NEUSER, W. (1977).

ExperimentelleUntersuchung ausgeglichener Bindrbiaumen, Master’s Thesis, Karlsruhe, 1977.

OT1TMANN, T. and Six, H.-W. (1976). Eine neue Klasse von ausgeglichenen Bindrbiumen, Angewandte Informatik, Vol. 18 No. 9, pp. 395-

400

OT1TMANN, T., Six, H.-W. and Woob, D. (1978a). Right Brother Trees, ACM, Vol. 21, pp. 769-776.
OT1T™MANN, T, Six, H.-W. and Woob, D. (1978b). A Survey of New Results in Balanced Search Trees, Datenstrukturen, Graphen, Algorithmen

(ed., J. Muhlbacher), Carl Hanser Verlag, Munchen, pp. 107-124.

OT1T™MANN, T., Six, H.-W. and Woob, D. (1979). On the Correspondence between AVL Trees and Brother Trees, Computing, to appear.
OT1TMANN, T. and Woob, D. (1978). Deletion in One-sided Height-Balanced Search Trees, International Journal of Computer Mathematics,

Vol. 6, pp. 265-271.

RAIHA, K. J. and ZweBEN, S. H. (1979). An Optimal Insertion Algorithm for One-sided Height-balanced Binary Search Trees, CACM, Vol. 22,

pp. 508-512.

Yao, A. C-C. (1978). On Random 2-3 Trees, Acta Informatica, Vol. 9,

pp. 159-170.

ZWEBEN, S. H. and McDONALD, M. A. (1978). An Optimal Method for Deletion in One-sided Height-balanced trees, CACM, Vol. 21, pp.

441-445.

Book reviews

Structured Programming, by R. C. Linger, H. D. Mills and B. I. Witt,
1979; 402 pages. (Addison-Wesley, £14:25)

The term ‘structured programming’ has long ago lost most of its
meaning; for many potential readers it will mean nothing more than
acceptance of a simple constraint on patterns of control flow (DO-
WHILE and IF-THEN-ELSE), an anathema on GO TO and an
adherence to the broad church of top down design. For Linger,
Mills and Witt, ‘structured programming’ means much more than
this: it means above all a detailed and careful consideration of
control flow, and an insistence that program development should be
‘rigorous’ (i.e. provably correct) rather than ‘heuristic’ (i.e. proceed-
ing by trial and error).

After a chapter briefly introducing some basic concepts such as
sets, relations, digraphs, state machines, regular expressions and
others, a program design language (PDL) is defined. PDL has an
outer syntax providing various control flow constructs, jobs,
procedures and modules, and some structuring of data. Attention is
then concentrated, in the central portion of the book, on methodical
analysis of control flow, including the rewriting of ‘unstructured’
into ‘structured’ programs by creating, where necessary, new
variables to represent the value of the text pointer. Chapters on
program reading and correctness proofs then follow, leading into the
last part of the book. This last part is concerned with designing and
writing structured programs and is based on a number of small
examples, each illustrated by comparing a faulty, intuitive, heuristic
design with the recommended form of rigorous stepwise refinement.
The exposition in this part is not, perhaps, entirely successful. The
main examples (long division, making change, tic tac toe) invite
discussion of algorithmic aspects which lie far from most pro-
grammers’ daily concerns. The classic IBM pollution reporting
problem is a more typical task, but is handled rather less satis-
factorily and with less confidence.

In some ways this is an old-fashioned book. The underlying idea of
a program is that of a hierarchy of procedures; there is no mention of
processes or of parallelism. The notion of a ‘job’ in the PDL is a very
primitive, implementation based notion derived essentially from
08S/360. But these defects are less than the book’s virtues. Above all,
it conveys clearly the idea that program development should be a
rigorous activity relying on sound theoretical foundations: that is the
book’s chief message, and it deserves to be heard.

M. A. JacksoN (London)

Structured Systems Analysis: Tools and Technigues, by Chris Gane
and Trish Sarson, 1979; 241 pages. (Prentice-Hall, £12-05)

The tools and techniques recommended and briefly described are
these: data flow diagrams (DFDs), hierarchically decomposed; data
dictionary; decision tables and decision trees; narrative procedural
description in ‘structured English’ or ‘tight English’; data base
normalisation into third normal form; and program design accord-
ing to Constantine’s methods, as expounded by Myers, Yourdon and
others. As a compendium of some well loved ideas the book passes
muster. Most of the ideas are described very superficially, but there
are references to more substantial works: Date’s book on data base
systems, Pollack or London on decision tables, Yourdon and

The Computer Journal Volume 23 Number 3

Constantine on structured design. A reader interested in under-
standing and using these tools would need to supplement this book
by studying many of the references given. This is no criticism: much
of the value of the book lies in the conjunction of the various tools,
which is claimed to provide at least the basis of a method.

The chief novelties are the ‘structured’ or ‘tight’ English, and the
data flow diagrams. The former is no more than a slight relaxation of
a typical pseudocode to make it more acceptable to a lay customer;
‘structured’ English adds a small dose of syntactic sugar to the
pseudocode; ‘tight’ English adds arather larger dose of syntactic salt
which seems, to this reviewer at least, to spoil the dish. There is more
substance in the data flow diagramming method. The general idea is
that the function of the system is decomposed into lower level
functions which communicate by sequential data flows and by up-
dating globally accessible data stores. A function is an ‘order to a
dumb clerk’, capable of ‘being carried out in a simple clerical
circumstance in 5-30 minutes’. Decomposition proceeds hier-
archically, with some obvious rules (not always observed) relating the
successive levels. Much attention is paid to the mechanics of the
representation (such as the avoidance of crossing data flows). The
claim is made that the DFD technique is ‘logical’ rather than
‘physical’, avoiding premature implementation decisions, but this
claim is not well founded: the partitioning of the system established
in the data flow diagrams is retained in the final implementation, and
there is no discussion of how the system might be repartitioned during
the implementation stage.

Too much of the book is taken up by vague generalisations, and
there is little to exert the reader’s intellect. But the book is not with-
out content, and will certainly appeal to some. Enthusiasts could
usefully compare it with de Marco’s book on the same subject and
from the same stable.* M. A. Jackson (London)

Reference
ToMm pe MARco, (1979). Structured Analysis and System Specification
Prentice-Hall, £16-25

Speech Communication with Computers, edited by Leonard Bolc,
1979; 206 pages. (Carl Hanser Verlag and Macmillan, £10-00)

The mechanical analysis of speech was recognised as a challenging
problem long before the advent of computers. When computers
became available the recognition of speech by computer quickly
became an established problem, and its imminent solution is
announced with great regularity. For instance it is reported that in
1965 it was announced that Dartmouth College would have a
recogniser ‘for any language within two years’.

The present volume is a collection of six articles describing the work
in progress at laboratories in the United States and Europe in the
mid-1970’s. An article from Carnegie-Mellon University describes a
comprehensive project, whereas others deal with more specialised
topics, one specialised topic being the identification of a speaker,
discussed by P. Jesorsky. This volume is intended to be the first in a
survey series on natural communication with computers; it is a use-
ful reference and worthy of a place in those libraries where student
projects start.

J. J. FLoreNTIN (London)

255

¥202 Iudy 60 U0 1s8nb Ag 0£ZG/LE/e-6G2/E/SZ/e1o1ue/|ulWwoo/woo dno-olwepeoe//:sdiy wolj papeojumoq



