
An ALGOL 68 package for implementing graph
algorithms*

G. R. Garside and P. E. Pintelasf
Computing Laboratory, University of Bradford, West Yorkshire, BD7 1DP

The implementation of graph-theoretic algorithms using the facilities of standard algorithmic
languages is not easy since data structures and operations natural to the subject are not readily
available. GRAAP (GRaph Algorithmic Applications Package) is a new system designed to solve
this problem. Written in ALGOL 68-R it consists of about 150 operators and procedures which
perform operations natural to graph theory and essential to the implementation of graph algorithms.
These operators and procedures manipulate information representing graphs and related objects
stored in suitably defined structures. GRAAP exists as an album of precompiled segments to mini-
mise compilation time. The operations provided and the transparent internal representations of
graphs of different kinds are discussed. The ease with which algorithms can be implemented is
demonstrated by examples.

(Received January 1979)

1. Introduction
A graph can be used to represent many physical situations
which involve discrete objects and relations between them.
The objects are represented by the nodes of the graph and the
relations between them are represented by the edges of the
graph. We do not repeat here the terminology associated with
graphs as this can be found in the many texts now available on
the subject. Two such are Deo (1974) and Christofides (1975);
these also provide excellent accounts of the diverse applications
of graphs. The solution to a problem whose fundamental
nature can be represented by a graph may often be obtained by
manipulating the graph in a number of discrete steps according
to some algorithm. We shall refer to such algorithms as graph
algorithms. Example 3.1 implements an algorithm for finding
the cliques of a graph using the package described in this paper.
In particular the cliques of the graph of Fig. 1 are found (see
Fig. 5).

Attempting to implement graph algorithms on a computer
raises a number of programming problems. These involve the
efficient representation and manipulation of a wide variety of
graphs of different types and complexity. It is desirable to have
facilities which directly use the objects and operations natural
to the subject and this has been the aim of the graph algorithmic
applications package (GRAAP) described in this paper. The
package is written in ALGOL 68-R for use on ICL 1900 series
machines. It should be able to cater for most needs imme-
diately but the existing facilities can be used as a basis from
which to extend into the user's area of application. This
potential extensibility of GRAAP makes it unlike any other
package or language so far produced in the area of graph
algorithms. The package, which includes structures for
representing graphs and related objects as well as routines for
handling them, is available as an ALGOL 68-R segmented
album and so a user's program need only include those
segments specifically required for the implementation of his
algorithm.

The object of this paper is to outline the package and its uses;
full details are given in Garside and Pintelas (1978). We first
sketch the background against which GRAAP has been
developed.
A large number of software aids for implementing graph

algorithms already exist but they are all much more limited
than GRAAP. Some of the more important of these are
mentioned below. Standard algorithmic languages such as
FORTRAN or ALGOL 60, with their restricted data struc-
•This work was supported by the NATO Science Fellowship Programme.
fNow at DACC, Technical Operations Department, 24 Strat. Syndesmou, Athens, Greece.

tures, are unsuitable for implementing graph algorithms, while
list processing languages provide more appropriate data
structures but tend to hide the graph-theoretic nature of the
algorithm and lead to slow execution and large demands for
storage (see Rheinbolt, Basili and Mesztenyi, 1972). Special
purpose languages and software systems have been developed
to free the programmer from representational problems and
assist him with the manipulation of graph structures. It would
be inefficient to design a new language and write a compiler for
it because of the limited application of the language and the
enormous amount of time required to produce the compiler.
Consequently all graph-theoretic languages are embedded in
some well known high level language. There are two main
approaches. The first is to extend the host language by design-
ing extra language constructs to take care of the graph state-
ments and expressions. This requires a preprocessor which
translates the graph statements into statements of the host
language. Languages using this approach are GTPL of King
(1970) which is based on FORTRAN II, GEA of Crespi-

1 2 3 4 7 8 9

1
2
3
4
5
6
7
8
9

0
1
0
0
1
1
1
0
0

0
1
0
1
0
0
0
0
0

0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1
0

Adjacency matrix
Fig. 1

NODE 1 [2 5 6 7]
NODE 2 [1 3 4 5]
NODE 3 [2 4]
NODE 4 [2 3]
NODE 5 [1 2 6]
NODE 6 [1 5]
NODE 7 [1 8 9]
NODE 8 [7 9]
NODE 9 [7 8]
Adjacency lists

The Computer Journal Volume 23 Number 3 237

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/237/375193 by guest on 09 April 2024

Reghizzi and Morpurgo (1968) which is an ALGOL 60
extension with digraphs as a new data type, GASP at the
University of Illinois (Chase, 1970) which is an extension of
PL/I and GRASPE at the University of Texas (Friedman, 1968)
which is an extension language for processing digraphs and has
been embedded in SNOBOL4, SLIP-FORTRAN and LISP
1.5. For a full account of existing graph processing aids the
reader is referred to Pintelas (1976). The second approach
requires the host language to possess facilities which enable
new data structures and operations to be defined. ALGOL 68
is such a language and we have used an implementation of this,
ALGOL 68-R on ICL 1900 series computers, in producing
GRAAP. As far as we know, no other package is available
which uses a language with these kinds of facilities. Con-
sequently GRAAP has much wider application than any of
the above-mentioned extensions and has already been used to
implement many existing graph algorithms and to develop
new ones in various fields.

Section 2 describes the GRAAP structures and some of the

nets 3 actoe E

- * - H 1 I - I
ref t lb l ta []bitB

oetar S3 or gra-ph G

i s i en head of E

tail & B

graphaet 03

«raph of M

n
Fig. 2

routines for handling them, while two examples of the use of
the package are given in Section 3. In conclusion Section 4
contains observations based on the experience of using the
package extensively.

2. Construction of GRAAP
In order to decide which facilities to provide in GRAAP a
large number of existing graph algorithms were investigated,
on the basis that the facilities required by these algorithms
would be likely to be those required by future algorithms.
There are many ways in which graphs and related objects can

be represented (see Deo (1974) and Pintelas (1976)) and the
efficiency of implementation of a particular graph algorithm
depends upon the representation chosen. It was not practical to
include all the various representations in one package, being
better to choose one which would be optimal for a large
number of algorithms and adequate for many others. Thus the
structures in GRAAP are based upon the bit representation of
sets and adjacency matrices of graphs. In some cases this may
not lead to the most efficient representation but the large
number of operations available in the package for manipulating
the structures should more than compensate for this. Some
facilities are provided for representing and handling graphs
using their edge listings and incidence matrices.

In order to allow maximum flexibility in the structures used to
represent sets and graphs, a number of global objects of
mode setsbound = struct (int bound)

have been declared specifically to enable the structures to be of
user defined sizes. The mode declarations of the GRAAP
structures are given in Section 2.1 and the storage allocation is
shown in Fig. 2 in which the actual storage beyond a crossed
line is generated on the heap by user calls to procedures whose
names are given in Table 1.

2.1 GRAAP structures
2.1.1 Representation of sets
A convenient and efficient representation of an unordered set of
non-negative integers is by means of a string of binary digits,
e.g. the set {0, 1, 4, 6} from the universe {/1 0 < / < 10}, say,
can be represented by the eleven-bit string 11001010000. To
implement this representation in GRAAP we declare

mode sets = ref [] bits
A row of sets is declared as

mode setar = struct (int noofsets, ref [] sets set)

This has proved useful as a stack for holding subsets and
partitions of a set. The variable noofsets is analogous to a stack
pointer in indicating the last meaningful bit string in a setar
object.

When storage is generated for a sets object or a setar object,
the user defined variables bound of setsbound and bound of
setarbound determine the actual amount of storage generated
(see Table 1). In Example 3.1 (see Fig. 5) bound of setsbound,
bound of setarbound and bound of noofnodes (see Section 2.1.2),

Table 1
Structure User-valued global

variables required for
storage generation

Value to be assigned Storage
generation
procedure

sets
setar
graph
edgar
multi graph

bound of setsbound
bound of setarbound
bound of noofnodes
bound of graphedges
bound of paraledges

graphset bound of graphbound

Largest element allowed in a set genset
Maximum number of sets allowed in an array of sets gensetar
Maximum allowable index of a node of a graph gengraph
Maximum number of edges allowed in a graph genedgar
Maximum number of parallel edges allowed between any two nodes in a genmlgraph
multigraph
Maximum number of graphs allowed in an array of graphs gengraphset

238 The Computer Journal Volume 23 Number 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/237/375193 by guest on 09 April 2024

I a:=b

Fig. 3

all of mode setsbound, are given user defined values through
integers read in and assigned. For the graph of Fig. 1, these
took the values 9, 27 and 9 respectively, 9 being the number of
nodes and 27 the maximum possible number of cliques
calculated from the formula given by Even (1973, p. 154),
which is 3"/3 when the number of nodes n = 0 {mod 3).

2.1.2 Representation of graphs
There are many possible ways of representing graphs and
GRAAP provides two explicit methods for both directed and
undirected graphs. The first is based on the adjacency matrix
which assumes a numbering of the nodes from one upwards
and is defined as [a,,-] where ai} = 1 if node i is joined by an
edge to node j and 0 otherwise. The structure provided for this
representation is similar to setar and is declared as

mode graph = struct (int noofnodes, ref [] sets adjacent)
However, graph is more restricted than setar since both the
number of bits in each set and the length of the row of sets are
determined by the value of bound of noofnodes when storage is
generated (see Table 1). In a declared graph, G, the value of
noofnodes of G is that of the highest numbered node of G.
Nonexistent nodes are indicated by a bit string consisting
entirely of zeros and isolated nodes have a one in bit position
zero.
The second method of representing a graph in GRAAP is by

an edge listing. This is the set {</,./>} of all the edges in the
graph and is implemented through

mode edge = struct (int head, tail)
mode edgar = struct (int length, ref [] edge edge)

The value in length will be the highest index of a meaningful
edge in a particular edgar object.
A row of graphs can be stored using
mode graphset = struct (int noofgraphs, ref [,] graph graph)

A multigraph, which may have more than one edge between a
pair of nodes, is stored as an adjacency matrix and a packed
integer array. It is declared as

mode multigraph = struct (graph graph, ref [,] int paralgraph)

and the number of integers packed into a single word of
paralgraph is determined by the length of the bit string repre-
senting the upper limit of the number of parallel edges between
two nodes, held in bound of paraledges (see Table 1).

2.2 GRAAP operators and procedures
The number of operators and procedures provided to manipu-
late values held in structures described in Section 2.1 are too
numerous to list here, there being nearly 150 available to the
user. Full descriptions, including priority numbers, are con-
tained in Pintelas (1976) and Garside and Pintelas (1978). The
object of this section is to outline some of the more useful ones,
including all those which are used in the two examples of
Section 3, and these are grouped below under facility headings.

2.2.1 Input/output
Procedures are provided for reading into and printing out from
all the structures previously described. In Example 3.1 the
procedures readgraph, printgrl and printsetar are used.
readgraph reads graphs as adjacency lists and stores the
information in objects of mode graph; printgrl prints the
graphs in adjacency list form and printsetar prints each setar
object in its parameter list as a list of sets (see Fig. 5).

2.2.2 Initialisation
The operator clear sets all appropriate locations to zero when
applied to objects of mode setar, graph, edgar and multigraph.
nulset generates a bit string consisting entirely of zeros (the
empty set) , whilst mulval n (see Example 3.2, Fig. 7) generates
a set with l's in bit positions 0 to n.

2.2.3 Assignment
With a few exceptions the operator ' : = ' must be used in
preference to the normal ALGOL 68 assignment symbol : =
for all assignments involving those structures introduced in
Section 2.1 whose modes contain references. This is because
the normal assignment symbol will merely copy the reference
instead of all the information required. As an example,
consider the following code:

s e t s a, b, c; genset{{a, b, c)); readset(b); a : = b; c': = ' b;

The result is shown in Fig. 3. The full lines show the pointers
before the assignments and the dotted lines show the transfer of
information. The line of dots and dashes shows how the
reference pointer for a has been changed to point to the
[] bits of b. This means that any subsequent change to a or b
only changes the [] bits of b.
A similar argument holds for assignments involving other

structures with references. Thus A ' : = ' B where A and B have
the same mode copies to A all those parts of B which are not
references. In the case of A being of mode ref setar and B of
mode ref sets, the [] bits of B is copied to the [] bits of {set of
A) [noofsets of A + 1] and noofsets of A is increased by 1. An
example of this can be seen in the assignment statement which
forms the body of the inner loop of the program of Example
3.1 (see Fig. 5). Here A is the ref setar object S and B is the ref
sets object produced by the complicated expression to the right
of the ' : = ' symbol.

2.2.4 Natural operations
These are the operations which are 'natural' to particular set-
theoretic and graph-theoretic entities. In the case of sets we
include, among others, union, intersection and cardinal
number. The program of Fig. 5 contains the operators (i) set,
which inserts an element in a set, (ii) *, which is the set inter-
section operator and (iii) single, which generates a singleton
set.
In the procedure bicon of Fig. 7, the need to control a loop by

running through the adjacency list of node v in a graph G is
effected by

w startat 1; while w elof {adjacent of G) [v] do loop
where startat initialises the controlled variable w and elof
produces the next element in the adjacency list, returning true
if the list is not exhausted.

For graphs, most of the natural operations are provided as
procedures, e.g. insert an edge, find the complement of a graph,
form a subgraph. In Fig. 7 noofedges{G) is used to set the upper
limit of the edge stacks by returning the number of edges in the
graph G.

2.2.5 Boolean operations
The facility to perform tests using the new structures is
provided. Some examples are given in Table 2 below, in which i

The Computer Journal Volume 23 Number 3 239

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/237/375193 by guest on 09 April 2024

Table 2
Boolean expression

i elem S
T subS1

/ isol G
e elem E

Test being made

does ie SI
is T c 5?
is /an isolated node?
does e e El

is of mode ref int, S and T are of mode ref sets, G is of mode
ref graph, e is of mode ref edge and E is of mode ref edgar.

2.2.6 Storage generation
The statement
graph G

declares G to be of mode ref graph. The details of a particular
graph cannot yet be stored since no storage beyond the crossed
line for graph in Fig. 2 has yet been allocated. So before we can
store a graph in G we need the statement
gengraph (G)

and since the size of storage allocated depends on the global
variable bound of noofnodes, it is imperative that we have
initialised this before the procedure call. The principle holds for
all the structures except edge declared in Section 2.1 (see Table
1). The point is well illustrated in Example 3.1, where the
procedures gensetar and gengraph are called and the global
variables bound of noofsets and bound of noofnodes have been
previously read in.
However, it is not always necessary to generate storage

explicitly. In Example 3.2 the operator mulval in the declaration
sets 5 : = mulval n

(see Fig. 7) causes [] bits storage to be generated, filled with l's
and returned. The ref [] bits pointer of S is then made to point
to the newly generated storage by the action of the assignment
symbol.
The GRAAP Reference Manual (Garside and Pintelas, 1978)

clearly indicates the occasions when storage should be generated
explicitly.

2.2.7 Advanced procedures
Many graph algorithms have been easily and successfully
implemented using GRAAP. Some of the most widely useful of
these have been included in the final version of the package as
'advanced procedures'. Examples of these are procedures to
find spanning trees, bridges and cutnodes. In Example 3.1 (see
Fig. 5) the procedure maximalsets with a ref setar argument, S,
returns a setar object which contains precisely those elements
of S which are not proper subsets of other elements of S.

2.2.8 Algorithm testing
To aid the development, testing and efficiency investigations of
graph algorithms, the facility for generating pseudo-random
sets, graphs and multigraphs is provided through procedures
such as randomset, randgraph and randmlgraph. In these pro-
cedures the user has control over average element and edge
densities.

2.2.9 The segmented album
GRAAP consists of a set of precompiled segments making up
an ALGOL 68-R album. It is possible to use only those
segments required in a given applications program, e.g. the
first line of Fig. 5 indicates the segments required for Example
3.1.
The four major segments of GRAAP1, the extant version on

the ICL 1904S* at the University of Bradford, are shown in
Fig. 4, together with their dependence on each other (shown as

a digraph!). Each advanced operation is placed in its own
segment and so must be referenced separately in the segment
listing (as is the case with maximalsets in Fig. 5). Each advanced
operation contains calls to operators and/or procedures in the
four main segments.

3. Programmed examples
3.1 Cliques of a graph
A clique of a graph is a maximal subset, C, of the nodes with
the property that each node in C is adjacent to all other nodes
in C. The algorithm coded here, which finds all the cliques of a
graph, is a modified version of algorithm 8.1 of Even (1973, p.
155), and originally due to Paull and Unger (1959). For practical
purposes this algorithm has been superseded and it is included
here only because its simplicity makes it an ideal introductory
illustrative example. In fact the problem of finding all the
cliques of a graph is an NP-complete problem and more
practical algorithms are considered by Johnston (1976).
Johnston develops a family of algorithms based on a method
due to Bron and Kerbosch (1973) and presents them in an
abstract ALGOL-like language for which he needs special
types for sets and graphs, as well as many set-theoretic and
graph-theoretic representations and operations. All these
requirements are present in GRAAP and the algorithms given
by Johnston have been programmed successfully using the
package. A more recent paper by Gerhards and Lindenberg
(1979) describes two new algorithms for finding all the cliques
of a nondirected graph. These are based on sophisticated tree-
searching techniques which lead to better computational
speeds when compared with the method of Bron and Kerbosch
and the algorithms are constructed in such a way as to allow
parallel processing. It is intended to implement these algo-
rithms using GRAAP, although the parallel processing facility
cannot be utilised.

A program which implements the algorithm given by Even
and uses the GRAAP facilities is shown in Fig. 5. The sets,
setars and graph segments of the album GRAAP1 together
with the advanced procedure maximalsets are required. The
output produced is also shown in Fig. 5.
The algorithm as given by Even uses three arrays of sets called

S, C and S'. The housekeeping provided by the operators and
procedures in GRAAP enables us to declare only one ref setar
object, S. In particular the operator ': = ' for assigning a sets
value to a setar object automatically updates the noofsets
pointer and thus implicitly forms the quantity S v C of the
algorithm in 5 of the program. The procedure maximalsets
returns a setar object consisting of all those sets in its setar
argument which are not subsets of others. Assigning this
returned value to S dispenses with the need for S' of the

HULTIOHiPHS

GRAPHS

SHTARS SETS

Fig. 4 The structure of the GRAAP album.

240 The Computer Journal Volume 23 Number 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/237/375193 by guest on 09 April 2024

cliques with sets, setars, graphs, maximalsets from GRAAP1
begin

proc cliques = (graph G) ref setar:
begin int/>;

ref setar S = setar;
gensetar(S); clear 5; S ' : = ' single 1;
for i to noofnodes of G — 1 do

begin /? : = noofsets of 5 ;
for 7 to p do

S ' = • (i + 1) set ((adjacent of G) [/ + 1] • (ref of 5)

[j]);
5 ' : = ' maximalsets(S)

end;
S
end;

graph G;
read ((bound of noofnodes, bound of setarbound));
bound of setsbound :— bound of noofnodes;
gengraph (G);
readgraph(G); printgr2(G);
print ((newline, newline, 'the cliques of the graph are'));
printsetar (cliques(G))

end
finish
Output produced with the graph of Fig. 1 as Data
GRAPH

NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE

1
2
3
4
5
6
7
8
9

[2
[1
[2
[2
[1
[1
[1
[7
[7

5 6 7]
3 4 5]
4]
3]
2 6]
5]
8 9]
9]
8]

THE CLIQUES OF THE GRAPH ARE
[[2 3 4] [1 2 5] [1 5 6] [1 7] [7 8 9]]
Fig. 5 GRAAP program for Example 3.1.

{(4, 2), (3, 4), (2, 3)}
{(6, 1), (5, 6), (5, 1), (2, 5), (1, 2)}
{(9, 7), (8, 9), (7, 8)}
{(1, 7)}

Fig. 6 The biconnected components of the graph of Fig. 1.

algorithm.
Of the other GRAAP operators used in this implementation,

clear S fills S with empty sets and puts noofsets of 5 to zero,
single 1 generates the singleton set {1}, * is the set intersection
operator and set causes the element indicated on the left to be
added to the sets object on the right.

3.2 Biconnected components of a graph
A biconnected component of a connected graph, G, is a
maximal subgraph H, such that there are at least two distinct
paths between each pair of nodes in H. The biconnected
components of the graph of Fig. 1 are shown as edge listings in
Fig. 6. If the removal of a node and the edges incident on that
node causes the resultant graph to be disconnected then the
node is called an articulation point. The articulation points of
the graph of Fig. 1 are 1, 2 and 7 and are precisely those nodes
which occur in more than one biconnected component.
Tarjan (1972) gives an efficient algorithm for finding the

biconnected components of a graph and which is based on the

proc biconnect = (ref graph g) ref edgar:
begin int i,n := noofnodes of g, sp, cp;

$sp = stack pointer, cp = current component pointer £
edgar ccps; genedgar(ccps); clear ccps;
[1 :n] int number, lowpt; clear number; clear lowpt;
[1 :noofedges(g)~\ edge stk, ccp;
t stk = stack, ccp = current component stack f
proc bicon = (int v, u) void:
begin int w;
number [v] : = i plus 1; lowpt [v] : = i;
^{{number [v] := j := i + 1; lowpt [v] := number [v];
vv startat 1; while vv elof (adjacent of g) [v] do
^{for w in the adjacency list ofv doty
if number [w] = 0 then
^{if w is not yet numbered then}^
stk [sp plus 1] := (v,w);
k{add (v, w) to stack of edges')^
bicon (vv, v);
if lowpt[v~\ > lowpt[W] then lowpt[v~] := lowpt[w~\ fi;
^{/ovvp/(v) := min(lowpt(v), lowpt(w))}$
if lowpt[w~] > number_v'] then
^{start new biconnected component}^

if cp jt 0 then
(edge of ccps) [length of ccps plus 1] := (0, 0);
for 2 to cp do
(edge of ccps) [length of ccps plus 1] : = ccp[i];
cp := Ofi;

^ store previous component in edgar ccps ^
while number[head of stk[pj] ^ /2Mwfcer[w] do
C1 {while top edge = (uu u2) on edge stack has

numberlu}) > number(w) do}<}
begin ccp_cp plus 1] := stk[cpy, sp minus 1 end;
^{delete (ut, u2) from edge stack and add

it to current component}^
ccp[cp plus 1] := (v, w); sp minus 1
{{delete (v, w)from edge stack and add

it to current component}^
fi

else
if number\w\ < number[y] and vv ^ u then
^ {if (number(w) < number(v)) and (w # u) then}<f
stk[sp plus 1] : = (v, vv);
${add (v, vv) to edge stack}^
if /ovvpf[v] > lowpt\w~\ then /ovvp/[v] := /ovvpf[w] fi
^{/ovvpf(v) := min(lowpt(v), lowpt(w))}4

fi
fi

end;
/ := 0; sp := cp := 0; £{i := 0; empty edge stack}^
sets s : = mulval n;
int vv;
vv startat 1; while (vv elof s) and number vv = 0 do

bicon(w, 0);
d{for w a vertex do if w is not yet numbered then

bicon(w, 0)}f
if cp # 0 then
(edge of ccps) [length of ccps plus 1] : = (0, 0);
while cp > 0 do

begin (edge of ccps) [length of ccps plus 1] : = ccp[cp\,
cp minus 1

end
4 transfer last biconnected component to edgar ccps ^

fi;
ccps

end

Fig. 7 GRAAP program for Example 3.2.

The Computer Journal Volume 23 Number 3 241

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/237/375193 by guest on 09 April 2024

depth first search technique. The algorithm is presented in
ALGOL-like terms and involves recursion. It is easily imple-
mented using GRAAP and this coding is shown in Fig. 7
which, to emphasise the ease of implementation, includes state-
ments of the original algorithm as comments between the pairs
of symbols 4{ a n d }^ alongside the GRAAP source code.
Other comments appear between the normal ^ symbols.
For a graph with N nodes and E edges the algorithm requires

O(N + E) time. Table III shows the average time taken to find
the biconnected components of a graph on N nodes with edge
density p (i.e. N2

 P2 edges) for N = 10(10)50 and p = 0-3(0-2)
0-9. Each time is obtained by averaging over 50 randomly
generated graphs. The timings confirm that the algorithm has
O(N + E) time complexity.
Average time, in seconds, to find the biconnected components
of a connected graph with a given number of nodes and edge
density.

4. Conclusions
The package described in the previous sections possesses the
following attributes:
1. Extensibility.
2. Transparency of internal structures.
3. Operations which are natural to graph theory.
4. Ability to accommodate large graphs.
5. Easy implementation of graph algorithms.

Table 3

Edge density, p

No. of nodes, N
10
20
30
40
50

0-3

0053
0189
0-405
0-706
1099

0-5

0063
0-255
0-522
0-920
1-475

0-7

0076
0-305
0-649
1-125
1-784

0-9

0089
0-349
0-735
1-385
2-154

Experience with the package has shown these attributes to be
extremely useful in solving a wide variety of problems. Algo-
rithms which have been implemented include (i) finding span-
ning trees, (ii) computing transitive closures, (iii) graph
colouring, (iv) cycle generation, (v) finding shortest paths, (vi)
finding blocks and cutnodes, (vii) solving partitioning prob-
lems, (viii) pathfinding in electrical networks, coming from
many different scientific disciplines. The algorithms have been
easily implemented using the GRAAP facilities and running
times show the package to be efficient.

Acknowledgements
The authors wish to thank Roger Ward for his help in imple-
menting the package and Professor R. J. Ord-Smith and the
referee for their comments on earlier drafts of this paper.

References
BRON, C. and KERBOSCH, J. (1973). Algorithm 457: Finding All Cliques of an Undirected Graph, CACM, Vol. 16 No. 9, pp. 575-577.
CHASE, S. M. (1970). Analysis of Algorithms for Finding All Spanning Trees of a Graph, Report No. 401, Department of Computer Science,

University of Illinois.
CHRISTOFIDES, N. (1975). Graph Theory—An Algorithmic Approach, Academic Press, London.
CRESPI-REGHIZZI, S. and MORPURGO, R. (1968). A Graph Theory Oriented Extension to Algol, Calcolo, Vol. 5 No. 4, pp. 1-43.
DEO, N. (1974). Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall.
EVEN, S. (1973). Algorithmic Combinatorics, Macmillan, New York.
FRIEDMAN, D. (1968). GRASPE Graph Processing: A LISP Extension, Report TNN-84, Computation Center, University of Texas, Austin.
GARSIDE, G. R. and PINTELAS, P. E. (1978). GRAAP Reference Manual, Computing Laboratory, University of Bradford.
GERHARDS, L. and LINDENBERG, W. (1979). Clique Detection for Nondirected Graphs: Two New Algorithms, Computing, Vol. 21, pp.

295-322.
JOHNSTON, H. C. (1976). Cliques of a Graph—Variations on the Bron-Kerbosch Algorithm, Internal. J. Computing Information Sci., Vol. 5

No. 3, pp. 209-238.
KING, G. A. (1970). A Graph-theoretic Programming Language, Ph.D. thesis, University of West Indies.
PAULL, M. C. and UNGER, S. H. (1959). Minimizing the Number of States in Incompletely Specified Sequential Switching Functions, IRE

Trans. Electronic Computers, EC-8, pp. 356-367.
PINTELAS, P. E. (1976). An Algol 68-/? Package for Handling Sets and Graphs, Ph.D. thesis, University of Bradford.
RHEINBOLT, W. C , BASILI, V. R. and MESZTENYI, C. K. (1972). On a Programming Language for Graph Algorithms, BIT, Vol. 12, pp.

220-241.
TARJAN, R. (1972). Depth-first Search and Linear Graph Algorithms, SIAMJ. Comput., Vol. 1, pp. 146-160.

Book reviews
Automatic Speech and Speaker Recognition, edited by N. Rex Dixon

and Thomas B. Martin, 1978; 428 pages. {IEEE Press)

This book is a collection of 38 papers on various aspects of speech
and speaker recognition, originally published between 1972 and
1978. For someone wishing to get an indepth view of the field it
would certainly save a lot of work in the library. The papers range
widely and there are contributions from the UK, Japan and the
Netherlands as well as from the United States.
The reader will find he needs to have a wide ranging preparation if

he is to read and understand everything (acoustics, anatomy,
phonetics, linguistics, mathematics, computing) but this is typical of
the field. Five review papers on speech recognition and two on
speaker recognition will provide a good overview of the main
developments in the field for the non-specialist. If one believes, as
does the reviewer, that progress in this area is crucial to a more
effective use of computers in our society as a whole, the book con-
tains evidence of solid if not dramatic progress in the last decade.

P. G. RAYMONT (Manchester)

Computer Security, by D. K. Hsiao, D. S. Kerr and S. E. Madnick,
1979; 299 pages. {Academic Press, $18-00)

This is another of a series of inter-related American research
publications on computer security, and nearly 50 percent of it
consists of references to other similar works. For once, however, the
topic is seen as a wider ranging problem than teleprocessing access
control, although this is still the major issue considered, whilst other
important areas, such as power supply, flooding, corrupt input
information and incorrectly timed use of file information, get but
passing mention.
Some parts of the book are encouragingly written in layman's

language, whilst others go into some depth on software matters.
However technical the cause of problems, they have to be appre-
ciated and evaluated by ordinary managers so that effective action
may be taken. This volume provides a helpful survey of many aspects
of computer security, but adds little new to the available information
on the topic.

A. J. THOMAS (Sunbury on Thames)

242 The Computer Journal Volume 23 Number 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/237/375193 by guest on 09 April 2024

