1977), and a TTL logic network simulator (Kahn and Kinni-
ment, 1976).

In all these systems it has proved entirely successful. In
addition experimental work has confirmed the potential of
RCC as an extensible language, in particular in providing
powerful and efficient application packages (Allison, 1976),
and as a language transformation language (Lindsay, 1975).
The best overall test of RCC has been in the logic simulator,
where users can describe a network, specify a set of tests to
exercise it over a period of time, and then get as output
monitoring and performance information. This is an independ-
ent project, with a number of people making large or small
contributions to it over a period of years. The extensibility of
RCC has proved useful in allowing the project leader to make
an extension for general use by the group, with individuals
making further extensions. The language processing facilities
have made easy the task of designing and implementing the
user oriented languages for network description and test
specifications. The high level language has proved very useful in
documentation and maintenance. A particular feature is that
some of the logic components, which have to be modelled in

References

great detail, require large routines to describe them. The
modelling is done using a small set of highly descriptive
primary and secondary statements tailormade to the specific
problem.

There are a number of further applications of RCC currently
in progress, or projected in the near future. Research is being
carried out into a general purpose language that provides user
definition of primitive data types using in-line code. A package
is being written to generate tailor made COBOL updating
programs given a (non-procedural) specification of the
required operation by the user. It is hoped to write a cross
compiler for a microprocessor, and to investigate the auto-
matic transformation of working programs in various lan-
guages to and from related forms, e.g. a very compact form (for
archiving) or a very descriptive form (for documentation). Of
course if the language is RCC, a working program should
already be highly descriptive; here an interesting possibility is
to transform it into a similarly descriptive program in another
natural language, e.g. French, by providing the corresponding
vocabulary for identifiers and the corresponding sentence
structure for primary and secondary formats.

ALLISON, L. (1976). Extensibility in a Systems Implementation Language, Ph.D. Thesis, University of Manchester, 1976,
ARDEN, B. W., GALLER, B. A., and GRaHAM, R. M. (1969). The MAD Definition Facility, CACM, Vol. 12 No. 8, pp. 432-439.

BROOKER, R. A., MAacCALLUM, 1. R., MORRIs, D., and RoHL, J. S. (1963).

Vol. 3, pp. 229-275.

The Compiler Compiler, Annual Review in Automatic Programming,

Eissa, I. F. and NaPPER, R. B. E. (1976). RCCT—A Simple Extensible Systems Implementation Language, Proceedings of the International
Conference of Statistics and Computer Science and Social Science, Cairo, April 1976.

FisHER, R. N. and McQUARRIE, G. W. (1977).
ence, Vol. 7 No, 6, pp. 747-757.

MPL1700—A High(er)-Level Microprogramming Language, Software, Practice and Experi-

KaAHN, H. J. and KINNIMENT, D. J. (1976). A Design Automation System for the Teaching of Computer System Design, Proceedings of the
International Conference of Statistics and Computer Science and Social Science, Cairo, April 1976.
LiNpsay, H. E. (1975). The Design, Implementation and Use of the Regeneration Machinery of RCC, M.Sc. Thesis, University of Man-

chester, 1975.

Morris, D., WILSON, L. R., and CaPoN, P. C. (1970). A System Program Generator, The Computer Journal, Vol. 13 No. 3, pp. 248-254.
NAPPER, R. B. E. (1968). The need to Revise the Compiler Compiler, IFIP Conference Proceedings, pp. B23-B27.

NarPeER, R. B. E. and FishEr, R. N. (1976).
No. 1, pp. 25-31.

ALEC—A User-Extensible Scientific Programming Language, The Computer Journal, Vol. 19

NewEY, M. C. (1968). An Efficient System for User Extensible Languages, AFIPS Proceedings (FJCC), Vol. 33 No. 2, pp. 1339-1347.
SoLNTSEFF, N. and YEezerskl, A. (1972). ECT—An Extensible Contractible Translator System, Information Processing Letters, Vol. 1, pp.

97-99.

SoLNTsEFF, N. and YEZERsKI, A. (1974). A Survey of Extensible Programming Languages, Annual Review in Automatic Programming, Vol. 7

pp. 267-307.

StanpisH, T. A. (1975). Extensibility in Programming Language Design, AFIPS Proceedings, Vol. 44, pp. 287-290.
WEGBREIT, B. (1971). The ECL Programming System, AFIPS Proceedings (FICC), Vol. 39, pp. 253-262.

Book review

Research Directions in Software Technology edited by P. Wegner,
1979; 869 pages. (The MIT Press, £15-00)

This is a long and ambitious book aimed at covering the complete
field of software technology. It has its origins in papers presented at
meetings in 1976 and 1977. The stated purpose of the book is to
stimulate a dialogue between research workers and practitioners in
the field of software technology. The book is divided into four parts
each consisting of a set of papers by experts in the field followed by
commentaries on these papers by others. This style of presentation
leads to a significant amount of repetition with each author seeing
the need to define terms and provide a framework for his own
contribution.

The Software Engineering section includes papers by Boehm and
Mills which review the tools available for managing software
production introducing the software life cycle, specification lan-
guages, top down design, error days, etc. Anybody familiar with the
field would find little new here and yet the level of detail is such that
it provides little more than a pointer to other sources for a new-
comer. The most interesting paper in this section is a frank discussion
of the management of the MULTICS project describing both the
successes and failures.

The Software Methodology section includes a good paper by

222

McGowan and McHenry suggesting that the software life cycle
model breaks down when a system is under continuous evolution and
proposes a continuum model in its place. This same criticism is
touched upon by a number of authors. This section also includes
papers by Liskov and London on formal methods of program
specification and verification.

The Computer Systems Methodology section has an excellent paper
by Wegner on concepts and research directions in programming
languages. Other papers discuss the current state of operating
systems research and architectural design including software and
hardware problems associated with distributed computing systems.

The final section on Applications Methodology is the shortest and
perhaps least successful. It covers too wide an area—from CAD
packages and data base management systems to natural language and
artificial intelligence systems. It does no more than indicate the cur-
rent state in a superficial manner. Even then, the passage of time has
dated some of the presentations.

I found the book disappointing. The presentation is shallower than
should have been possible in a book of this size. It also spends more
time cataloguing the past than providing clear indications of research
directions. Even so, the book has good parts. It is just a pity that over
800 pages have to be read to find them.

F. R. A. HopGoop (Didcot)

The Computer Journal Volume 23 Number 3

¥202 Iudy 60 U0 1sonb Aq 0G1G/€/222/S/cz /811 e |ulwod/wod dno-ojwapeoe//:sdiy wolj papeojumoq



