Implementation of BEDSOCS: an interactive simulation

language

A. F. Eidelson* and |. J. Robinsont

BEDSOCS, an interactive digital computer language that is designed to allow the easy solution of
problems described by ordinary differential equations, is used to run PHYSBE (a benchmark pro-
gram that simulates the human circulatory system). A comparison chart compares BEDSOCS
with other simulation systems in time required to execute PHYSBE.

(Received January 1979)

Bradford EDucational Simulation language fOr Continuous
Systems (BEDSOCS), is an interactive digital computer
language designed to allow the easy solution of problems
described in terms of ordinary differential equations. The
language uses Dartmouth BASIC as the procedural language
and, like most BASIC systems, operates interpretively.
BEDSOCS has such advanced features as automatic equation
sorting, variable-step integration and graphic displays. The
equations describing the simulation need not be represented in
terms of block diagrams, but rather are entered much like
ordinary differential equations. Above all, because BEDSOCS
uses an interpreter, there is no compilation time. This allows
users to write and debug programs quickly at the cost of longer
execution time.

BEDSOCS, written by Geoffrey Brown (1973) at the Uni-
versity of Bradford, can be implemented on an HP2100
computer having 16k words of memory. The system uses HP
BASIC as a subset and supports floating point firmware and a
Tektronix storage display. Many options are available for
implementing BEDSOCS. However, the authors used a single
user version distributed on paper tape. Using BASIC as a
subset, BEDSOCS partitions a program into a control region,
which contains BASIC statements, and a dynamic region,
which describes the representation of the system to be simula-
ted. In the control region the user can program in BASIC to
establish initial conditions, set control variables and perform
general computation and input/output. The dynamic region
contains the representation of the set of differential equations
(see Fig. 1).

The control region is divided into the initial region and the
terminal region. The initial region precedes the dynamic
portion of the BEDSOCS program and is used to set initial
conditions and control variables to be used in the dynamic
region. The terminal region is executed when the simulation is
completed. This region is generally used to perform final
calculations, print results, or loop back for iterative differential
equation solving runs. The dynamic region of a BEDSOCS
program contains the ‘representation set’. This is a set of
equations and procedure blocks representing the simulation to
be performed. Fig. 2 shows a typical procedure block, enclosed
by the ‘PROCED’ and ‘PROEND’ statements. The ‘PROCED’
statement has the form:

(statement no.> PROCED {output list) = (input list)
where the (input list) contains the dependent variables used

within the procedure block and the {output list) contains the '

dependent variables which are assigned values by the procedure
block. Within a procedure block, the user may describe non-
linear functions or other operations involving any BASIC
statement just as in the control region. There may be any

number of procedure blocks within a BEDSOCS program.
However, a variable may not occur in the output list of two
procedure blocks. Inputs and outputs of procedure blocks are
sorted just like those of a defined variable equation.

Equations of the representation set differ from BASIC
statements in their location and form. These statements are not
preceded by the ‘LET’ identifier of BASIC and they are auto-
matically sorted into a BASIC program which evaluates
derivatives and then updates state variables (integration). For
example, the following differential equation may be expressed
in BEDSOCS with the aid of the ‘DER’ identifier.

dx?jdt* — 5x + 3 =y

In BEDSOCS
300 DERZ=Y-5*X+3
310 DER X = Z
or
300 W=5*X-3
310 DERZ =Y - W
320 DER X =2Z

These simple equation statements combined, if necessary with
procedure blocks, make it very easy to describe complex
systems. Since BEDSOCS is interpretive, it is executed without
compilation. When the user types ‘RUN’, BEDSOCS checks
the program structure, creates the symbol table, sorts the
representation set and initialises the independent variable or
variables to zero. As this initial setup is performed, errors are
displayed on the user’s console with the number of the line
where the error occurred. Execution continues procedurally

10 LET K = T control
20 LET X = 0 region

0 LET Vs -0.2 {initial)
40 LET D= 0.5

50 LET M = 1

70 PRINT "DIST","VEL.","ACCEL." "PORCE"

Tepresentation equations dynamic
660 GOTO 680 set section region

EQUEND,
90C PRINT X,V,A,P
9! DYREND
975 PRINT "TERKIRATION SECTIOR™ control
985 END _] region
(terminal)

Fig. 1 The regions of a typical BEDSQCS program (Brown, 1973)

€59 FRCCED P X,K,D

€15 IP X > D THEN €59
€23 I? X <-D THEX €73
619 LET P = 0

€33 5670 €29

[543 LET P - K*{X-D)
E€3 G0I0 653

€79 LET P = K+(X4D)
€33 ERCETD.

Fig. 2 A typical BEDSOCS procedure block

*159 Frederick Street, Peekskill, New York 10566, USA, employed by IBM System Communication Division, Kingston, New York, USA.

tEmployed by Motorola Microsystems, Mesa, Arizona, USA.
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through the control region until the dynamic region is en-
countered. At that time, the integration routines are initialised
and execution continues into the dynamic region. The dynamic

1 REM: PROJ. OVER WALL

10 READ G,P,G1,G2,V0,A0,E0

30 DATA 9.8,1. 00000&02,.6.-5 50,45,.5
40 FRINT "RANGE

45 INPUT R

48 LET ﬁ}?} :g}:;fzo o

43 LET @li]: =

55 PRINT "DIST. & HEIGHT OP WALL™;

wH
77 LET A0-ATN(1)A0/45
100 LET Vi-v0+08(A0

0
110 LET V=sqa§vn?+v217)
125 LET A=ATN(V2/V1)
130 LET Vo=V
135 LET A0-A
120 LE? X-Y=T=0
150 LINE W,0,%,H
200 DYRAMIC
210  BQUATIONS
2 ‘“"3“ g SIN(A)-P*V 2
22 DER V=-G* -
3 DER A=-{G/V)*COS(A)
230 DER X=V+*COS ;
240  DER Y:=V~SIN(A
250 EXIT (X>: W

) ————
260 EXIT (Y < : 0 AND X>0)
450 DISPLAY X;Y
550 EQUEND l
560 IP Y<: 0 GOTO 600
570 LET 2-Y

DYEND
600 LET Ei=R-X

610 LET E2=H-Z

620 TF ABS(E1)+ABS(E2)<E0 THEN 650

630 LET V1=V1+G1*El

635 LET v2 V24+G2*E2

640 GOTO 110

650 PRINT “TIME", "HEIGHT AT WALL®,"RANGE®,"SPEED","ANGLE"
660 PRINT T,Z,X,V0,A0+45/ATN(1)

Fig. 3 A BEDSOCS program to calculate the path of a projectile

Lungs

Pulmonary arterial system Pulmonary venal system

d VAP=FPV-FPS FPS d VVP=FPS-FMV

dT PAP=0.133 VAP dT PVP=0,033 VVP
FPV=90 max (PRV-PAP, 0) . FPS=7(PAP-PVP)

FPV Heart action
Pulmonary (Periodic compliance Mitral
zs valve changes) valve

FMV

Left ventricle
d VLV=FMV-FAV
dT PLV=ACLV-VLV
FMV=17 max(PVP-PLV, 0)

FTV Tricuspid ACRV(T) ACLV(T) Aortic ;Z
valve valve FAV

Vena cava Aorta
d VVC=FVS-FTV d VAO=FAV-FAS
PAO=0.8 VAO

dT PVC=0.004 VVC
FVS=1.65(PSC-PVC) FAV=80 max(PLV-PAO, 0)

Right ventricle
d VRV=FTV-FPV

dT PRV=ACRV-VRV
FTV=78 max(PVC-PRV, 0)

FvVs

Systemic circulation
d VSC=FAS-FVS
dT PSC=0,0153 VSC

FAS=1.63(PAO-PSC) | FAS

Fig. 4 A block diagram of the PHYSBE model (Korn and Wait,
1976)

Table 1

PAGE 0001 YPHYS3 19 MAY 1978 09:1@:12

20 BEM H¥AXNEFEXYE PHYSBE XXKKUKA 1 4 KRXEX Y

40 REMARK

60 REM

2@ PEM UARIAELE EQUIVALENCES

160 PE

1za PEN A ACLY B ACRY

140 PEN vl URg P1 PGO F1 FAS
120 PEN vi2 URP P2 FAP F2 FRY
150 PEN W3 LU P3 PLY F3 Fry
-2 FEM g UpY 24 ERY F4 FPS
229 PEN V5 S0 F3 PSZ FS FPU

sl.2501.4
03,6. tl‘ﬁﬂGE f’3 €.600C0DE-03, 6. EO000E-02

3.€.60000E-03. 5. EROQOE 03
+ 6. 6000GE-03. 6. GAVOBE-03

z _-»OQUGE-OB 3.3

STHIEFET

£ ¢l FIRES OFEY.

PAGE 0002 XFhYS3 19 MAY 1978 08:10:12

SEO DATA 100 129, 150. 150. 3340, 500, 240
EQD PEAD '11,U24173.144,1/5, U5, U7

623 DATA ©,0.08.9,0.0.C

640 READ F1,F2. F3~r4 FS.F6.F7
£60 DATR C.0.0.0

630 PEAD P1,P2, P ?q-‘S P&, PV
633 PEN

SET THE DISF.AY nEIGHT AND LEPTH TO 1S©
@I32=1%2

ZT @I43=—3(3]
SET THE LISPuR7 LENGTH FOR S

SET THE MA¥I¥._' PELATIVE EPPOR TOLEPANCE TO 0.002
SET TrE ["IMI7L01 STEP SIZE TO @.091

NN

@224 832 PEM THE NEXT THREE PROCEDURE BLOCKS CALCULATE THE HERRT PUMP
03ZS 833 PREM LOCKUP VALUES AND INTERPOLATE THE TABLE. THE FIRST BLOCK
0gZ6 B34 PEM LETERMINES THE ARPAY INDEX THE SECOND AND THIRD PEPFORM
G087 £33 FPEM THE INTERFC.ATICN YEILDING AL FROM A AND Bl FROM B.

REN
023 £49 PROCED K=T
LET K« \T INTCT) 3 ¥25+8

Lorato] 80

8331 855 PROEND

@Iz O PROCED A=K

@eI3 550 LET C=K+.8-1IN ~.5,

@034 S0 LET A1 =PLK]‘(Q["+1 J-ALEN¥C

0655 905 PPOEND
¢Os6 519 PPOCED Bl=

©o37? 915 LET Cet+. S—XNT'I’

P52 S20 LET Bl BLKI+(BLF~ 1] 5 kK1aC
S S4c  PRO

0128 S50

@l 951 FE

2102 g2 P

'.-;f] THE FG, ..CLIG PFCCELURE BLD[‘I/S ﬂLL PERFGPH THE MAX FUNCTION
0103 953  PZii WHICH THIS ERSIC DOES DT HAY R EACH HEADING THE
2104 954 PEM EQUATIONS w.D PPOCEDURE FLOI KS ﬂPE EHTEF‘ED

QiC5  S55  REN

0;05 996G PEN PLL!
F7-3. 30202 +
Fa=74¢ F‘._—P .

PAGE 0003 ¥YPHYS3 19 MAY 1978 00:10:12

9109 1010 DER U?=F4-F3

20 REM LEFT UENTRICAL

40 P3=U3%A1

50  PROCED F3= P? P3

= LET H=P7-

162 IF H>® THEH 1168
LET F3=0

DiCFLAY FR2

FEI:
DISFLAY P1.7P3

YPr G2 19 MAY 1978 CB:10:12
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Table 2 Comparison of execution times (based on Korn and Wait, 1976)

(a) Batch-Processed, Equation-Oriented, Floating-Point Languages, Large Computers

System Computer Integration Routine Execution Time (sec)
FORTRAN CDC 3600 Not known 2
CSMP III IBM 360/50 Not known 1-46
IBM 360/65 Not known 0-42
DARE P CDC 6400 Runge-Kutta 2 0-16
Runge-Kutta-Merson (0-001 rel. error) 0-91
RSSL CDC 6600 Runge-Kutta 2 0-056

(b) Interactive, Equation-Oriented, Floating-Point Language, Minicomputers

DARE/ELEVEN DEC PDP-11/40
Floating-point software (DOS)
Floating-point firmware (RT-11)

DEC PDP-11/45

Core memory, floating-point software (DOS)
Bipolar memory, floating-point hardware

Runge-Kutta 2 65
Runge-Kutta 2 36
Runge-Kutta 2 4-5
Runge-Kutta 2 < 1-2* estimated

(¢) Interactive, Block-Diagram, Floating-Point Languages, Minicomputers

Block CSMP IBM 1130
Interpreter mode
Compiler mode

DEC PDP-11/45
FP software only

DEC PDP-11/20
DEC PDP-11/45
FP software only

ISL-11%

Runge-Kutta 2 40
Runge-Kutta 2 20
Not known 14-6
Euler 1-4
Runge-Kutta 2 2-8
Euler 0-6

(d) Interactive, Block-Diagram, Fixed-Point Languages, Minicomputers (with hardware multiplication)

DARE II DEC PDP-9
DARE/ELEVEN DEC PDP-11/40
DEC PDP-11/45
bipolar memory
MICRODARE DEC PDP-11/40

DEC PDP-11/03

Runge-Kutta 2 0-9
Runge-Kutta 2 0-19
Runge-Kutta 2 0:06 estimated
Runge-Kutta 2 03
Runge-Kutta 2 09

(e) Interactive, Equation-Oriented, Fixed-Point Language with Semiautomatic Scaling, Minicomputers (with hardware

multiplication)
SIMEX DEC PDP-9 Euler 0-19
DEC PDP-15 Euler 0-15 estimated
BDARE PDP-11/40 Runge-Kutta 2 31
(BASIC) no FP firmware
BEDSOCS HP 2100 with FP Runge-Kutta Merson 22
4th order

region is split into two sections, a procedural part and the
representation set.

When control flows into the dynamic region, it encounters the
first procedural section. This region (transparently to the user)
repeats derivative calls and integration steps as determined by
the derivative computing routine, defined by procedure blocks
and equations within the representation set. This routine is
executed until a communication point is éncountered. Such
points occur at regular intervals set by the user in the control
region, or at points determined by test values described by
‘EXIT’ statements. When a communication point occurs,
execution is transferred to a procedural section of the dynamic
region following the equations section of the program, typically
to produce output. Fig. 3 shows a program which uses the
communication points by means of the ‘EXIT” statement.
When the value of the inequality in the ‘EXIT’ statement

The Computer Journal Volume 23 Number 3

changes from ‘FALSE’ to ‘TRUE’, the program transfers
control to the procedural section following the representation
set as shown.

BEDSOCS uses a 4th order Runge-Kutta-Merson integration
routine which allows variable step sizes. By using control
variables, the user can set the error tolerance and the minimum
step size. As the simulation continues, the step size is adjusted
according to the estimated truncation error.

In a variable step integration, the user does not choose the
values of the independent variable at which solutions are
evaluated. For example, Fig. 3 shows a program which finds the
initial angle and velocity necessary for a projectile to pass over
a wall and hit a target on the other side. For this procedure it is
necessary to know the altitude of the projectile as it passes over
the wall. The ‘EXIT’ statement in line 250 causes the integra-
tion routine to back up and hit the point where X becomes
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Fig. S

greater than or equal to W. In this way particular points may
be evaluated while areas of lesser interest may be passed over
using larger integration steps.

The BEDSOCS display system is completely automatic. To
display the variable X as it is evaluated, it is only necessary to
place a ‘DISPLAY X’ statement in the equation section of the
program. This will display X as a function of the independent
variable as the simulation is performed. The axis values are

References

generally set in the control region of the program, but they
may be dynamically altered through the communication
(procedural) sections or the procedure blocks. BEDSOCS
automatically draws the axes and plots a multiplicity of lines,
For example, ‘DISPLAY T; A, B, C’ draws the variables A, B,
and C against the variable 7 throughout the simulation.
Although only one display statement may be active at a time,
special ‘USE’ statements allow a choice among several display
statements. Each statement is activated at a different time
during the execution.

In order to measure the execution times for BEDSOCS
programs, PHYSBE, a well known benchmark program
(Korn and Wait, 1976), was used. This program simulates the
human circulatory system. Fig. 4 contains a diagram of the
seven differential equations describing blood flow. The system
is driven by the two chambers of the heart, represented by a
table of values (Table 1). Table 2 shows how BEDSOCS
compares with other simulation systems in time required to
execute PHYSBE. Atthough BEDSOCS is comparatively slow
(execution time of 22 seconds per heart beat), its interpretive
features greatly reduce development time. Fig. 5 is a sample
PHYSBE execution.

Perhaps the most significant feature of BEDSOCS is the ease
with which it can be mastered. Using BASIC as a procedural
language and implementing the representation set in a familiar
format allows even the novice to write complex simulation
programs. BEDSOCS not only requires no compilation time,
but also greatly simplifies debugging. For users requiring
immediate response on small problems, BEDSOCS is an
attractive simulation language.
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Book review continued from page 229

oriented processing system (CHEOPS) illustrates the seminal
influence of AI on computer science. It describes special hardware to
deal with the search part of chess programs, it makes practical a
depth of 8 or 9 while experimenting with different heuristic strategies.
The special hardware is front ended by conventional computers to
relieve it of I/O and housekeeping. The short paper includes a
description of the facilities used to design and fabricate the hardware.
There are 16 accumulators, a 1024 words pushdown list, a chess
array module to carry out as single instructions standard checks,
moves and other operations; microcode is used. The paper by
Arlazarov and Futer is concerned with the king rook pawn against
king rook end game. Data structures are developed to minimise
storage and processing, symmetries and other properties are used to
cut down further the number of cases (about 109). Starting with the
end positions the resulting reduced set is generated iteratively and
classified into win or draw with the appropriate move. The paper by
Adelson-Velsky, Arlazarov and Donskoy on algorithms of adaptive
search in computer chess uses influence relations to construct
mathematical expressions in terms of graphs and trees for various
situations such as attack, pin, check, etc. The results of various
searches are stored using appropriate data structures.

The first paper in the section on knowledge engineering is by
Buchanan on issues of representation in conveying the scope and
limitations of intelligent assistant programs. The paper starts with a
brief description of DENDRAL, the famous expert system to aid
chemists in determining chemical structures. The main modules
include CONGEN which generates a large number of possible
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structures consistent with the given chemical and spectroscopic data,
the planner which interacts with the chemist to make use of his
expert knowledge, and the meta-dendral which makes use of the
accumulated structure-spectrum data to formulate new rules to
explain the behaviour of compounds. The paper concentrates on the
internal representation most suitable in communicating with the users
and experts, documentation issues, and communicating the progress
of the computation in the form of a laboratory notebook including a
trace of the reasoning steps. The second paper by Briabrin describes
the internal structure of DILOS, the system described in the paper by
Pospelov and Pospelov above. It consists of a set of LISP programs
to set up and search a data base, initiation of application programs,
logical analysis of the problem area, and consistency checking of new
facts added to the data base.

The final section is on natural language and the first paper on
natural language for interaction with a data base by Senin is also on
DILOS. It is concerned with the linguistic processor module which
developed the ¢-language for user communication with the system.
The paper by Narin’jani describes the Al work in the Siberian
branch of the USSR academy of sciences. This concentrates on the
nondeterministic behaviour model in robot control and formal
models, semantic representation and interrogation methods in the
area of natural languages. The final paper is on purposive under-
standing by Schank and DeJong. It starts with a short and clear
review of the various stages of developing the SAM computer
system to understand natural language, then describes in more
detail a new system, FRUMP, which concentrates in a top down
fashion on selective rather than total understanding.

I. M. Knasaza (London)
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