effective immediately and must therefore be
compatible with the existing system. It is in fact possible to hold
over the replacement of an old routine by a new one until a set
of routines has been defined and this is sometimes highly
desirable. Allison (1976) has shown a major example of such a
revision by producing an experimental version of RCC to
permit user extensibility of data types. This required straight-
forward rewriting of some of the routines concerned with
identifier dictionaries, and a less straightforward rewrite of the
routine cue compilation machinery. However this was accom-
plished using documentation with minimal direct help from the
authors. As Allison showed, there are many features of the RCC
system which facilitate such major surgery, and the process is
significantly different from just getting a copy of someone else’s
compiler and playing around with it—hardly a definition of an

The Computer Journal Volume 23 Number3

¥20z Iudy || uo1senb Aq 911G/ ¢/ L 2/g/ez /eI e |ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

extensible language!

In parallel with extensions to the RCC language through
primary routines, there are the possibilities of extensions to the
system as a whole, or redefinition of parts of the system, in
terms of master routines, for example as hinted at in the pre-
vious section (for ROUTINE and FORTRAN).

Note that RCC does not provide directly for user extension at
levels below a statement of the language. This is possible, but
has not been done on efficiency grounds. For example exten-
sions to the available set of constant (literal) forms, or ways of
printing information in the general print routine, can be done
straightforwardly by altering appropriate class definitions and
the routines that process them. It would be easy to turn these
classes into format classes, rewrite the appropriate routines
once and for all, and then extensions could thereafter be made
without redefining routines of the compiler, by adding a new
format and a processing routine for it which satisfies a certain
set of conventions.

This is a small example of an extension made at a higher level
of sophistication enabling subsequent extensions to be made at
a lower level. This is likely to be a common occurrence through-
out the tree of extensions and compilers that grows from a
highly extensible system. The basic pattern of such a tree is a
different extension for each application or research group,
within each group a further extension for each member, and
finally for each member a further extension for each program.
The higher an extension is in the tree, the more sophisticated is
the extension likely to be and the more experienced the person
designing and implementing it.

Comparison with other systems

Because there are a number of different aspects, which are
contained in a unified system in RCC, but which exist separately
in most other systems, it is not possible here to include a
detailed comparison with other related work. It is hoped that
subsequent papers on different aspects of RCC will be written,
and these will contain detailed comparisons. Meanwhile some
comments are given below under the different main headings.

Compiler compiler

The RCC compiler compiler facilities are rather too general for
writing efficient compilers for the common languages. They are
designed to enable compilers to be written quickly and in an
understandable, easily modifiable way, and hence are useful
for experimental or extensible compilers.

Language transformation

RCC provides facilities for synthesising language as well as
analysing it, and therefore it can also be used as a general
language transformation system. Compared with string
processing languages, it is limited by being BNF-based, but
within its limitations it is quite powerful yet efficient.

Systems implementation language

The basic language of RCC, considered as a systems imple-
mentation language, has some novel features, but in general
does not compare favourably with the more sophisticated and
powerful SILs. In particular it does not provide structured
data.

However so far as efficiency of the compiled object code is
concerned the comparison is much more favourable. One of the
key aims of RCC is to provide the highest level of language (i.e.
readability) consistent with producing efficient code. The result
is that the compiled code is almost as efficient as hand coding,

Extensibility
Under the categorisation of Solntseff and Yezerski (1974),
RCC comes under type E, implying that macro expansion

The Computer Journal Volume 23 Number 3

takes place as late as the code generation phase of the com-
piler. Only MAD (Arden et al., 1969), LACE (Newey, 1968),
and ECT (Solntseff and Yezerski, 1972) are given under this
category. Under the definitions of Standish (1975), RCC
provides all the forms of extension, ‘paraphrase’, ‘orthophrase’
and ‘metaphrase’.

The nearest systems to RCC outside the family of the Brooker-
Morris Compiler Compiler (BMCC) appear to be ECT and
ECL (Wegbreit, 1971), although they are still very different. In
particular no other systems appear to have the equivalent of
format classes or master routines.

Within the BMCC family, SPG (Morris et al., 1970) was
developed in a complementary manner, applying the ideas of
BMCC at a low and practical level using the smallest possible
system. Only BMCC itself has either format classes or master
sections. Format class routines are the only aspect of BMCC
where both the general idea and the detail of the implementa-
tion are recognisably similar to RCC. Master phrases in
practice only existed as part of the implementation of BMCC
and were not defined for user programs.

Experience with RCC

RCC has been fully implemented on an ICL 1906A and IBM
360/44. In addition there was a version on Atlas which was
nearly finished but was turned into a cross-compiler for the

1906A instead, and work is progressing on a CDC 7600
version. Also a subset of RCC, RCCT, (Eissa and Napper,
1976) has been completed on all four machines to assist in
bootstrapping RCC. This essentially provides the RCC basic
language for integer data, without the RCC language process-
ing machinery, but with a limited compiler extension facility.

The size of the standard RCC compiler on the 1906A is about
37K x 24-bit words, of which 19K is code. 'rThe equivalent 360
figures are 35K and 19K x 32-bit words. A further minimum
of 4K is required to run a small program, and the store require-
ments of code and data for compiling a large program have to
be added to this. The system is therefore a large system,
requiring a medium to large computer, particularly if used with
full flexibility.

The code generated on all four machines is close to hand
coding, approximately of the order of 10%, worse. The code
required to implement analysis and synthesis statements, and
routine calls using phrase variables, including embedded
integer parameters, can be kept efficient so long as certain
standard conventions are followed.

The compiler itself is relatively slow compared with a com-
piler for a fixed language. This is particularly because it must
be prepared to meet any syntax, and therefore many conven-
tional input and analysis techniques are not applicable (e.g.
lexical analysis). Also the generalised structure of the compiler
tends to slow it down. User extensions are implemented as
efficiently as the basic language, although of course it is the
provision of extensions that slows down the whole compiler in
the first place.

In the use of the language there is a mixed reaction to ‘minor
terminators’ and considerable support for the introduction of a
case statement to replace the simple switch. The authors would
agree that there are several improvements which could (and
should) be made to bring the base language ‘up to date’. New
users tend to find most difficulty initially with the language
processing facilities. The reason would seem to be that the
concepts are completely new to them, since they appear in few
other languages. However, the readability of the language and
its simple extensibility have been a great success.

Considering other systems, apart from RCC, which have been
written in RCC, experience has been gained in writing an
extensible compiler, ALEC (Napper and Fisher, 1976), an
experimental compiler, MPL1700 (Fisher and McQuarrie,

221

¥20z Iudy || uo1senb Aq 911G/ ¢/ L 2/g/ez /eI e |ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

1977), and a TTL logic network simulator (Kahn and Kinni-
ment, 1976).

In all these systems it has proved entirely successful. In
addition experimental work has confirmed the potential of
RCC as an extensible language, in particular in providing
powerful and efficient application packages (Allison, 1976),
and as a language transformation language (Lindsay, 1975).
The best overall test of RCC has been in the logic simulator,
where users can describe a network, specify a set of tests to
exercise it over a period of time, and then get as output
monitoring and performance information. This is an independ-
ent project, with a number of people making large or small
contributions to it over a period of years. The extensibility of
RCC has proved useful in allowing the project leader to make
an extension for general use by the group, with individuals
making further extensions. The language processing facilities
have made easy the task of designing and implementing the
user oriented languages for network description and test
specifications. The high level language has proved very useful in
documentation and maintenance. A particular feature is that
some of the logic components, which have to be modelled in

References

great detail, require large routines to describe them. The
modelling is done using a small set of highly descriptive
primary and secondary statements tailormade to the specific
problem.

There are a number of further applications of RCC currently
in progress, or projected in the near future. Research is being
carried out into a general purpose language that provides user
definition of primitive data types using in-line code. A package
is being written to generate tailor made COBOL updating
programs given a (non-procedural) specification of the
required operation by the user. It is hoped to write a cross
compiler for a microprocessor, and to investigate the auto-
matic transformation of working programs in various lan-
guages to and from related forms, e.g. a very compact form (for
archiving) or a very descriptive form (for documentation). Of
course if the language is RCC, a working program should
already be highly descriptive; here an interesting possibility is
to transform it into a similarly descriptive program in another
natural language, e.g. French, by providing the corresponding
vocabulary for identifiers and the corresponding sentence
structure for primary and secondary formats.

ALLISON, L. (1976). Extensibility in a Systems Implementation Language, Ph.D. Thesis, University of Manchester, 1976,
ARDEN, B. W., GALLER, B. A., and GRaHAM, R. M. (1969). The MAD Definition Facility, CACM, Vol. 12 No. 8, pp. 432-439.

BROOKER, R. A., MAacCALLUM, 1. R., MORRIs, D., and RoHL, J. S. (1963).

Vol. 3, pp. 229-275.

The Compiler Compiler, Annual Review in Automatic Programming,

Eissa, I. F. and NaPPER, R. B. E. (1976). RCCT—A Simple Extensible Systems Implementation Language, Proceedings of the International
Conference of Statistics and Computer Science and Social Science, Cairo, April 1976.

FisHER, R. N. and McQUARRIE, G. W. (1977).
ence, Vol. 7 No, 6, pp. 747-757.

MPL1700—A High(er)-Level Microprogramming Language, Software, Practice and Experi-

KaAHN, H. J. and KINNIMENT, D. J. (1976). A Design Automation System for the Teaching of Computer System Design, Proceedings of the
International Conference of Statistics and Computer Science and Social Science, Cairo, April 1976.
LiNpsay, H. E. (1975). The Design, Implementation and Use of the Regeneration Machinery of RCC, M.Sc. Thesis, University of Man-

chester, 1975.

Morris, D., WILSON, L. R., and CaPoN, P. C. (1970). A System Program Generator, The Computer Journal, Vol. 13 No. 3, pp. 248-254.
NAPPER, R. B. E. (1968). The need to Revise the Compiler Compiler, IFIP Conference Proceedings, pp. B23-B27.

NarPeER, R. B. E. and FishEr, R. N. (1976).
No. 1, pp. 25-31.

ALEC—A User-Extensible Scientific Programming Language, The Computer Journal, Vol. 19

NewEY, M. C. (1968). An Efficient System for User Extensible Languages, AFIPS Proceedings (FJCC), Vol. 33 No. 2, pp. 1339-1347.
SoLNTSEFF, N. and YEezerskl, A. (1972). ECT—An Extensible Contractible Translator System, Information Processing Letters, Vol. 1, pp.

97-99.

SoLNTsEFF, N. and YEZERsKI, A. (1974). A Survey of Extensible Programming Languages, Annual Review in Automatic Programming, Vol. 7

pp. 267-307.

StanpisH, T. A. (1975). Extensibility in Programming Language Design, AFIPS Proceedings, Vol. 44, pp. 287-290.
WEGBREIT, B. (1971). The ECL Programming System, AFIPS Proceedings (FICC), Vol. 39, pp. 253-262.

Book review

Research Directions in Software Technology edited by P. Wegner,
1979; 869 pages. (The MIT Press, £15-00)

This is a long and ambitious book aimed at covering the complete
field of software technology. It has its origins in papers presented at
meetings in 1976 and 1977. The stated purpose of the book is to
stimulate a dialogue between research workers and practitioners in
the field of software technology. The book is divided into four parts
each consisting of a set of papers by experts in the field followed by
commentaries on these papers by others. This style of presentation
leads to a significant amount of repetition with each author seeing
the need to define terms and provide a framework for his own
contribution.

The Software Engineering section includes papers by Boehm and
Mills which review the tools available for managing software
production introducing the software life cycle, specification lan-
guages, top down design, error days, etc. Anybody familiar with the
field would find little new here and yet the level of detail is such that
it provides little more than a pointer to other sources for a new-
comer. The most interesting paper in this section is a frank discussion
of the management of the MULTICS project describing both the
successes and failures.

The Software Methodology section includes a good paper by

222

McGowan and McHenry suggesting that the software life cycle
model breaks down when a system is under continuous evolution and
proposes a continuum model in its place. This same criticism is
touched upon by a number of authors. This section also includes
papers by Liskov and London on formal methods of program
specification and verification.

The Computer Systems Methodology section has an excellent paper
by Wegner on concepts and research directions in programming
languages. Other papers discuss the current state of operating
systems research and architectural design including software and
hardware problems associated with distributed computing systems.

The final section on Applications Methodology is the shortest and
perhaps least successful. It covers too wide an area—from CAD
packages and data base management systems to natural language and
artificial intelligence systems. It does no more than indicate the cur-
rent state in a superficial manner. Even then, the passage of time has
dated some of the presentations.

I found the book disappointing. The presentation is shallower than
should have been possible in a book of this size. It also spends more
time cataloguing the past than providing clear indications of research
directions. Even so, the book has good parts. It is just a pity that over
800 pages have to be read to find them.

F. R. A. HopGoop (Didcot)

The Computer Journal Volume 23 Number 3

¥20z Iudy || uo1senb Aq 911G/ ¢/ L 2/g/ez /eI e |ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq

