
A tree search approach to the M-partition and Knapsack
problems*

A. Albano and R. Orsini
Istituto di Scienze dell'lnformazione, Corso Italia 40,56100 Pisa, Italy

Given r positive integers s\, sz,..., s, with an associated profit pt two problems are at the root of
several interesting applications. The 'M-partition problem', that is determining all possible combi-
nations of these numbers which sum to M, and the 'Knapsack problem', that is determining a
combination of these numbers maximising the pi sum subject to the condition that the st sum is not
greater than M.
A solution is proposed for both the problems based on a tree search approach which leads to
algorithms with simple structure, linear storage requirements and an average computation time
lower than other proposed algorithms.
(Received July 1978; revised February 1979)

1. Introduction
Given r positive integers su s2, • • • , sr we wish to find all pos-
sible combinations of these numbers which sum to M (M-
partitions). This problem appears in several interesting applica-
tions. For example in number theory the problem 'given N find
all the sets of integers SK such that £ st = W can be

reduced to the previous one assuming st = i and sr = N = M.
Another example is shown by Musser (1971), where the
partition problem appears in the polynomial factorisation
where M is the degree of the given polynomial and the s, are the
suspected degrees of its irreducible factors. Finally, an interest-
ing relationship can be found with operations research if we
associate to each number st a 'measure of desiderability' or
'profit' Pi and we wish to find a combination of them maximis-
ing the pt sum subject to the condition that the j , sum is not
greater than M. This is a well known integer programming
problem called the Knapsack problem.
Both the knapsack and partitions problems belong to the class

of nondeterministic polynomial-time complete problems which
includes, among others, the travelling salesman problem, the
Hamilton circuit problem and the satisfiability of Boolean
expressions. All the problems in this class can be solved with a
nondeterministic algorithm in polynomial time and if a poly-
nomial deterministic algorithm is found for one of them, then
this will be possible for all the problems in the class.
At the moment it is not known if a polynomial deterministic

algorithm can be found for both the partitions and knapsack
problems. It is however interesting to develop solutions with a
good average behaviour because of their wide use in the applica-
tions. Horowitz and Sahni (1974) have summarised the per-
formances of the algorithms that have been proposed and they
present new solutions leading to important improvements.
In the next section we will formulate the M-partition problem

using the concept of multiset and we will present a tree search
approach to the solution. In Section 3 we will develop a
recursive algorithm which, as will be shown in Section 4, has
better performances than the others previously known. In
Section 5 we will use the same approach to solve the knapsack
problems and in Section 6 we will develop a recursive algorithm.
The iterative version of the program has the same structure as
the one proposed by Horowitz and Sahni but the empirical
studies reported in Section 7 indicate that the heuristics used
give significant improvements.
Our original motivation for this topic arose from an investiga-

tion of the allocation problems with one, two and three
dimensional objects and resource (Adamowicz and Albano,
1976; Orsini, 1976).
*This work has been partially sponsored by the Consiglio Nazionale

2. The M-partitions problem
In order to give the mathematical formulation of the problem,
let us present some useful definitions.

Definition 1
A multiset 5 is a collection of positive integer numbers st
denoted by 5 =

Definition 2
A set S is a multiset whose elements satisfy s, # s} if / # j .

Definition 3
The cardinality of a multiset S, denoted by \S\, is the number of
elements in S. If |5 | = r then 5 will be written as Sr.

Definition 4
An M-partition of a multiset Sr — {su . . . , s,} is an r-tuple
X = (xlt . . . ,xr) where

*,- e {0, 1} , 1 < i < r and I x, s{ = M (1)
/ - I

Definition 5
An algorithm computes the M-partitions of Sn if it generates all
r-tuples X satisfying (1) and no other X's.

The problem of computing the M-partitions can be solved
either with iterative or tree search techniques. In what follows
we will formulate the problem as a search in a binary tree while
for a discussion on the iterative approach see Horowitz and
Sahni (1974).
Let B be a binary tree with \S\ + 1 levels. Each node at level i,

except the leaves, has two sons corresponding to the i-th
element inclusion or exclusion into the partition. With every
node of the tree is associated:
a) the path from the root up to it, represented by a binary

/-tuple (xj, . . . , jc,), i indicating the length of the path, and

b) a partial sum defined by I Xj Sj.

In Fig. 1 an example is shown for SA = {6, 5, 3, 1} and M = 9.
The i-th element inclusion and exclusion is shown by associat-
ing with the arcs 1 or 0 respectively. A path from the root to a
leaf represents a binary r-tuple corresponding to a partition.
With this representation in mind the problem of generating all
the M-partitions is seen as a search process for finding all the
paths labelled with M (M solution path). In the example there
are two 9 partitions, that is (1010) and (0111), and the solution
paths are given by the dark arcs.

delle Ricerche.

256 The Computer Journal Volume 23 Number 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/256/375244 by guest on 09 April 2024

Fig. 1

To solve the problem efficiently an algorithm is needed which
finds the solution paths visiting a subset of the nodes making
use of heuristic tests for avoiding exploring fruitless paths
deeply. In this paper by heuristic test we mean a test to stop a
path visit without loosing the algorithm admissibility, that is it
will always terminate with the set of solution paths whenever a
solution exists.
Such an algorithm can be organised in the following steps.

1. Put the root on a list called GENERATED.
2. If GENERATED is empty, exit.
3. Select a node from GENERATED according to some rule R

and put it on a list called EXPANDED. Call it n.
4. If a solution has been found, print it.
5. If from n a solution cannot be obtained go to Step 2.
6. Put the two successors of n on GENERATED and go to

Step 2.
The selection rule R used in step 3 distinguishes two classes of
algorithms:
(a) by choosing the first node on the GENERATED list and by

putting the successors at the end of it. This means that the
nodes are expanded in the order in which they are generated
and therefore the tree is visited level by level (breadth-first
methods).

(b) by choosing the first node on the GENERATED list and by
putting the successors at the beginning of it. Now the most
recently generated node is expanded first and therefore the
tree is visited path by path (depth-first methods).

The successors generation at Step 6 consists in the inclusion or
exclusion of the n-th element in the partial sum associated with
the n-th node. Using a depth-first methods the storage require-
ments are linear with r because during the search process only
the nodes on a path, which are at most r, need to be stored.
With the other method the storage requirements grow expo-

nentially with |5 | because expanding the tree by levels all the
nodes generated need to be stored. In the next section we will
present a depth-first algorithm which using heuristics will be
faster than the ones of the dynamic programming type
(Horowitz and Sahni, 1974).

3. The M-partirions algorithm
A recursive formulation for the algorithm can be derived as
follows. Let us use the notation P(sh sl+1,... ,sr;m) to denote
the set of /w-solution paths by using numbers from (sh . . . , sr).
We can split the set P in two classes according as the number s,
is used or not. If it is not then we reduce the original problem to
that of finding the set of m-solution paths with numbers from
(st+ u..,sr). IT Si is used, then the problem is reduced to that of
finding the set of (m — .^-solution paths with numbers from
(sl+1,. . , sr). We thus have the relation:

'.• s r ; m) = P (s i + 1 , . . , s F ; m) u P (s , + 1, . . , s r ; (m - s ,))
The heuristics used to speed up the search are:
1. The elements (slt.. . , sr) are ordered (sj ^ sJ+1), i ^ j < r

2. If £ sj < m P(sh . .. , sr; m) = 0
j = i

r

3. If £ Sj — m P(sh . .. ,s,;m) = {the path from the cur-

rent node to the leaf including all the
elements}

4. If Si > m P(sit . .. , sr;m) = P(s,+ 1, . . , sr; m)
5. If s, < m P(s, sr; m) = P(si+1,.. ,s/,m — st) u

P(sl+l,.. ,sr;m)
6. If Si = m P(sit . . . , sr; m) = P(si+1, . . , sr; m) u

{the path from the current node to the leaf
including the first element only}

This approach to the il/-partition problem is reported also in
Horowitz and Sahni (1974). But the algorithm based on the
above ordering of the elements leads to more powerful
heuristics. Rubin (1976) came to the same conclusion indepen-
dently.

Algorithm PRIC (/, m, X)
Let:

i = index of the next st to be examined;
m = the remaining sum: M-(sum of all the elements used up

to this point);
X = {j\sj is included in the path from the root to the current

node}; and

SUM(f) = £ Sj.

The algorithm is initially invoked as PRIC(1, M, NULL).
For the example in Fig. 1 the algorithm will traverse the sub-
tree shown in Fig. 2. The nodes are labelled with the generation
order number.

4. Empirical results
The algorithm has been programmed and tested extensively to
determine its average performance. Both the recursive (PRIC)
and the iterative program (PITER) have been written in
ALGOL W for the VM/370 running on a IBM 370/168 and are
reported in Albano and Orsini (1977). The results have been
compared with the ones obtained by the dynamic programming
type algorithm proposed by Horowitz and Sahni (1974)(2(b)
in Table I), which proved to give the best results at that time.
The tests were performed using several data sets. In Table 1

the computing time for the following case is reported:
st = i , 1 < / «S r , M = r, 2r, 3r, r(r + l)/4 .

The other results present a similar pattern and are described in
Albano and Orsini (1977). As Table 1 shows, the recursive

S*3+l - 9

p a golution hai been found

x path visit interruption

Fig. 2

The Computer Journal Volume 23 Number 3 257

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/256/375244 by guest on 09 April 2024

Table 1
M

max

2max

3max

Times in
r

15
20
25
30
35
40

10
12
14
16
18
20

10
12
14
16
18
20

10
12
14
16
18
20

milliseconds
2(b)

7
20
54
151
351
862

5
9
18
36
69
127

6
16
37
91
212
471

6
16
44
140
478
1679

PITER

3
6
10
19
35
62

2
5
7
12
23
40

3
7
13
36
83
187

3
7
20
59
203
727

PRIC

6
13
26
50
96
174

6
11
19
35
65
113

7
17
45
110
251
538

6
18
56
182
613

2102

version of the algorithm already presents an interesting
behaviour. Of course the iterative one reduces the computation
time significantly improving in almost all circumstances the
algorithm performances proposed by Horowitz and Sahni.
Moreover our algorithm has a linear storage requirement while
the dynamic programming type algorithm has an exponential
storage requirement which limits the problem size that it can
handle.

5. The knapsack problem
Let us consider a classical integer programming problem. Let S
be a set of r positive integers st with an associated profit pt. We
wish to solve:

r

max X Pi*i subject to:
i - I

slXl
M, xt = 0,1 (i = 1, . . . , r)

The knapsack problem has a strong analogy with the M-
partition problem: we must select among the possible combi-
nations of S elements the ones which are an M-partition in one
case or which maximise the profit in the other. Moreover both
problems can be solved either with iterative or tree search
techniques. In the sequel we shall be concerned with the last
approach and we will present a recursive algorithm which is a
natural extension of the one proposed for the partitions. For the
iterative approach see Gilmore and Gomory (1966), Horowitz
and Sahni (1974) and Orsini (1976).
Let us consider the following tree search process:

1. Put the root on a list called GENERATED.
2. If GENERATED is empty, exit.
3. Select a node from GENERATED according to some rule

R and put it on a list called EXPANDED. Call it n.
4. If the optimal solution has been found, exit. Otherwise

continue.

4'.If the present solution is better, update the current solution.
5. If from n the current solution cannot be improved, go to

step 2.
6. Generate the ^-successors and add them to GENERATE.

Go to step 2.
In this process there are two choices to be made which lead to
different kinds of algorithms:
(a) Step 3. If we select the last generated node we proceed

depth-first on the tree with a branch-and-search or back-
tracking algorithm, while if we select the node on the basis
of an 'evaluation function' we have a branch-and-bound
algorithm. The evaluation function is an estimate that a
node can be on the optimal solution path.

(b) Step 6. Once a tree traversing method has been chosen the
process efficiency depends on the strategy used to generate
successors, ie the strategy used to select the variable to be
assigned the value 0 or 1.

Let us show how the most common solutions proposed in the
literature can be described on the basis of the outlined general
tree search process.

Branch-and-bound algorithms
The next node to be expanded is chosen using an evaluation
function. A possible one can be defined as follows.
Let us assume the elements of S are in decreasing order of

profit densities (pjst 5* Pi+i/si+l). Let t the least integer
(0 < t < r) such that £ st > M.

Dantzig(1957) has shown that the fractional solution of the 0-1
Knapsack problem given by:

ifi<t
if i > t

{ x, = 1
xt = 0 (2)

i < I
has the following properties:
(a) If x, = 0, then it is the optimal solution.
(b) If xt is fractional the value Z(l) = £/>,- + P,xt is an upper

; < t
bound to the optimal solution value.

(c) If no t exists we have all xt = 1.
(d) At node n of the tree, Z(«) represents the optimal fractional

solution with assigned variables added as constraints.
If we assume Z as an evaluation function, the next node to be
expanded will be the one with the largest value of Z.
Let us illustrate the algorithm with the following example:

subject 6xj + lx2 + 5x3 + 3x4 ^ 9
- x,e{0, 1} , l < i < 4 .

Solving(2), we obtain Z(l) = 91 with*! = \,x2 = l,x3 = 2/5
and xA = 0. We have only one node in the list GENERATED
and to proceed we must decide how to generate successors (see

NODE 1

Fig. 3

258 The Computer Journal Volume 23 Number 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/256/375244 by guest on 09 April 2024

11
[as]

50-

t j
fas]

300.

100
1.73
0

200
3.87
2.S

300
7.48
0

400
12.53
1.41

500
5.74
1

600
11.09
1.73

700
8.60
1

800
16.97
2

900
15.93
2.82

1000
17.80
1.73

"*

1000
24.98
8.77

2000
1
0

3000
40.22
4.35

4000
39.91
4

5000
105.72
11.57

6000
80
8.77

7000
69.61
7

8000
0
1

9000
1
0

10000
99.55
10.44

Fig. 4 Mean computing times and standard deviation with M = 2 . (max s()

o*

200
2.82
1

300
2.44
0

4O0
2.44
1

500
4.79
2

600
5.65
1.41

700
13.07
4.58

800
6.08
2

900
10.67
3.74

1000
10.09
5.91

a*

1000
6.78
1.41

2OO0
16.
3.
.85
.46

3000
19.67
5.74

4000
31
6
.59
.70

5000
9.32
3.87

6000
45.29
11.53

7000
38.
7.
.27
.87

8000
42.
9.
.34
.38

9000
15.84
2.64

1O0O0
17.32
2.64

Fig. 5 Mean computing times and standard deviation with M = ZsJ2

Fig. 3). Kolesar's algorithm (1967) considers the unassigned
variable with smallest index. In this way we have a tree similar
to the one for the M-partition: the i-th level corresponds to the
i-th variable assignment. Greenberg and Hegerich (1970) pro-
posed another strategy: the next variable is the fractional one at
the selected node.
Let us continue the example according to the last strategy

which has been shown more effective (Greenberg and Hegerich,
1970). We select x3 and generate nodes 2 and 3 (see Fig. 3). We
compute Z(2) with x3 = 0 and we get Z(2) = 89.6. Similarly for
node 3 we get Z(3) = 87. Now we select among the terminal
nodes the node 2. The fractional solution is xt = 1, x2 = 1,
x3 = 0 and x4 = 2/3. We select the variable x4 and generate the
successor nodes 4 and 5 labelled with Z(4) = 73 and Z(5) = 88.
The next node to expand is 5 and because the solution is x^ = 1,
x2 = 0, x3 = 0, x4 = 1 with no fractional variables the
algorithm terminates. In fact when we select a node from the
list GENERATED and the associated Z value has been
obtained with no fractional variable then the optimal solution
has been found.
With this approach the tree expansion is partly by depth-first

and partly by breadth-first. This is a drawback because the

storage requirements are exponential with the number of
variables.

Branch-and-search algorithms
In this class of algorithms the tree search is developed depth-
first. The algorithm first finds a simple solution which is a lower
bound to the optimal one. Then a path of the tree is explored as
far as it is possible to improve the current solution. Then it
backtracks and develops a new one. The algorithm stops when
all new paths are excluded and the solution is the current lower
bound. Therefore Step 4 in the outlined general tree search
process is not used.
The advantage of this kind of algorithm is that the storage

requirements are linear with the tree depth, that is the number
of variables. In order to specify completely an algorithm in this
class we must decide both which variable to select and the value
to assign to it.
Greenberg and Hegerich (1970) suggest selecting the fractional

variable and excluding it first from the solution, while Horowitz
and Sahni (1974) decided to select the next variable in order of
decreasing profit densities and to include it first in the solution.
Both assumed the solution x{ = 0,1 ^ i < r as the initial one.

The Computer Journal Volume 23 Number 3 259

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/256/375244 by guest on 09 April 2024

t i

HS

KNAPSACK

ORD

t
to]

500 .

400 -

» •

100
1.0
1.0

200
4 .0
1.41

300
S.09
1.73

400
4.69
4.58

500
4.69
3.74

600
2.44
3.87

700
8.54
4.35

800
5.38
7.54

900
7.07
3.16

1000
6.63
7.14

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
O, IS.54 13.89 53.0 20.92 63.13 57.81 16.49 63.18 91.84 17.29
O» 10.63 15.77 19.87 29.63 44.18 47.18 31.59 79.64 52.84 86.44

Fig. 6 Mean computing times and standard deviation with M — l_aZst_\

6. The knapsack algorithm
The efficiency of a branch-and-search algorithm depends upon
the possibility of directing as soon as possible the search on the
tree portion where the optimal solution path is located because,
in general, the selective power of the heuristic tests will
improve. We propose a branch-and-search algorithm based on
the following assumption.
(a) the initial solution is the 'greedy solution' denned as

follows:
Profit; = 0; G-solution := NULL;

(b) In order to avoid exploring fruitless paths deeply the
heuristic tests make use both of the evaluation function Z
and of the value of M still to be used;

(c) The variables are selected in order of decreasing profit
densities;

(d) A selected variable will be included first in the solution.
A recursive formulation of the algorithm is the following:
Let us assume that:

s(< M, ph st > 0 and Zst > M:
i = index of next st to be processed;
m = M-(sum of all the elements used up to this point);
p = profit associated with the current sum;
x = set of j that yield this profit;
P = maximum profit obtained (current lower bound solu-

tion which at beginning is the greedy solution);
X = solution associated with P;
Z = the Dantzig function.
MINS(1 :r) = vector such that MINSQ) = mmst)j < i < r.

The algorithm is initially involved as KNAP(1,M,O,NULL)

7. Empirical results
Both the iterative version of the KNAPSACK algorithm and
the one proposed by Horowitz and Sahni (1974), have been
programmed in ALGOL W for the VM/370 running on a IBM
370/168.
For a number of variables r = 100, 200, . . . , 1000, 2000, 3000,

. . . , 10000 three cases have been reported (Figs. 4, 5 and 6). In
the first two cases, the st and/)f have been assumed independent
pseudo-random numbers in [1, 100] with M equal to 2(max
st) and EsJ2 respectively. In the third case, the s((i < r/2) are
independent pseudo-random numbers in [1, 100] and in [800,

900] for the s£i > r/2), M is equal to _txSst_] and a being a
pseudo-random number between 0 and 1.
The figures given, for each value of r, are the computing times

in milliseconds, as the mean of times obtained for 10 tests, and
the standard deviation. The inputs are assumed ordered
according to decreasing profit densities and the time required
for the initial ordering is reported separately. The computation
times for both the algorithms include all the required initialisa-
tions with the exception of the ordering.
Although the iterative version of our algorithm has a similar

structure to the one proposed by Horowitz and Sahni, the
initial solution and the heuristic test to interrupt the search
produce, in all the cases, a reduction in computing time as a
function of the size of the problem. Moreover, the computation
time, with r in the range of values considered, presents a
behaviour remarkably similar to the one of the initial ordering.
From the figures it is also clear that the improvements are
particularly significant for M = 2 . (max st) and they reduce in
the other cases when the problem becomes more difficult to
solve because of the increased number of feasible solutions to
consider. However, from the value of the standard deviation, it
also becomes evident that our algorithm is in general less
sensitive to the data and it is therefore more stable.
Finally we should like to mention that in a recent paper

Laurier (1978) has presented an improved method which pre-
processes the input of a Knapsack problem in order to reduce
the number of the variables before applying the actual algo-
rithm. However, at least for a number of variables between 30
and 5000, as reported in his paper, the times required in the
reduction stage are already significantly higher than the ones
required by our algorithm to solve the original problem com-
pletely (see Table 2).

8. Conclusion
Two algorithms have been proposed to solve the M-partition
and the Knapsack problem based on tree search techniques.
This approach has been a natural way both to formulate
efficient algorithms with simple structure and to present a
general schema to compare other solutions. The algorithms
have been tested thoroughly and their performances indicate
that they compare favourably with respect to the others
designed to solve these problems and reported in the wide
survey on the subject presented by Horowitz and Sahni (1974).

260 The Computer Journal Volume 23 Number 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/256/375244 by guest on 09 April 2024

Table 2
Laurier
method

n

100
200
300
500

1000
2000
5000

reduction

nrv

9
9

12
12
4
6
0

time

50
50

250
320
600

1280
2540

Knapsack and
ordering

time

7
14
23
38
79

168
446

3. [exclude si]

4. [return]

for i = 1 until r
do if .s, < M then

Procedure KNAP(/, m,

V 1 Ttpct nn thf nstth 1

PRIC(/ + \,m,X).

return.

begin
M = M - Si\
Profit = Profit + pt;
(/-solution = (7-solution u {/};
end

P,x);
Ipnothi

times in milliseconds
nrv: average number of residual variables after the reduction
ph st pseudo-random number in [1, 100]
M — L a ^ = 1 j , _) , a being drawn at random between 0 and 1.

0. [All done]
1. [Test heuristics]

2. [Try to include j (]

if i > r then return.
if SUM(/) < m then return,
if SUM(Z) = m then output
X u {/, / + 1, . . . , r} return

if Si < m then PRIC(/ + 1,
m — sit X u {/}).
else if si = m then
output X u {/},

if / = r then (if st < m then (p = p + pt;
x = x u {r});
if p > P then (P = p; X = x);
return)

K2. [Try to include sj
it st ^ m then KNAP(/ + I, m — shp + ph x u {/}).

K3. [path visit interruption]
if Z(i + 1, w) + p < Por

w «S MINS(/ + 1) then return.

K4. [Try to exclude si]
KNAP(/ + \,m,p, x)

K5. [return] return

References
ADAMOWICZ, M. and ALBANO, A. (1976). A Solution of the Rectangular Cutting Stock Problem, IEEE Trans. Syst., Man., Cybern, SMC-6,

pp. 302-310.
ALBANO, A. and ORSINI, R. (1977). Metodi di ricerca su alberi per la soluzione dei problemi delle M-partizioni e dello zaino, Nota Scientifica

S-77-17, Istituto di Scienze dell'Informazione, Universita di Pisa, Maggio 1977.
AHO, A., HOPCROFT, J. and ULLMAN, J. (1974). The Design and Analysis of Computer Algorithms, Addison Wesley, Reading, Mass.
DANTZIG, G. B. (1957). Discrete Variable Extremum Problems, Operations Research, Vol. 5, pp. 266-277.
GILMORE, P. C. and GOMORY, R. E. (1966). The Theory and Computation of Knapsack Functions, Operations Research, Vol. 14, pp. 1054-

1074.
GREENBERG, H. and HEGERICH, R. L. (1970). A Branch Search Algorithm for the Knapsack Problem, Management Science, Vol. 16, pp.

327-332.
HOROWITZ, E. and SAHNI, S. (1974). Computing Partitions with Applications to the Knapsack Problem, JACM, Vol. 21, pp. 277-279.
KOLESAR, P. J. (1967). A Branch and Bound Algorithm for the Knapsack Problem, Management Science, Vol. 13, pp. 723-735.
LAURIER, M. (1978). An Algorithm for the 0/1 Knapsack problem, Mathematical Programming, Vol. 14, pp. 1-10.
MUSSER, D. R. (1971). Algorithms for polynomial Factorization, Ph.D. Th., Techn. Rept 134, Computer Sciences Dept. of Wisconsin, Sept.

1971.
ORSINI, R. (1976). Problemi di allocazione ad una, due e tre dimensioni, Tesi di Laurea, Istituto di Scienze dell'Informazione, Universita di

Pisa, 1976.
RUBIN, F. (1976). Partition of Integers, ACM TOMS, Vol. 2, pp. 364-374.

Book review
Computer Security, by Peter Hamilton, 1979; 116 pages. (Van

Nostrand Reinhold, £7-45)

On the day before this book reached me I heard that a passing
acquaintance had been dismissed by the bank for which he worked.
This person had been there for less than a year since leaving school,
and had left amid rumours that dealings with the bank's computer
had resulted in the misplacing of some tens of thousands of pounds.
I harboured dark thoughts that this book might give me some hints as
to how I could get in on these apparently widespread activities. In
this way, I might be able to keep my wife in the manner to which she
is accustomed, regardless of Professor Clegg's conclusion on the
comparability of my remuneration.
In fact, the book is not about how fraud is achieved with the aid of

a computer. It is a book written by a security expert about the
security of computers. It contains some solid commonsense remarks
about the means by which computer hardware and software can be
made more secure than they usually are. While it is nice to know
that an expert can set down commonsense, it seems to come rather
expensive at nearly £8 for about a hundred pages of it. Additionally,
the author's style is rather cluttered and difficult to read so that on
occasion he has difficulty in expressing his ideas with precision.
The author tells us more than once that the computer is 'intel-

lectually a moron, and morally permissive'. Perhaps, in the not too
distant future, when the techniques of Artificial Intelligence enable
us to give a computer a personality of its own, our computers will
not only report syntax errors, but will also refuse to run programs
because they are immoral. G. MARSHALL (London)

The Computer Journal Volume 23 Number 3 261

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/256/375244 by guest on 09 April 2024

