
1-2 brother trees or AVL trees revisited1

T. Ottmannt and D. WoodJ

1-2 brother trees are binary search trees which have similarities to both height balanced search
trees and 2-3 trees. Firstly, 0(log2i) insertion and deletion algorithms are demonstrated and their
similarities with those for brother trees are noted. Secondly, it is proved that the space utilisation
of (random) 1-2 brother trees is much better than that for (random) 2-3 trees. Thirdly, the close
relationship between 1-2 brother trees and height balanced trees is demonstrated, and as this also
holds for their right-sided counterparts it leads to 0(log2«) insertion and deletion algorithms for
right-sided height balanced trees. Finally, this demonstrates that the insertion and deletion algo-
rithms for right-sided height balanced trees were already available, but hidden, in the correspond-
ing algorithms for right brother trees.
(Received February 1978, revised January 1979)

1. Introduction
Recently there has been a flurry of activity in the area of
binary search trees, for example Hirschberg (1976), Ottmann
and Six (1976), Ottmann, Six and Wood (1978a; 1978b; 1979),
Ottmann and Wood (1978), Raiha and Zweben (1979) and
Zweben and McDonald (1978). Two trends are apparent.
Firstly, as a result of Hirschberg (1976) and Knuth (1973), the
pursuit of 0(log2n) insertion and deletion algorithms for right-
sided height balanced trees (RSHB trees) was initiated, that
is, the right-sided variant of the AVL trees of Adelson-Velskij
and Landis (1962). This has been successful very recently (see
Raiha and Zweben (1979) for insertion and Ottmann and
Wood (1978) and Zweben and McDonald (1978) for
deletion). Secondly, brother trees (Ottmann and Six, 1976) and
their right-sided variants, right brother trees (Ottmann, Six and
Wood, 1978a), have been investigated, again demonstrating
0(log2«) insertion and deletion algorithms in both cases.

Moreover in Ottmann, Six and Wood (1978b; 1979) the close
correspondence between (right) brother trees and (right-sided)
height balanced trees was demonstrated. However this corres-
pondence assumes that the keys are stored at the leaves; while
internal nodes contain queries as auxiliary information, the so
called leaf search trees (brother and right brother search trees
are by definition assumed to be leaf search trees). Further the
correspondence enables 0(log2n) insertion and deletion
algorithms for (RS)HB leaf search trees to be derived directly
from those available for (right) brother search trees.

Now the recent insertion algorithm (Raiha and Zweben,
1979) for the standard RSHB search trees (the keys stored at
the internal nodes) is based on the principle contained in one
for right brother search trees (Ottmann, Six and Wood, 1978a).
In the present paper we demonstrate that these distinct

insertion algorithms are 'identical' in a strong sense. We first
define 1-2 (right) brother search trees, which are brother trees
in which the keys are stored at the internal nodes. The keys are
stored analogously to the method used for 2-3 trees (Aho,
Hopcroft and Ullman, 1974), namely, in 2-3 trees a node with
two sons has one key and a node with three sons has two keys.
For 1-2 brother trees a node with one son has no key and a
node with two sons has one key. In Section 2, it is shown
directly that 0(log2«) insertion and deletion algorithms exist for
1-2 brother trees. However, it is then observed that these are the
same algorithms as those for brother trees with appropriate

modifications due to keys being stored at internal nodes. This
leads immediately, in Section 4, to 0(log2n) insertion and
deletion algorithms for 1-2 right brother trees. Further, since
the correspondence between 1-2 (right) brother trees and
(RS)HB trees, respectively, is straightforward immediately the
solution to Knuth's original problem (1973, p. 471) is imme-
diate. In other words Ottmann, Six and Wood (1978a) contains
the solution to the insertion and deletion problem for RSHB
trees once the correct spectacles are worn!
We are convinced that the concepts of brother trees and 1-2

brother trees, although from one point of view a reinvention of
AVL trees in a slightly different guise, have importance in their
own right. Not only have they given insight into the solution of
Knuth's problem for RSHB trees, but we maintain that
conceptually they are simpler. Because of this, in Section 3, the
space complexity of 1-2 brother trees is analysed and com-
pared favourably with that for 2-3 trees by Yao (1978). This
analysis is however a non-trivial extension of that of Yao, as
Brown (1978) has also independently observed when treating
AVL trees.

2. 1-2 brother trees
A tree in which each node may have one or two sons is called a
brother tree (see Ottmann and Six, 1976) if 1 and 2 hold:
1. All leaves are of the same depth.
2. Each node with only one son has a brother with two sons.
In order to represent sets of keys we extend the method of
storing keys which is usual for 2-3 trees, viz keys are stored at
internal nodes only. An internal node with two sons has one
key; an internal node with only one son has no key. If the keys
stored at internal nodes are ordered according to 3 below, we
call the resulting tree a 1-2 brother tree.
3. For each internal node p with two sons, the keys in the left

subtree of/? are less than the key of p which in turn, is less
than the keys in the right subtree of p.

The tree of Fig. 1 shows an example of a 1-2 brother tree
representing the set {2, 3, 5, 7, 8, 10, 13}. Let Xp, pp denote the
left, resp. right son ofp, if/? has two sons, let op denote the only
son of/) if/? has only one son, and let <f>p denote the father of
node p.
To search for a key x in a 1-2 brother tree with root/? perform

search (p, x).

•Work carried out partially under a Natural Sciences and Engineering Research Council of Canada Grant No. A-7700 and partially under
a grant from the Deutsche Forschungsgemeinschaft (DFG).
tlnstitut fur Angewandte Informatik und Formale Beschreibungsverfahren, Universitat Karlsruhe, Postfach 6380, 7500 Karlsruhe, West
Germany.
JUnit for Computer Science, McMaster University, Hamilton, Ontario L85 4K.1, Canada.

248 The Computer Journal Volume 23 Number 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/248/375219 by guest on 10 April 2024



Fig. 1

Search (p, x)
Case 1 [p has two sons]
1.1 [key (p) > x]

perform search (kp, x)
1.2 [key (p) = *]

then p is the desired node.
1.3 [key (/>)<*]

perform search (pp, x).

Case 2 [p has only one son]
perform search (pp, x)

Case 3 [p is a leaf]
There is no node with key in the tree.

In order to insert a new key x in a 1-2 brother tree with at least
one key and root r, firstly, perform search (r, x). Since the
search will be unsuccessful we end up in a leaf; let p be the
fether of this leaf. We distinguish two cases.

Case 1: p has only one son
Then no key is stored in p. Hence, we can give p a second son,
store x in p, and FINISH.

Case 2: p has two sons
Then p already has a key k. We create a new leaf m in between
kp and pp and call up (p, m, x).

Remark
We may assume without loss of generality that x < k = key
(p), since k and x can be interchanged, if necessary, before
calling up.

Call u£ (p,m,x)

By Tq we denote the (sub)tree with root q and by keys (Tq) the
set of keys stored in Tq. (Keys (Tq) = 0, if q is a leaf or q is a
semileaf with only one son.) We extend the relation ' < ' in the
obvious way to a relation between sets of keys.
Then, the invariant condition maintained by the procedure up

reads as follows:
Whenever up (p, m, x) is called then the following holds:
(a) p has two sons / = kp and r = pp, which are roots of 1-2

brother trees
(b) m is either a leaf or has only one son am which is the root of

a 1-2 brother tree, and height (m) = height (kp) = height
(PP)

(c) either x < key (p) if m is a leaf, or keys (T,) < x < keys
(Tam) < key (p) < keys (Tr) otherwise.

procedure up (p, m, x);
nodep, node m, integer x;

Case I [p has a left brother with two sons']

Cal l u£ (<J>p,m',b)

(Clearly, if /, m, r are leaves, then am does not exist. Hence, in
this case am and the keys ku k2, k3 have to be removed from
the above figure. Similar assumptions are also necessary in the
following figures for treating the 'leaf case'.)
The restructuring to be performed in this case can be verbally

described as follows: Create a new node m', make the left son
I of p the only son of m', make m the new left son of/?. Let
b = key (<j>p), key (<j>p) = x and call up (<j>p, m', b).
Observe that the invariant condition is maintained. In the

following we only show the figure which describes the local
restructuring to be performed.

Case 2 \_p has a right brother with two sons']

Call uj> (*p,m',k)

Case 3 [p has a left brother with only one son]

•PI

FINISH

Case 4 \_p has a right brother with only one son]
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Case 5 [p has no brother]
(Then p is either the root or the only son of its father.)

Case 2.2: q has a binary left brother r and a unary right brother

In Ottmann and Six (1976) a similar upwards restructuring
procedure for brother trees is given. These two procedures
perform exactly the same restructuring, when key and query
movements are ignored.
The same holds for the restructuring which will be necessary

after the deletion of a key from a 1-2 brother tree: In order to
delete a node with key x from a 1-2 brother tree we first search
for the node p with key x. We may assume that p has two sons
since each key in the tree appears at a node with two sons. We
distinguish two cases:

Case 1: The two sons of p are leaves
Then remove one of the leaves, remove the key x from p and
call delete (p).

Call delete (p)

Case 2: The two sons of p are non-leaves
Now either Xp is binary or pp is binary, since we are dealing
with a 1-2 brother tree. Consider the case kp is binary in the
following, the case pp is binary is similar.
Determine the rightmost binary node q in the left subtree of p.

Let y be the key of q. One of the following two subcases must
occur:

Case 2.1: The sons ofq are leaves
Let y be the key of q. Replace the key x of p by y, remove the
key of q and one of its leaves and call delete (q).

Call delete (r)

Replace the key x of p by the key y of q, make the key z of r
the key of q, remove the key of r and one of its leaves and call
delete (r).
Whenever delete (p) is called, then

(a) p has only one son which is either a leaf or the root of a 1-2
brother tree

(b) p has lost its key
(c) For all nodes q in the tree apart from p and ftp (if ftp

exists) if q is unary, then q has a binary brother.
procedure delete (p); node p;

Case 1 \_p has a brother with two sons']
FINISH

Case 2 \_p has a brother with only one son]

Call
delete

(The case that p is the left son of its father is treated similarly.)

Case 3 \_p has no brother]
Case 3.1 [p is the root]
Then remove p, make the only son of p the new root, and
FINISH.

Case 3.2 [p is the only son of its father <j>p].
By the invariant condition, 4>p has a brother f}<f>p with two
sons. We distinguish whether or not ficfrp has three or four
grandsons.

Case 3.2.1 [Xp<f>p or p/i^p has only 1 son]
Assume that <j>p is the left son of its father and that kfifyp has
only one son.

api

Call delete

Call delete (q)
We leave it to the reader to treat the symmetric cases which can
be subsumed under Case 3.2.1.
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Case 3.2.2 [A.f}<t>p and pp<f>p both have two sons]
Assume that 4>p is the left son of its father

FINISH

We leave it to the reader to treat the case where <f>p is the right
son of its father.

End of delete (j>).
Since an TV-key brother tree is of height 0(log2(7V + 1)) by the
results in (Ottmann, Six and Wood, 1979) and the opening
remarks in Section 3, we have the following theorem.

Theorem 1
The algorithms to search for a key, to insert a new key, and to
delete a key from an TV-key 1-2 brother tree can be carried out
in time at most O(log(/V + 1)).

3. Storage utilisation
The number of keys stored in a 1-2 brother tree T is equal to
the number of internal nodes with two sons in T. This in turn
equals the number of leaves of T minus 1. The Fibonacci tree
TVibCO of height h is denned by

'Fib (0) D 'Fib'
(h+2)

(h+1)Fib

Here, the dots represent stored keys. The Fibonacci trees are
1-2 brother trees of'minimal denseness', since one easily shows
(by induction):

1. A 1-2 brother tree with height h has at least Fib(/i + 2)
leaves. (Here Fib(«) denotes the nth Fibonacci number, i.e.
Fib(l) = Fib(2) = 1, Fib(w + 2) = Fib(«) + Fib(« + 1),
for n > 0).

2. TFib(/j) has Fib(h + 3) - 2 internal nodes.
For a Fibonacci tree of height h we have:

number of internal nodes
storage utilisation =

number of stored keys
Fib(« + 3) - 2
Fib(A + 2) - 1

1 +
, as h -> oo

= 1-618
Hence, in order to store TV keys in a 1-2 brother tree we need
approximately 1-618 N internal nodes ( = storage cells) for
large N in the worst case.

We will now estimate the average storage requirement for
random 1-2 brother trees by using a method which was
developed for 2-3 trees by Yao (1978). The concept of a random
insertion is central to the analysis.

Definition of random insertion
Consider a 1-2 brother tree T containing j — 1 keys. These
j — \ keys divide all possible key values into j intervals. (These
intervals are represented by the / leaves of T.) The insertio'n of
the/th key kj is said to be random if kj has equal probability of
being in any one of the/ intervals, that is, of hitting any one of
the j leaves.

We will estimate the average storage requirement for trees
which are built by N successive random insertions. First of all,
we recall Yao's notation and adapt it for 1-2 brother trees.

Let T be a 1-2 brother tree.

n(T) denotes the number of internal nodes in T.

fN(T) denotes the probability of obtaining T after TV random
insertions (when starting with the empty tree).

n(N) denotes the average number of internal nodes in 1-2
brother trees which result after N random insertions
(beginning with the empty tree).

To derive a bound for n(N) we estimate the number of internal
nodes at the lowest two levels of random 1-2 brother trees.
When analysing the average storage utilisation of random 2-3
trees Yao (1978) utilised the fact that one can completely deter-
mine the effect of a random insertion with respect to all sub-
trees of a given height h. Yao called this an analysis of order h.
The corresponding observation does not hold in the case of 1-2
brother trees. If, for example, a key is inserted into the subtree
of height 2 with 4 leaves, the upwards restructuring procedure
up will be recursively called for the root p of the subtree (and
some m, x):

p r^
U£ (p, m, x)

As far as the resulting subtrees of height 2 are concerned we
only know that one subtree of the form

will be generated. But we do not know whether the root of the
remaining subtree of height 1 with two leaves will be the only
son of its father or will obtain a binary brother. This depends
on whether or not/? has a unary brother. Thus we cannot make
a pure second order (in general, a pure A-order) analysis by
considering only subtrees of height 2 (in general, of height h).*
As a consequence of this fact we also drop Yao's requirement
that a tree is represented uniquely by the number of small sub-
trees that occur. Consider the following three types of subtrees
of heights 1 and 2 in a 1-2 brother tree. (Keys are represented
by dots.)

Type 1 Type 2
Type

•Instead of this we will consider a class of subtrees with height at
most 2 (in general, at most h) and call this a second order (in general,
an A-order) analysis.
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The root of a type 1 subtree is assumed to be either the only son
of its father or to have a binary brother. An arbitrary 1-2
brother tree T is said to be of class (2; xu x2, x3) if T has xs
subtrees of type i, / = 1,2,3, (when counting each subtree
only once). Observe that a tree T may belong to different
classes. For example, the tree T

T =

belongs to both classes (2; 2, 1,0) and (2; 0, 1, 1).
Since we are only interested in the average number of keys

stored at the lowest two levels of internal nodes, the ambiguity
of the classification of the trees will only affect the bounds of an
estimation rather than making such an estimation impossible.
The key observation is that for each tree of type / the result of a
random insertion is uniquely determined. This fortuitous
circumstance implies that Yao's analytic method can be
adapted for 1-2 brother trees. Brown (1978) has recently made
a similar observation for AVL trees in a different context.

Let T be a 1-2 brother tree of class (2; xt, x2, x3) with TV
keys.

Lemma 1
2x{ + 3x2 + 4x3 = TV + 1 .

Proof
Both sides are equal to the number of leaves of T.

Lemma 2

TV < n(T) ^ - N .

Proof
Consider the internal nodes which occur on two arbitrary
adjacent levels in T. Whether or not a key is stored at an
arbitrary node p, depends upon its neighbours. The following
cases are possible:

(2) (3)

The brother tree condition ensures that for each part of type (1)
there must occur at least one part of type (2) or (3) on the same
level. Hence, we obtain the following possible values for the
ratio: (number of internal nodes in the considered two levels/
number of keys in these levels):

Type ratio
(2) 3/2
(3) 3/3
(l)and(2) 5/3 = 1-66 . . .
(1) and (3) 5/4

Hence, 5/3 is an upper bound for the ratio when considering
two adjacent levels. Clearly, the same bound holds for the
whole tree.

Remark

We could have improved the upper bound to —̂— for large

TV. But this would have only a minor influence on further
estimates.

252

When considering four instead of two adjacent levels we
obtain the following inequality with a similar elementary proof:

Lemma 2'

Lemma 3

TV< n(T) < 1 | TV = 1-6363 . . . N

2JC, + 4x2 + 4x3 -

*i + x2 + x3 - 1)

n(T)

3(x2 + x3)

Proof
Let us denote by TV' (respectively n\T)) the number of keys
(respectively, the number of internal nodes) above the lowest
two levels of internal nodes in the TV-key 1-2 brother tree Tof
class (2; x^ x2, x3).

Lemma 2 yields

Clearly,
n'(T) = n(T)—number of internal nodes at the lowest two

levels of internal nodes.
Each subtree of Type 2 or of Type 3 has three internal nodes at
the lowest two levels of internal nodes. Two Type 1 subtrees of
height 1 contribute at least three and at most four internal
nodes at the lowest two levels of internal nodes. Thus, we can
estimate n'{T) as follows.

2. - 2xl - 3(x2 + JC3) < n\T) n(T) - lXl -

3{x2 + x3).
Furthermore N' = N — number of keys at the lowest two
levels of internal nodes. Each subtree of Type 2 has two and
each subtree of Type 3 has three keys stored. For each two
occurring subtrees of Type 1 there must be stored at least two
and at most three keys at the lowest two levels of internal
nodes. This yields

3. N - - xt - 2x2 - 3x3 s$ N' < TV - x, - 2x2 - 3x3

1, 2, 3 and Lemma 1 yield the hypothesis.

Remark
When using Lemma 2' instead of Lemma 2 we obtain:

Lemma 3'
2x, + 4x2 4x3 -

x2

< n(T)

x3 - 1) 3(x2 + x3)

Notation (See also Yao (1978))
F(xit x2, x3) = the set of trees of class (2; xux2, x3)
PN(xux2,x3) = the probability that a tree of class (2; xu x2,

x3) results after N random insertions.

2M
= TeF(xux2,x3)

Ai(N) = the average value of x, for random TV-key 1-2 brother
trees.

Lemma 4
2At(N) + 4A2(N) + 4A3(N) - 1 <
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A2(N) + A3{N) - 1)

3(A2(N) + A3(N)).

n(N) < j

Proof
By Lemma 3 and the definitions.
Consider any (N - 1) key 1-2 brother tree T of class (2; xu

x2, x3). Table 1 shows the possible transitions under a random
insertion (of the Nth key). A tree of class (2; xu x2, x3)
becomes a tree of class (2; x'u x'2, x'3) with a probability of
occurrence shown in the last column. The probabilities follow
from the definition of a random insertion and the fact that Type
i subtrees have i + 1 leaves, / = 1, 2, 3. The values of x\, x'2
and x'3 follow from the insertion procedure of Section 2, which
transforms the type i subtrees of heights 1 and 2 as follows
(observe that the root of a type 1 subtree cannot have a unary
brother, since it would then be a type 2 subtree).

Type

Table 1

or

(3)

From Table 1 we obtain the following recurrence relations for
A£N).i = 1.2,3:

2Xl 4x3

= (i - jf) A^N - 0 + #M" - I)-

A2(N)= ^ ^-i(*i . *2, x3) Ul - £\ x2

Table 2
N

1
2
3
4
5
6

AW
1
0
0
1
3/5
4/5

A2(N)

0
1
0
1
4/5
1

A3(N)

0
0
1
0
3/5
3/5

A3(N)=

- 1) + 1 - I - 1).

For N < 6 we explicitly calculate the initial values of Af(N),
i — 1, 2, 3. These values are contained in Table 2.

With
easily

Thus

2 x <
7 x '.

and

these initial values and the above recurrence relations one
shows:

At0

A2(l

A3Q

Lemma 4

\(N+l)

W)- 4

' 7 x

V) = \ (N

V)- 3

' 7 x

yields for

7

5

H

5

]

(N

(A7

>

+

+

6:

7

1)

1)

X

X

, for

for

, for

5

N^

N^

NZ

+ D

6

6

6

< ~(N)

745

This leads to the following theorem.

Theorem 2

Corollary
1143 N < n(N) < 1-486 N, for JV > 6

(Using Lemma 3' instead of Lemma 3 yields a merely minor
improvement of the upper bound for "(A'), namely:

forAT>6.)

Thus we have estimated the average storage utilisation with an
inaccuracy of about 0-343 N.
To compare our result with that of Yao's (1978) for 2-3 trees

take into account the fact that each internal node in a 2-3 tree
has storage capacity 2 while in 1-2 brother trees nodes have

^ N - ^- = 1-476 JV - 0161,
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storage capacity 1. Yao proved that the average storage
capacity of random iV-key 2-3 trees lies between 1-40 N and
1-58 N.
Hence, we see that random 1-2 brother trees have a better

storage utilisation than random 2-3 trees.
We can try to improve the bounds of Theorem 2 by a third

order analysis. It is easy to find a set of eight different kinds of
subtrees of height one, two, and three (which, in particular
contains the trees of type 1, 2, 3 above) such that each 1-2
brother tree can be characterised (non-uniquely) by the number
of occurring subtrees of these eight kinds. Further, recurrence
formulas for the number of occurring subtrees of each respec-
tive kind can be derived. (Solving these recurrence formulas
involves the manipulation of an 8 x 8 matrix). But it turns out
that the number of subtrees of height 3 tends to 0 as the num-
ber N of random insertions goes to infinity. Thus, we ultimately
obtain exactly the same information about the number of
occurring 'small' subtrees as given by our second order analysis
above. Hence, the question whether or not the bounds of
Theorem 2 can be improved (by a higher order analysis)
remains open.
In closing this section we mention that the result of Theorem

2 has been experimentally verified by Neuser (1977). He has
obtained as the average number of internal nodes of an N-leaf
(i.e. of an (N - l)-key) brother tree: 1-308 N ± 0-5837 when
using iterated random insertions. (If the trees obtained by
iterated random insertions are completely destroyed by per-
forming random deletions, the average number of internal
nodes of an AMeaf intermediate tree is 1-3236 N ± 0-5883). For
each N < 1,000,100 sample trees were built up by N — 1 random
insertions. Furthermore, each tree obtained was also com-
pletely destroyed by performing the respective number of
random deletions.

4. Connection with height balanced trees
A binary search tree is called height balanced (or an A VL-tree),
if for each node p the heights of the left subtree TXp and the right
subtree Tpp of p differ by at most one, the balance factor of p.
When using only internal nodes to store keys and using the
leaves to represent key intervals for unsuccessful searches (see
for example Knuth (1973)) the correspondence between height
balanced trees and 1-2 brother trees is immediate: Let a 1-2
brother tree be given. Contract each node with only one son by
replacing that node by its only son. The tree obtained is height
balanced.

Conversely, let a height balanced tree be given. Expand each
left (resp. right) son of a node with balance factor +1 (resp.
— 1) by inserting a new node which is the only son of its father
and which has the same key as the expanded node, removing
the key from the expanded node. The resulting tree will be a
1-2 brother tree. Fig. 2 shows an example of a 1-2 brother tree
and its corresponding height balanced tree.
The connection between height balanced leaf search trees

and brother trees when considered as leaf search trees has
already been established by Ottmann, Six and Wood (1979).
This correspondence and also its counterpart for the respective
subclasses of right-sided trees carries over to the (normal) AVL
trees and 1-2 brother trees.

Before stating this fact, we recall the following definitions:
An AVL tree is called right-sided height balanced if each node p
has balance factor 0 or +1 .

- l

Fig. 2

A 1-2 brother tree is called a 1-2 right brother tree if each node
p with only one son has a right brother with two sons.

Theorem 3
1. A binary search tree is a (right-sided) height balanced tree if

it results by contraction from a 1-2 (right) brother tree.
2. A binary search tree is a 1-2 (right) brother tree if it results

by expansion from a (right-sided) height balanced tree.
Raiha and Zweben (1979) found a 0(logA0 insertion
algorithm for right-sided height balanced search trees.
Zweben and McDonald (1978) and Ottmann and Wood (1978)
independently designed a O(logA )̂ deletion procedure for
these same trees.
Although Raiha and Zweben mentioned that their algorithm

is based on the insertion algorithm for right brother
trees developed in Ottmann, Six and Wood (1978a), the
connection between these two algorithms was not made
explicit. But it is now clear how insertion and deletion algo-
rithms for (right-sided) height balanced trees can be obtained
from the respective source algorithms for 1-2 (right) brother
trees. Use local expansion and local contraction to obtain target
algorithms which have run times of the same order as the
source algorithms. An explanation of local expansion and
contraction can be found in Ottmann, Six and Wood (1979),
for the case of leaf search trees.
Although insertion and deletion algorithms for 1-2 right

brother trees are not explicitly given here it is now straight-
forward to obtain them from those for right brother trees in
Ottmann, Six and Wood (1978a).
We have already seen in Section 1 that the following is

sufficient to carry over the algorithms which were originally
developed for brother trees to 1-2 brother trees in which the
internal nodes are used to store the keys. All one step trans-
formations to be performed locally (and globally) maintain the
number of internal nodes with two sons. Thus, a new assign-
ment of key values can be carried out simultaneously with any
local restructuring of the tree. This can always be restricted to
the neighbourhood of the respective actual procedure para-
meter node and performed in such a way that the whole tree
remains a search tree. When disregarding the keys the restruc-
turing is the same as for brother trees.
The target algorithm, once obtained, can also be formulated

without explicit reference to the source algorithm. Furthermore,
it is often possible to clean up the target algorithm by cutting
short the case analysis. However, we feel that the algorithms
developed for (right) brother trees play a prominent role in the
understanding and development of the involved algorithms for
(one-sided) height balanced trees.
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Book reviews
Structured Programming, by R. C. Linger, H. D. Mills and B. I. Witt,

1979; 402 pages. (Addison-Wesley, £14-25)

The term 'structured programming' has long ago lost most of its
meaning; for many potential readers it will mean nothing more than
acceptance of a simple constraint on patterns of control flow (DO-
WHILE and IF-THEN-ELSE), an anathema on GO TO and an
adherence to the broad church of top down design. For Linger,
Mills and Witt, 'structured programming' means much more than
this: it means above all a detailed and careful consideration of
control flow, and an insistence that program development should be
'rigorous' (i.e. provably correct) rather than 'heuristic' (i.e. proceed-
ing by trial and error).
After a chapter briefly introducing some basic concepts such as

sets, relations, digraphs, state machines, regular expressions and
others, a program design language (PDL) is defined. PDL has an
outer syntax providing various control flow constructs, jobs,
procedures and modules, and some structuring of data. Attention is
then concentrated, in the central portion of the book, on methodical
analysis of control flow, including the rewriting of 'unstructured'
into 'structured' programs by creating, where necessary, new
variables to represent the value of the text pointer. Chapters on
program reading and correctness proofs then follow, leading into the
last part of the book. This last part is concerned with designing and
writing structured programs and is based on a number of small
examples, each illustrated by comparing a faulty, intuitive, heuristic
design with the recommended form of rigorous stepwise refinement.
The exposition in this part is not, perhaps, entirely successful. The
main examples (long division, making change, tic tac toe) invite
discussion of algorithmic aspects which lie far from most pro-
grammers' daily concerns. The classic IBM pollution reporting
problem is a more typical task, but is handled rather less satis-
factorily and with less confidence.
In some ways this is an old-fashioned book. The underlying idea of

a program is that of a hierarchy of procedures; there is no mention of
processes or of parallelism. The notion of a 'job' in the PDL is a very
primitive, implementation based notion derived essentially from
OS/360. But these defects are less than the book's virtues. Above all,
it conveys clearly the idea that program development should be a
rigorous activity relying on sound theoretical foundations: that is the
book's chief message, and it deserves to be heard.

M. A. JACKSON (London)

Structured Systems Analysis: Tools and Techniques, by Chris Gane
and Trish Sarson, 1979; 241 pages. (Prentice-Hall, £1205)

The tools and techniques recommended and briefly described are
these: data flow diagrams (DFDs), hierarchically decomposed; data
dictionary; decision tables and decision trees; narrative procedural
description in 'structured English' or 'tight English'; data base
normalisation into third normal form; and program design accord-
ing to Constantine's methods, as expounded by Myers, Yourdon and
others. As a compendium of some well loved ideas the book passes
muster. Most of the ideas are described very superficially, but there
are references to more substantial works: Date's book on data base
systems, Pollack or London on decision tables, Yourdon and

Constantine on structured design. A reader interested in under-
standing and using these tools would need to supplement this book
by studying many of the references given. This is no criticism: much
of the value of the book lies in the conjunction of the various tools,
which is claimed to provide at least the basis of a method.
The chief novelties are the 'structured' or 'tight' English, and the

data flow diagrams. The former is no more than a slight relaxation of
a typical pseudocode to make it more acceptable to a lay customer;
'structured' English adds a small dose of syntactic sugar to the
pseudocode; 'tight' English adds a rather larger dose of syntactic salt
which seems, to this reviewer at least, to spoil the dish. There is more
substance in the data flow diagramming method. The general idea is
that the function of the system is decomposed into lower level
functions which communicate by sequential data flows and by up-
dating globally accessible data stores. A function is an 'order to a
dumb clerk', capable of 'being carried out in a simple clerical
circumstance in 5-30 minutes'. Decomposition proceeds hier-
archically, with some obvious rules (not always observed) relating the
successive levels. Much attention is paid to the mechanics of the
representation (such as the avoidance of crossing data flows). The
claim is made that the DFD technique is 'logical' rather than
'physical', avoiding premature implementation decisions, but this
claim is not well founded: the partitioning of the system established
in the data flow diagrams is retained in the final implementation, and
there is no discussion of how the system might be repartitioned during
the implementation stage.
Too much of the book is taken up by vague generalisations, and

there is little to exert the reader's intellect. But the book is not with-
out content, and will certainly appeal to some. Enthusiasts could
usefully compare it with de Marco's book on the same subject and
from the same stable.* M. A. JACKSON (London)
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Speech Communication with Computers, edited by Leonard Bole,
1979; 206 pages. (CarlHanser Verlag and Macmillan, £1000)

The mechanical analysis of speech was recognised as a challenging
problem long before the advent of computers. When computers
became available the recognition of speech by computer quickly
became an established problem, and its imminent solution is
announced with great regularity. For instance it is reported that in
1965 it was announced that Dartmouth College would have a
recogniser 'for any language within two years'.
The present volume is a collection of six articles describing the work

in progress at laboratories in the United States and Europe in the
mid-1970's. An article from Carnegie-Mellon University describes a
comprehensive project, whereas others deal with more specialised
topics, one specialised topic being the identification of a speaker,
discussed by P. Jesorsky. This volume is intended to be the first in a
survey series on natural communication with computers; it is a use-
ful reference and worthy of a place in those libraries where student
projects start.

J. J. FLORENTTN (London)
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