
Implementation of BEDSOCS: an interactive simulation
language

A. F. Eidelson* and I. J. Robinsont

BEDSOCS, an interactive digital computer language that is designed to allow the easy solution of
problems described by ordinary differential equations, is used to run PHYSBE (a benchmark pro-
gram that simulates the human circulatory system). A comparison chart compares BEDSOCS
with other simulation systems in time required to execute PHYSBE.
(Received January 1979)

Bradford EDucational Simulation language fOr Continuous
Systems (BEDSOCS), is an interactive digital computer
language designed to allow the easy solution of problems
described in terms of ordinary differential equations. The
language uses Dartmouth BASIC as the procedural language
and, like most BASIC systems, operates interpretively.
BEDSOCS has such advanced features as automatic equation
sorting, variable-step integration and graphic displays. The
equations describing the simulation need not be represented in
terms of block diagrams, but rather are entered much like
ordinary differential equations. Above all, because BEDSOCS
uses an interpreter, there is no compilation time. This allows
users to write and debug programs quickly at the cost of longer
execution time.
BEDSOCS, written by Geoffrey Brown (1973) at the Uni-

versity of Bradford, can be implemented on an HP2100
computer having 16k words of memory. The system uses HP
BASIC as a subset and supports floating point firmware and a
Tektronix storage display. Many options are available for
implementing BEDSOCS. However, the authors used a single
user version distributed on paper tape. Using BASIC as a
subset, BEDSOCS partitions a program into a control region,
which contains BASIC statements, and a dynamic region,
which describes the representation of the system to be simula-
ted. In the control region the user can program in BASIC to
establish initial conditions, set control variables and perform
general computation and input/output. The dynamic region
contains the representation of the set of differential equations
(see Fig. 1).
The control region is divided into the initial region and the

terminal region. The initial region precedes the dynamic
portion of the BEDSOCS program and is used to set initial
conditions and control variables to be used in the dynamic
region. The terminal region is executed when the simulation is
completed. This region is generally used to perform final
calculations, print results, or loop back for iterative differential
equation solving runs. The dynamic region of a BEDSOCS
program contains the 'representation set'. This is a set of
equations and procedure blocks representing the simulation to
be performed. Fig. 2 shows a typical procedure block, enclosed
by the 'PROCED' and 'PROEND' statements. The 'PROCED'
statement has the form:

(statement no.) PROCED <output list) = <input list)
where the <input list) contains the dependent variables used
within the procedure block and the <output list) contains the
dependent variables which are assigned values by the procedure
block. Within a procedure block, the user may describe non-
linear functions or other operations involving any BASIC
statement just as in the control region. There may be any

number of procedure blocks within a BEDSOCS program.
However, a variable may not occur in the output list of two
procedure blocks. Inputs and outputs of procedure blocks are
sorted just like those of a defined variable equation.
Equations of the representation set differ from BASIC

statements in their location and form. These statements are not
preceded by the 'LET' identifier of BASIC and they are auto-
matically sorted into a BASIC program which evaluates
derivatives and then updates state variables (integration). For
example, the following differential equation may be expressed
in BEDSOCS with the aid of the 'DER' identifier.

dx2/dt2 - 5x + 3 = y
In BEDSOCS

300 DER Z = y - 5 * J T + 3
310 DER X = Z
or
300 W = 5* X - 3
310 DERZ = Y - W
320 DER X = Z

These simple equation statements combined, if necessary with
procedure blocks, make it very easy to describe complex
systems. Since BEDSOCS is interpretive, it is executed without
compilation. When the user types 'RUN', BEDSOCS checks
the program structure, creates the symbol table, sorts the
representation set and initialises the independent variable or
variables to zero. As this initial setup is performed, errors are
displayed on the user's console with the number of the line
where the error occurred. Execution continues procedurally

10 LET K
20 LET X
30 LET V
40 LET D =
50 LET « =

1
0
-0.2
O.5

control
region
(initial)

400 EQUATIONS
600 PROCED P = X,K,D—

IP X D THEN 650
IP X -D THEN 670
LEI P .

610
620
630
640
650
660
670
680
690
700
710
600
900 PBIST X,V,A,P
950 DYNEND
975 FRIST "TERMINATION SECTION"-
985 END

GOTO 680
LET P o K - U - B )
GOTO 680
LET F - K-U*D)

FR0ESD
A r -P/K

DEB V . A
DEH X = ¥

EQUEND_

representat ion dynamic
region

control
region
(teramal)

Fig. 1 The regions of a typical BEDSOCS program (Brown, 1973)

eoo
610

5
£60

en

FB0CED P X,K,D
IP X > B THEN 650
IP X <-D THEN €70
LET P » 0
0CT0 €50
LET P » iC-(X-D)
GOTO 663
LET P • K-tX+D)

FHCEND.

Fig. 2 A typical BEDSOCS procedure block

•159 Frederick Street, Peekskill, New York 10566, USA, employed by IBM System Communication Division, Kingston, New York, USA.
fEmployed by Motorola Microsystems, Mesa, Arizona, USA.

The Computer Journal Volume 23 Number 3 233

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/233/375185 by guest on 10 April 2024



through the control region until the dynamic region is en-
countered. At that time, the integration routines are initialised
and execution continues into the dynamic region. The dynamic

1 REK: PEOJ. OVEH WALL
10 READ G,F,Gl,G2,V0,A0,E0
30 DATA 9 .3 ,1 .0O00OE-O2 . . 6 , . 6 . 5O ,45 . . 5
40 PRINT "RANGE";
45 INPUT R
43 LET e t ? l = 9 [ 4 ] = e o 0
49 LET @['I e P l - R
55 PRINT "DIST. * HEIGHT OP WALL";
60 INPUT W,H
77 LET AO-ATN(t)AO/45

100 LET Vl.VO-OS(AO)
105 LET V2.V0-SIN(AO)
110 LET V=SQR(V1t?+VJ1')
125 LET A.ATN(V2A1)
130 LET VO=V
135 LET AO A
140 LET )UY=T.O
150 LIRE W,O.W,H
200 DYBAHIC
210 EQUATIONS

IHDVAH T
DER V»-G-SIN(A)-P-V 2
DER A=-(OA)"COS(A)
DER X.V-COS(A)
UER Y . V S I N ( A )
EXIT (X > -- w)
EXIT (Y < - 0 AND X>
DISPLAY X;Y

EQUEND

220
223
227
230
240
250
260
450
550
560
570

IP Y <- 0 GOTO 600 -
LET Z-Y

5 30 DYEND
600 LET E1=R-X
610 LET E2=H-Z
620 IF ABS(El)+ABS(E2)<E0 THEN 650
630 LET VUV1+G1 "El
635 LET V2=V2+G2-E2
640 GOTO 110
650 PRINT "TIME","HEIGHT AT WALL","RANGE"
660 PRINT T,Z,X,VO, A M V A T N O )

"SPEED","ANGLE"

Fig. 3 A BEDSOCS program to calculate the path of a projectile

Lungs

Pulmonary ar te r ia l system
d VAP=FPV-FPS

dT PAP=0.133 VAP
FPV=90 I U I (PRV-PAP, 0)

FPV

2

F P S
Pulmonary venal system
d VVP = FPS-FMV

dT PVP=0.033VVP
FPS=7(PAP-PVP)

Heart action
Pulmonary (Periodic compliance

J valve changes)

Right ventricle
d VRV=FTV-FPV

dT PRV=ACRV-VRV
FTV=78 max(PVC-PRV, 0)

FTV

7
Tricu.pid ACRV(T) ACLV(T)

L valve

Vena cava
d VVC=FVS-FTV

dTPVC=0.004 VVC
FVS=1.65(PSC-PVC)

FVS <

F M V

£ Mitral
valve

d VLV=FMV-FAV
dT PLV=ACLV-VLV

FMV = 17 max(PVF-PLV,O)

Aortic J
valve

1
FAV

Aorta
d VAO=FAV-FAS

PAO=0. 8 VAO
FAV=80 max(PLV-PAO, 0)

Systemic circulation
d VSC = FAS-FVS

dT PSC=0. 0153 VSC
FAS=1.63(PAO-PSC) F A S

Fig. 4 A block diagram of the PHYSBE model (Korn and Wait,
1976)

Table 1

0001
0002
0OO3
0004
0005
0006
0007
0003
0009
0010
0011
00.2
0013
0014
0015
CO 16
201?

0C19
0020

0022

0024

0U3C
C*'jl

OC 33

C035

ocff
00-,0
0041

004 ~J

0045
00- 6

PAGE

2 0
4 0
6 0
2 0

1 0 0
1 2 0
1 4 0
1 2 0
1 6 0
2 ; o
2 2 0
2 4 0
2f,0
2E5
256

§^o

2 ~ ~
2" 3
~ 7 -
27t:

| " i

2 ~ "*.

3-1..-

330
4o;-
* - 0
- i :
4 : 3

.~~'..
- 5 0
£10
2 - ^
5 2 1
3 2 2

0 0 0 1 1PHYS3 19 MAY 1978 0 0 : 1 0 : 1 2

EEM ************* PHYSBE *****fcl **********
REMARK
REM
REM
FErl
PE:I
P Q i
PEM
P B 1
PEM
P.31
EEM
PEM
PEM
EEH

I'll
!

?£U

FEi"
?£r"
PE.1

PEil

F£. 1

JH"i H

CHTI1!

D'-Tfi

PET.

UflRIfiELE

ft (HCL' '
u i «JPO
" 2 UAP

114 ijpij
US "-5C
U6 ' « C
11? UJP

D «r-,--:Cv
t h E H.EP.P
TO iO i'i
ThE K ? ? =
0.- .-«

r , r , .

s.£eo--..?z--

elloooos-
r . -loot Ci-

4̂> 3
2.30000Z-

T * •:0J'O32-

EQUIVALENCES

B ACRU
PI PAO Fl FAS
P2 FrtP F2 FAU
P3 PL'; F3 FMU
P4 FE'. F4 FPS
F5 P S ; FS FPJ
PS P^C F6 FT"J
"=? ?•'? F7 FUS

A - •? I FOR THE L0O!:UP TARE TO PEPPESENT
T ?_.•?:•!•:-. IT IS NECESSAPY TO URAP PIPOUND
i'.V£.i T.-= STQPPINb HT 2 r . TO BE CEPTPlIN THP1T

' i"J-Zi ARE NE'ER OUT OF BOUNDS 1IITH A UPLUE
li- -ZZi:.i H 5 A CC-f'IEMEtlT NUMBEP).

• -i / : ? -

. - . ̂ J - . _ ! . l i . . . J 1 . 4

\l • '-. • K-! o l ' ? 3 , 6. fct^OOE -03. f. 60000E-03. 6. 60000E-03

'•^^^OXO.OE-33'?!t>COOE--O3!6;6OO6OE-O3'6!60OO6E-O3
.•:, •-. ?o : : E - 0 2 . : . I . . - S . I . 4

-
C~ . 2.3C;C"1E-^3. 3. 3COO0E-O3. 3. 3OOO0E-O3. 3. 30OOO£-O3
" - - -. • •- : - -f— , 3 * ^ ' ^ j ' - r - , ? 3 , ~ * ^ i i v £ - . ' " • " • • ' i " 'C>"*E- C1".

0055
0OS6
00S7
0058
0059
O060
0061
0O52
0OS3
OO64
0065
0066
006?
OOt^S
0069
>\̂  0
OOTI
0072

00~5

00" 7
00"" B

PAGE

seo
600
620
640
660
630
690
691
692
693
700

720

" J - *:
740
T£0
7=1
7S2
7=2
734
7£0

0002

DATA 100
PEPD ' l l ,
DATA 0 . 0
READ F l .
DATA C.0
REHD P I .
PB1
RBI
REI1 SET
RBI
^ET S Z 3 :
LET »:4D
P£V
RET1
PEM SET
FE"
^ET S I ' S
PE"
FE"
pCM CC"T
FE-i SET
FE'.
LET 35 -
_ E T •5-' '

*FhT"53 19 MAY 1976 00 > 10 • 12

.120.150.150
U2.'O.
.0.0.0
F2-F3.
.0.0.0
P2.P3.

.0 .0
F4.FS.
.0 .0
?4,?S.

THE DISP-AY

a 150
= -3[3Z

THE D

THE r
THE r

o oc3

c!oo.

:SPuPY

: " • : • : „ !

.3340.500.240
i;S,U7

F6-F7

P6.P7

nEISHT AND DEPTH TO 150

LEhSTH FOR 5

PELOTIUE EPPOR TOLEPPICE TO 0.002
STEP SIZE TO 0.001

0034
0085
0086
60S7
0083
0359
0OSO
0091
0092
0093
0054
0035
0056
0097
005S
0099
0103
0101
0102
0103
0104
01C5

0107
eic-3

0109
one
0111
©us
0113
0114
011S
0116
0117
0118
0119
0120
0121
0122
0123
0124
012S
0126
0127
0123
0129
0130
0131
0132
0133
0134
013S
0136
0137
0123
0139
0140
0141
0142
0143
0144
0143

e:<=£
0147
014S
C14S
0150
0151
0152
0153

160

0162

THE NEXT THREE PROCEDURE BLOCKS CPILCULOTE THE HEfiRT PUMP
LOCKUP vPILUES RUD INTERPOLPITE THE TfiBLE. THE FIRST BLOCK
E/ETEPniHES THE PIRRfiY IMDEX K. THE SECOND PIND THIRD PERFORM
THE INTERFC-PrriCN YEILDHIG Pll FROM PI AND Bl FROM B.

832 PB1
833 RB1
834 PB1
E25 REM
836 RB1
840 PROCED K-T
B60 LET K-(T-INT(T))*2S+1
865 PROEND
870 P2CCED Ai-K
8S0 LET Z-K+.S-IMTiK-'-.S'
50O LET fll"ALK><A::-+l]-aCK])*C
905 PPOEISD
910 PPOCED Bl-K
915 LET C-I'+.S-INT'K+.S)
??& LET BI»B:K:+<E:K-'I:-B;K!)*C
94C PPOEND
550 P2M
551 FBI
952 PEM
953 PSi
954 PEM
555 RBI
960 PE.1 _.
90.O P7-3.3O000E -02*' 7

1000 F4.?*fP2-P7'

THE FCCOUIfG PPCCEDURE aOCKS FLL PERFORM THE MflX FUNCTION
WHICH THIS EHSIC DOES HOT HfiUE. UNDER EACH HEADING THE
EDUflTIOfS HTJJ PROCEDURE H.OTKS ARE ENTERED.

19 MP1Y 1978 0 0 a O : 1 2

1010
1020
1040
1060
1OS0
1100
1120
1140
1160

use
1190
1200
1220
12-0
1260
12S0
1300
1320
1340
1360
1370
13S0
1400
1420
1430
1440
1460
1430
1490
1500
1S20
1S43
1560
1S20
1600
itZC

DER U7-F4-F3
REM LEFT MENTRICAL

P3=U3»ftl
PROCED F3-P7 .P3

LET H-P7-P3
IF H)0 THETJ 1168
LET F3-0
GOTO 1180
LET F3=:7»H

PROEND
DEP "3-F3-FS

REM BOPTR
PI=.8*01

PPOCED F2-P3.P1
LET H-P3-P1
IF H>0 THEH 1240
LET F2-0
GOTO 13S0
LET F2»3Clh

PPOBiD
DER H1-F2-F1
RB1 SVSTETIC ClPCLLfiTIGN

1=20
l c **•

2CO3

P 5 5 E
F1-1.63HP1-F3

DE? "5-F1-F-
REn UET<H CP.f,

P6-4.OOO0O2-03f.;6
F7»1.65«.'P5-P5i

DER U6-F7-F6
RBI PIGHT WENTPICflL

P4-J4»E1
PF03ED F6-P6.P4

i_ET H-P6-F4
IF H-.0 THE7. 16^C
..ET F6»3
SCTO lc£C
LET FS-TSt-i

PPC'BO
DEP "4.F6-FS
PETI FjLr;:- .^

32
P?GCEI> F5=F-.?^

LET H-P4-F2
IF H,0 7-t- --E0O
^ET FS-C
3CJT; 1^20
^ET F 5 - 3 0 . -

PPGE-C
DEP " 2 . 7 5 - F J
FE"
FB;
PEM M S F ^ H ' FP3
FBI
DISPLfiV P1.P3

19 MAY 1978

234 The Computer Journal Volume 23 Number 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/233/375185 by guest on 10 April 2024



Table 2 Comparison of execution times (based on Korn and Wait, 1976)

(a) Batch-Processed, Equation-Oriented, Floating-Point Languages, Large Computers

System

FORTRAN
CSMP III

DAREP

RSSL

(b) Interactive,

Computer Integration Routine

CDC 3600 Not known
IBM 360/50 Not known
IBM 360/65 Not known
CDC 6400 Runge-Kutta 2

Runge-Kutta-Merson (
CDC 6600 Runge-Kutta 2

Equation-Oriented, Floating-Point Language, Minicomputers

DARE/ELEVEN DEC PDP-11/40

(c) Interactive,

Block CSMP

ISL-llf

{d) Interactive,

DARE II

Floating-point software (DOS)
Floating-point firmware (RT-11)

DEC PDP-11/45
Core memory, floating-point software (DOS)
Bipolar memory, floating-point hardware

Block-Diagram, Floating-Point Languages, Minicomputers

IBM 1130
Interpreter mode
Compiler mode

DEC PDP-11/45
FP software only

DEC PDP-11/20
DEC PDP-11/45
FP software only

Block-Diagram, Fixed-Point Languages, Minicomputers (with

DEC PDP-9
DARE/ELEVEN DEC PDP-11 /40

MICRODARE

(e) Interactive,

DEC PDP-11/45
bipolar memory

i DEC PDP-11/40
DEC PDP-11/03

Equation-Oriented, Fixed-Point Language with Semiautomatic
multiplication)

SIM EX

BDARE
(BASIC)
BEDSOCS

DEC PDP-9
DEC PDP-15

PDP-11/40
no FP firmware

HP 2100 with FP

0-001 rel. error)

Runge-Kutta 2
Runge-Kutta 2

Runge-Kutta 2
Runge-Kutta 2

Runge-Kutta 2
Runge-Kutta 2
Not known

Euler
Runge-Kutta 2
Euler

hardware multiplication)

Runge-Kutta 2
Runge-Kutta 2
Runge-Kutta 2

Runge-Kutta 2
Runge-Kutta 2

; Scaling, Minicomputers

Euler
Euler

Runge-Kutta 2

Runge-Kutta Merson
4th order

Execution Time (sec)

2
1-46
0-42
016
0-91
0056

6-5
3-6

4-5
< 1-2* estimated

40
20
14-6

1-4
2-8
0-6

0-9
019
006 estimated

0-3
0-9

(with hardware

019
015 estimated

31

22

region is split into two sections, a procedural part and the
representation set.
When control flows into the dynamic region, it encounters the

first procedural section. This region (transparently to the user)
repeats derivative calls and integration steps as determined by
the derivative computing routine, defined by procedure blocks
and equations within the representation set. This routine is
executed until a communication point is encountered. Such
points occur at regular intervals set by the user in the control
region, or at points determined by test values described by
'EXIT' statements. When a communication point occurs,
execution is transferred to a procedural section of the dynamic
region following the equations section of the program, typically
to produce output. Fig. 3 shows a program which uses the
communication points by means of the 'EXIT' statement.
When the value of the inequality in the 'EXIT' statement

changes from 'FALSE' to 'TRUE', the program transfers
control to the procedural section following the representation
set as shown.
BEDSOCS uses a 4th order Runge-Kutta-Merson integration

routine which allows variable step sizes. By using control
variables, the user can set the error tolerance and the minimum
step size. As the simulation continues, the step size is adjusted
according to the estimated truncation error.
In a variable step integration, the user does not choose the

values of the independent variable at which solutions are
evaluated. For example, Fig. 3 shows a program which finds the
initial angle and velocity necessary for a projectile to pass over
a wall and hit a target on the other side. For this procedure it is
necessary to know the altitude of the projectile as it passes over
the wall. The 'EXIT' statement in line 250 causes the integra-
tion routine to back up and hit the point where X becomes

The Computer Journal Volume 23 Number 3 235

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/233/375185 by guest on 10 April 2024



r\ r\ r\ r\

Fig. 5

greater than or equal to W. In this way particular points may
be evaluated while areas of lesser interest may be passed over
using larger integration steps.
The BEDSOCS display system is completely automatic. To

display the variable X as it is evaluated, it is only necessary to
place a 'DISPLA Y X' statement in the equation section of the
program. This will display X as a function of the independent
variable as the simulation is performed. The axis values are

generally set in the control region of the program, but they
may be dynamically altered through the communication
(procedural) sections or the procedure blocks. BEDSOCS
automatically draws the axes and plots a multiplicity of lines.
For example, 'DISPLA Y T; A, B, C" draws the variables A, B,
and C against the variable T throughout the simulation.
Although only one display statement may be active at a time,
special 'USE' statements allow a choice among several display
statements. Each statement is activated at a different time
during the execution.
In order to measure the execution times for BEDSOCS

programs, PHYSBE, a well known benchmark program
(Korn and Wait, 1976), was used. This program simulates the
human circulatory system. Fig. 4 contains a diagram of the
seven differential equations describing blood flow. The system
is driven by the two chambers of the heart, represented by a
table of values (Table 1). Table 2 shows how BEDSOCS
compares with other simulation systems in time required to
execute PHYSBE. Although BEDSOCS is comparatively slow
(execution time of 22 seconds per heart beat), its interpretive
features greatly reduce development time. Fig. 5 is a sample
PHYSBE execution.
Perhaps the most significant feature of BEDSOCS is the ease

with which it can be mastered. Using BASIC as a procedural
language and implementing the representation set in a familiar
format allows even the novice to write complex simulation
programs. BEDSOCS not only requires no compilation time,
but also greatly simplifies debugging. For users requiring
immediate response on small problems, BEDSOCS is an
attractive simulation language.

Acknowledgement
We wish to acknowledge the assistance given by the University
of Arizona Electrical Engineering Department, particularly on
course EE370.

References
BROWN, G. (1973). BEDSOCS MARK I Reference Manual, Postgraduate School of Studies in computing, University of Bradford, August

1973.
KORN, G. A. and WAIT, J. V. (1976.) Digital Continuous-Systems Simulation, Prentice-Hall, Englewood Cliffs, NJ.

Book review continued from page 229

oriented processing system (CHEOPS) illustrates the seminal
influence of Al on computer science. It describes special hardware to
deal with the search part of chess programs, it makes practical a
depth of 8 or 9 while experimenting with different heuristic strategies.
The special hardware is front ended by conventional computers to
relieve it of I/O and housekeeping. The short paper includes a
description of the facilities used to design and fabricate the hardware.
There are 16 accumulators, a 1024 words pushdown list, a chess
array module to carry out as single instructions standard checks,
moves and other operations; microcode is used. The paper by
Arlazarov and Futer is concerned with the king rook pawn against
king rook end game. Data structures are developed to minimise
storage and processing, symmetries and other properties are used to
cut down further the number of cases (about 109). Starting with the
end positions the resulting reduced set is generated iteratively and
classified into win or draw with the appropriate move. The paper by
Adelson-Velsky, Arlazarov and Donskoy on algorithms of adaptive
search in computer chess uses influence relations to construct
mathematical expressions in terms of graphs and trees for various
situations such as attack, pin, check, etc. The results of various
searches are stored using appropriate data structures.
The first paper in the section on knowledge engineering is by

Buchanan on issues of representation in conveying the scope and
limitations of intelligent assistant programs. The paper starts with a
brief description of DENDRAL, the famous expert system to aid
chemists in determining chemical structures. The main modules
include CONGEN which generates a large number of possible

structures consistent with the given chemical and spectroscopic data,
the planner which interacts with the chemist to make use of his
expert knowledge, and the meta-dendral which makes use of the
accumulated structure-spectrum data to formulate new rules to
explain the behaviour of compounds. The paper concentrates on the
internal representation most suitable in communicating with the users
and experts, documentation issues, and communicating the progress
of the computation in the form of a laboratory notebook including a
trace of the reasoning steps. The second paper by Briabrin describes
the internal structure of DILOS, the system described in the paper by
Pospelov and Pospelov above. It consists of a set of LISP programs
to set up and search a data base, initiation of application programs,
logical analysis of the problem area, and consistency checking of new
facts added to the data base.
The final section is on natural language and the first paper on

natural language for interaction with a data base by Senin is also on
DILOS. It is concerned with the linguistic processor module which
developed the ^-language for user communication with the system.
The paper by Narin'jani describes the Al work in the Siberian
branch of the USSR academy of sciences. This concentrates on the
nondeterministic behaviour model in robot control and formal
models, semantic representation and interrogation methods in the
area of natural languages. The final paper is on purposive under-
standing by Schank and DeJong. It starts with a short and clear
review of the various stages of developing the SAM computer
system to understand natural language, then describes in more
detail a new system, FRUMP, which concentrates in a top down
fashion on selective rather than total understanding.

I. M. KHABAZA (London)

236 The Computer Journal Volume 23 Number 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/233/375185 by guest on 10 April 2024


