1977), and a TTL logic network simulator (Kahn and Kinni-
ment, 1976).

In all these systems it has proved entirely successful. In
addition experimental work has confirmed the potential of
RCC as an extensible language, in particular in providing
powerful and efficient application packages (Allison, 1976),
and as a language transformation language (Lindsay, 1975).
The best overall test of RCC has been in the logic simulator,
where users can describe a network, specify a set of tests to
exercise it over a period of time, and then get as output
monitoring and performance information. This is an independ-
ent project, with a number of people making large or small
contributions to it over a period of years. The extensibility of
RCC has proved useful in allowing the project leader to make
an extension for general use by the group, with individuals
making further extensions. The language processing facilities
have made easy the task of designing and implementing the
user oriented languages for network description and test
specifications. The high level language has proved very useful in
documentation and maintenance. A particular feature is that
some of the logic components, which have to be modelled in
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Book review

Research Directions in Software Technology edited by P. Wegner,
1979; 869 pages. (The MIT Press, £15-00)

This is a long and ambitious book aimed at covering the complete
field of software technology. It has its origins in papers presented at
meetings in 1976 and 1977. The stated purpose of the book is to
stimulate a dialogue between research workers and practitioners in
the field of software technology. The book is divided into four parts
each consisting of a set of papers by experts in the field followed by
commentaries on these papers by others. This style of presentation
leads to a significant amount of repetition with each author seeing
the need to define terms and provide a framework for his own
contribution.

The Software Engineering section includes papers by Boehm and
Mills which review the tools available for managing software
production introducing the software life cycle, specification lan-
guages, top down design, error days, etc. Anybody familiar with the
field would find little new here and yet the level of detail is such that
it provides little more than a pointer to other sources for a new-
comer. The most interesting paper in this section is a frank discussion
of the management of the MULTICS project describing both the
successes and failures.

The Software Methodology section includes a good paper by
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McGowan and McHenry suggesting that the software life cycle
model breaks down when a system is under continuous evolution and
proposes a continuum model in its place. This same criticism is
touched upon by a number of authors. This section also includes
papers by Liskov and London on formal methods of program
specification and verification.

The Computer Systems Methodology section has an excellent paper
by Wegner on concepts and research directions in programming
languages. Other papers discuss the current state of operating
systems research and architectural design including software and
hardware problems associated with distributed computing systems.

The final section on Applications Methodology is the shortest and
perhaps least successful. It covers too wide an area—from CAD
packages and data base management systems to natural language and
artificial intelligence systems. It does no more than indicate the cur-
rent state in a superficial manner. Even then, the passage of time has
dated some of the presentations.

I found the book disappointing. The presentation is shallower than
should have been possible in a book of this size. It also spends more
time cataloguing the past than providing clear indications of research
directions. Even so, the book has good parts. It is just a pity that over
800 pages have to be read to find them.

F. R. A. HopGoop (Didcot)

The Computer Journal Volume 23 Number 3

¥202 Iudy 60 U0 1sonb Aq 0G1G/€/222/S/cz /811 e |ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq



