The comparison of routines for solving Fredholm
integral equations of the second kind

{. J. Riddell and L. M. Delves

Department of Computational and Statistical Science, University of Liverpool,
Victoria Building, Brownlow Hill, P.O. Box 147, Liverpool L69 3BX

We describe a test package for the comparative testing of automatic and non-automatic integral
equation solving routines, and give results obtained for a number of recent routines for solving linear
Fredholm equations of the second kind. The methodology used is based on that described by Lyness
and Kaganove (1977) for automatic quadrature routines.

(Received September 1977 ; revised October 1978)

1. Introduction

As the number of routines for solving integral equations
increases, it would be useful, for the following reasons, to have
a method of comparing routines:

(a) to help a user to decide which routine(s) is best for his
particular problem (the ‘best’ routine will not necessarily
be the same for different types of problem)

(b) to assist in the development of new routines by evaluating
any improvements made by the programmer.

In this paper we consider the comparative testing of routines
for solving linear Fredholm integral equations of the second
kind, although the method is applicable to other types of
integral equation solving routines. A linear Fredholm integral
equation of the second kind has the form

f(x) = g(x) + [2K(x, y)f(y)dy 1.1
where g(x), the driving term, and K(x, y), the kernel function,
are known and we wish to approximate the unknown function
f(x). There are two broadly different types of routine for
solving the above equation:

1. Non-automatic routines where the user specifies a value of
N (usually the number of points used in the quadrature rule
which replaces the integral in 1.1) and the routine delivers a
solution which corresponds to this value of N.

2. Automatic routines where the user specifies the accuracy to
which he requires his solution and the routine attempts to
satisfy this accuracy requirement.

We describe here a test package for comparing both automatic
and non-automatic routines, and some preliminary results
obtained with it. The test methodology used is a direct exten-
sion of that used in the automatic quadrature test package of
Lyness and Kaganove (1977). We summarise this methodology,
and the reasoning behind it in Section 2 and a description of
the problem families used is given in Section 3. In Section 4 we
give a brief description of the comparison package for non-
automatic routines and show some results. The extension to,
and results for, automatic routines are given in Section 5.

2. Commonly used comparison techniques, problem families and
performance profiles

Test packages for comparing competing routines have proven
useful in a number of fields, e.g. nonlinear optimisation,
numerical quadrature, solution of ordinary differential
equations. Most of the test packages which have been develop-
ed use a common methodology, the ‘Battery’ method. This
approach considers a set of problems which have known
solutions and vary in difficulty from easy to difficult. Each
problem is solved by the routine under consideration, perhaps
several times with different input parameters (in the case of

274

non-automatic routines we use several different values of N
and in the case of automatic routines several values of the input
tolerance). Certain data, such as the mill-time taken, the actual
error and, usually only in the case of automatic routines, the
number of function evaluations, are collected at the end of each
run. Finally, these values are averaged out so as to give, hope-
fully, an indication of how the routine would cope with a
‘typical’ problem and the average values are compared with
values obtained using other routines which have undergone
exactly the same procedure.

Examples of the Battery method in various fields are described
in Hull et al. (1972) with ordinary differential equations,
Enright et al. (1975) with stiff ordinary differential equations,
Casselleto, Pickett and Rice (1969) with automatic quadrature
routines and Kahaner (1971) also with automatic quadrature
routines.

The Battery method, however, rests on two basic assumptions
(a) that there is a ‘best’ routine for solving all problems of the,

usually wide, class considered
(b) more importantly, that problems of the same difficulty but
slightly different parameters will deliver similar results
(timings, actual error, etc.).
These assumptions are not necessarily valid. For example, in
the field of numerical quadrature, Lyness and Kaganove (1977)
show that, of currently available automatic routines, those
which do well with ‘smooth’ integrands are based on high
order methods, while those which perform best on ‘difficult’
integrands are based on low order methods. Hence it would
seem to be better to look for a routine which is the best for
solving particular types of problem. The objection to the sec-
ond assumption is best illustrated by an example.

Consider problem (1, 3). The kernel is a ridge whose height is
governed by ¢ and whose position and orientation is governed
by p,, p; and p,. For a given value of ¢ we would expect that
the difficulty of the problem would be roughly the same what-
ever the values of p,, p, and p,. However if we take p, = p, =
ps = 05, ¢ = 0-1 and solve the problem with the NPL non-
automatic routine, FRED2B, with N = 15 we obtain the
following results:

p; = 0-32 actual error = 1-405 x 10™*
p3 = 008 actual error = 3-976 x 1076

a factor of about 35 difference in the error.

In fact, we can plot the actual error against the value of p, to
yield the ‘performance profile’ of the method with this problem
(Lyness and Kaganove, 1976). The approximate profile for the
integral equation routine FRED2B (see Section 3) with the
above problem and with problem (4.1) is given in Fig. 1.

Examples of performance profiles for automatic quadrature
routines are given in Lyness and Kaganove (1977), where it it
shown that the profiles may not even be continuous. The per-
formance profile of different routines with the same function

The Computer Journal Volume 23 Number3

¥202 Iudy 20 uo 1senb Aq £62G/¢/v.2/S/Sz/e101e/|ulwod/woo dno-ojwepeoe//:sdiy wolj papeojumoq

LOG (ACTUAL ERROR)

PROBLEM (4, 1) ,C=0.1
P2=P3=0.5

000y 020304 0.50.60.70.809 1.0

P1

LOG (ACTUAL ERROR)
O

PROBLEM (1,3),C=0.1
P1=P2=P4=0.5

-6 " " L . " N " ,
0.0 0.y 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P3

Fig. 1 The accuracy achieved by routine FRED2B on problem
families (1,3) and (4,1) with N = 15 (logarithms to base 10)
Problem (1,3): pl = p2 = p4 = 0-5, p3 varied over 0,1
Problem (4,1): p2 = p3 = 0-5, pl varied over 0,1

are not the same and may cross each other at several places in
the range under consideration. Hence with the Battery method
one routine would appear better than another for certain
choices of parameter but worse for others, giving misleading
comparisons if only one value of parameter is used in a test.

Problems (1, 3) and (4, 1) each define a whole class of closely
linked problems in which the difficulty (i.e. the ridge in (1, 3)
and the spike in (4, 1)) can be moved about the range of interest
by varying the values of p,, p,, p; and p,. Such problems are
called ‘problem families’; the basic strategy advocated by
Lyness and Kaganove, and adopted here, is to carry out
statistical tests on single problem families in order to take
account of rapid variations in performance profiles; and to seek
a ‘best’ routine only for a single problem family, or for a set of
related problem families.

3. Choice of problem families

The integral equation (1.1) is determined by the three functions
f(x), g(x) and K(x,). Problems may be difficult to solve
because of difficult behaviour of either the kernel, K(x,), or
the driving term, g(x). We construct below problem families

The Computer Journal Volume 23 Number 3

with both types of difficulty. However, since we seek problems
with known solutions, it is easier to treat K(x, y) and f(x) as the
two independent functions when describing a given family. We
choose then several forms of solution and of kernel. Each form
contains either no apparent difficulty (‘easy’) or some feature
likely to cause trouble to a solution method (spike, ridge,
discontinuous first derivative). Each form also contains several
parameters. Some of these affect the degree of difficulty in an
obvious way: for example, the height-to-width ratio of a spike
in the solution or the kernel; these parameters are allotted a
fixed value within a problem family. Thus, a height to width
ratio of 5:1 defines an ‘easy’ family while a ratio of 100:1
defines a different, and it appears to current routines, difficult,
problem family.

Other parameters in the functional forms do not affect the
apparent difficulty, but determine its position and orientation
in the x-y plane (for the kernel) or its position on the x axis (for
the solution or driving term). These parameters are varied by
the test package, and statistical performance data collected, as
described in Sections 4 and 5.

We consider only finite integration ranges in (1.1); the results
quoted in Sections 4 and 5 all use the standard range

a=0<x,y<b=1

Solution functions (parameter p,)

1. f(x) = p, constant function—easy,
2. f(x) = x — p, linear function—easy,

c;(x_—:z) x < p; hat function of height ¢ with
3. f(x) = chl ” :) peak at x = p,

B T

— F1
c spike function of height 1/c,

4. f(x) = half-width ¢, with peak at

— 2 p)
Gopre S

Kernel forms (parameters p,, ps, Ds)
1. K(x,y) = (x — p2)(y — p3) easy

_[(x=p)1 = (y —p))x<y Green’s
2 K p) = {()’ - Pi)(l - (x - pz)) x > y function
c

3. K(x, py) =
) = = p)x — 7)) = a0 — POV + &
Ridge of height 1¢/
2
c
4. K(x, y) =
N (a3 (e
Hyperbolic spiked kernel height 1/¢?
5. K(x, y) = :

(1 — pd(x — p2)* + pay — p3)* + ¢
Parabolic spiked kernel height 1/c.

Plots of the kernel functions 3, 4 and 5 are given in Figs. 2-4.
For brevity we label problems by the integer pair (i, j), where i
specifies the number of the solution form and j the number of
the kernel form. For example, problem (1,3) is the problem
with f(x) = p, and the ridge kernel. Obviously, with each
problem we need to construct a driving term and to select a
value of the ‘difficulty parameter’ ¢. The driving terms for prob-
lems currently under consideration (i.e. those for which results
are given) are:

Problem (1,3)

g() = p, + 2 {arctan [(‘ — Pa)x = p2) — palb — p,)]
' Pa c

275

¥202 Iudy 20 uo 1senb Aq £62G/¢/v.2/S/Sz/e101e/|ulwod/woo dno-ojwepeoe//:sdiy wolj papeojumoq

P W N

YYYTTYY NI
il Wi o{,o’”

|
!

f

¢

ol

’.:
:’:‘?o’
R

02.3?0%
O 020:?0 '
0. ‘.‘: ":
P> &
I'"ig. 2 Ridge kernel: P2 =05,p3 =05 p4 =05

Figs. 2-4 Three dimensional plots of the ‘difficult kernel’ functions

— arctan [(1 = Pa)(x — P2) — pia — Pa)]}

[4

The value of ¢ used is ¢ = 0-1.
Problem (1,4)
g(x) = p, — ¢cpy {arctan [(_b_:'c_p_3)] — arctan [a '—cps] }/

{(x — p2)* + %}
c = 0-2.

Problem (1,5)
= _P1_C b —ps] _ a— p;
g(x) = py a7, {arctan [~] arctan [._—-_d]}

where d = /c2 + (1 — p)(x — p,)?
¢ = 01.

Problem (4,1)

c b-p)+c
8(x) = G-p) + & = (x — p3) C{% In [m]

+ (ﬁ%ﬁi) (arctan [b——c——p‘] — arctan [g;cp_x])}

c = 01.

4. Comparison of non-automatic routines

Non-automatic routines require the user to specify a parameter
N: either the number of terms used (for an expansion method)
or the number of mesh points (for a Nystrom or quadrature
method). Given N, they return an N-point or N-term solution,

276

Fig. 3 Hyperbolic spiked kernel: p2 = 0:75, p3 = 0'5, p4 = 0-2

Vv \

Fig. 4 Parabolic spiked kernel: p2 = 02, p3 = 01, p4 = 075

The Computer Journal Volume 23 Number 3

¥202 Iudy 20 uo 1senb Aq £62G/¢/v.2/S/Sz/e101e/|ulwod/woo dno-ojwepeoe//:sdiy wolj papeojumoq

and possibly also an error estimate. To the user the main
characteristics of interest in a routine are the time taken and
the accuracy achieved as a function of N.

To test the efficiency of a non-automatic routine with a
particular problem family we carry out the following procedure
with a number of different values of .

(@) run the routine with many different values of problem
parameters {p;,,i = 1, ..., 4}

(b) after each individual run note the actual error and mill-
time taken

(c) finally, average out the actual error and mill-time taken.
These average values are then plotted against N.

Note that this test procedure gives no credit for extra informa-
tion (such as an error estimate) returned by the routine.

The values of the problem parameters used are allowed to vary
uniformly between the limits [a, b] (see equation (1.1)), and
are chosen randomly at each run, the runs being continued
until the statistical averages have settled down. This method of
varying the problem space involved appears to work well in
practice; even with up to four parameters per family relatively
few runs are required to obtain reproducible comparisons. The
results presented here are based on 100 runs per family for each
routine. We note that the time taken for fixed N is independent
of the problem parameters for most routines, while differences
in achieved accuracy of 209 say, are unlikely to be significant
(or even noticed) in practice, so that high statistical accuracy is
not required.

A test package to implement this procedure, and to collect and
analyse the statistics, has been written in ALGOL 68. Routines
to be tested have been translated into ALGOL 68 first if neces-
sary. This is unlikely to affect the accuracy of a routine
significantly; for a discussion of the (small) effect on timings,
see Section 5.

Results
So far we have tested the following non-automatic routines.

1. FFTNA— Delves and Abd-Elal (1977)

A Galerkin procedure using Fast Fourier Transform techniques
to evaluate the integrals and an iterative technique to solve the
resulting equations, and producing an expansion in Chebyshev
polynomials and an error estimate. For an N-term expansion
the time taken is O(N2 logN) and in practice the routine spends
a large proportion of its time in an FFT module; the module
used in these tests was the NAG routine CO6AAB.

2. FRED2B—Miller and Symm (1975)
Available in the NAG ALGOL 60 and FORTRAN routines as
routine DOSABA/F.

This routine from NPL (in ALGOL 60) produces a Chebyshev
expansion using the method of El-Gendi (1969); that is, a
Nystrom procedure with Clenshaw-Curtis quadrature followed
by conversion of the approximate solution to Chebyshev series
form. This routine spends most of its time in the direct solution
of an N x N set of equations using NAG routine FO4AJA. We
have converted the routine to ALGOL 68 before testing, using
the equivalent NAG ALGOL 68 routine FO4AJB.

3. DOSACB—NAG ALGOL 68 library

This uses a Nystrom method based on the NAG ALGOL 68
Gauss quadrature package; the quadrature rule used is
specified by the user. For test purposes we have called on
Gauss-Legendre quadrature. This routine also spends most of
its time in NAG routine FO4AJB.

4. FE2SR—K. S. Thomas (1976)
This uses a Nystrom method with Simpson’s rule, and pro-

The Computer Journal Volume 23 Number 3

duces also an error estimate and a corrected solution. Again
this routine spends most of its time in the NAG routine
FO4AJB which is also called in producing the correction and
the error estimate.

To be fair to the routines it is important to use the same
criterion in evaluating the error. We use the following:

Error = 1 { i | £ — fN(x,)P}*

i=1
where f(x;) is the true, and fy(x,) the approximate, solution at
x;; and x;, i = 1(1)m are equally spaced points over the range
[a, b] (see equation (1.1)). In FFTNA and FRED2B the solu-
tion is given as a set of coefficients of a Chebyshev series;

1) = £/ aTx) i = 1m

however, for DO5SACB and FE2SR the solution is given at the
quadrature points and we use the ‘natural’ interpolation
formula

v

10; - RIDGE KERNEL,PROBLEM(1,3),C50.1
°r
6l
St
4
3L
2L
1051
o
6l
Sk
b
3k
8 o
=
S
st
&
2 102k
- ok
= 7
= ol
=z st
= Wl
£ s
—
g
-
@
“51019__ o - fftna
H
2_ + - fred2b
5t
br a - d05cab
st
2| v - fe2sr
10° 1l ! 1 1]
0 2 3 4 56789 2 3 4 56789 .
10 10 10°

N
Fig. 5 Average time v. N plot for non-automatic routines with
problem (1,3). Changes in problem family do not have a
significant effect on the plots of time v. N.

2n

¥202 Iudy 20 uo 1senb Aq £62G/¢/v.2/S/Sz/e101e/|ulwod/woo dno-ojwepeoe//:sdiy wolj papeojumoq

Sxd = gx) + T KCxo TG, i = 100m

where X; are the quadrature points, W; the quadrature weights

and fy(x;) the solutions delivered by the routine.

Discussion of results

Fig. 5 gives a plot of mill time (in 1906S milliseconds) against N
for the routines tested. The times taken are essentially inde-
pendent of family, except for routine FFTNA which uses an
iterative solution of the equations. Figs. 6-9 show the achieved
average accuracy against N, on a logarithmic scale, for the
problem families tested to date.

Timings
The results for routine FFTNA are consistent with the theore-
tical estimate T = O(N21n N). The routine is initially slower
than other routines tested but there is a crossover point at
about N = 27 where FE2SR becomes slower and by extra-
polation, the curves of both FRED2B and DO5ACB cross the
FFTNA curve at about N = 80. In practice the routine spends
a large proportion of its time in the FFT module, and hence
using a faster FFT module would have a marked effect on
speeding up this routine.

DOSACB, FRED2B and FE2SR are all based on the Nystrom

method, but use different quadrature rules. As N increases the
time taken in solving the Nystrom equations becomes in-
creasingly dominant, so, since we use the same routine to solve
the equations in each case (FO4AJB), we would expect little
difference in the timings. In fact the curves for DOSACB and
FRED2B are almost coincident; and the curve for FE2SR is
roughly parallel to them, FE2SR being slower because the error
estimate and correction generated by FE2SR each require the
solution of a set of N equations. We can also see from the
results that as the solution of the equations begins to dominate
the gradient of each curve is approaching 3 (i.e. O(N?3) for
Gauss elimination).

Accuracy

Routines DOSACB and FRED2B, based respectively on
Gauss-Legendre and Gauss-Chebyshev quadratures, have
similar error curves for each of the problems containing
difficult kernels (i.e. problems (1,3); (1,4); (1,5)) whilst, of those
routines tested, FE2SR is the least successful and even the cor-
rection mechanism (denoted FE2SR(c) in the graphs) fails to
make it competitive here. For these problem families FFTNA
compares favourably with DOSACB and FRED2B only while
N is less than about 25. For larger values of N, its performance
appears to be affected by premature términation of the
iterative solution of the equations. The termination criterion

Figs. 6-9 Plots of average error, on a logarithmic axis, v. V for the non-automatic routines

RIDGE KERNEL,PROBLEM(1,3),C=0.1

HYPERBOLIC SPIKED KERNEL,PROBLEM(1,4),C=0.2

0 \1 i [T R T N1 [S A S S X RN N SR U SO N| [S R B
3 10 15 20 25 30 35 40 45 S0 55 60 65 S 10 1S 20 25 30 35 40 45 50 S5 60 65
o - fftna o - fftna
-2 + - fred2b -2 | + - fred2b
o - d0Scab o - d0Scab
v fe2sr (s) v ~ fel2sr (o)
fe2sr (c) + - fe2sr (c)
-4 | -4 }
=6 } __ -6 (
S S
& &
w w
2 ¢
g g .
=% =%
))
S 3
-10 ~10 L
-12 L -12 ¢
Fig. 6 Fig. 7
278 The Computer Journal Volume 23 Number 3

¥202 Iudy 20 uo 1senb Aq £62G/¢/v.2/S/Sz/e101e/|ulwod/woo dno-ojwepeoe//:sdiy wolj papeojumoq

used by FFTNA is based on an a priori error estimate derived
from inspection of the Galerkin matrix and righthand side
vectors. The problem families considered here all have ‘difficult’
kernels and ‘easy’ solutions, and hence show considerable
cancellation effects between the kernel and driving terms which
are not detected by this a priori estimate.

For problem (4,1), which contains a spiked solution, an
entirely different situation exists. Again DOSACB does well,
and in fact, is considerably better than any other routine tested
so far. Routines FRED2B and FFTNA perform equally well
and surprisingly badly, in this instance. The behaviour of
FE2SR is similar to that already described although the effect
of the correction is less marked. On the basis of these results
we would declare DO5SACB the overall winner for the classes of
problems considered.

5. Comparing automatic routines

An automatic routine is one which, given an input tolerance
&:np» attempts to adjust the discretisation order N until some
measure of the error is less than ¢,,,; it then returns fy, and
possibly other information such as its own estimate of the
achieved accuracy, and whether the result appears reliable.
Again we give no credit for this extra information (or penalty
for its absence) but analyse only the way in which the routine
satisfies its basic task. The user has two main questions to ask

of such a routine:
1. Speed: For a given accuracy, how fast is it?

2. Reliability: How often will it achieve the requested input
accuracy?

It is traditional to measure speed in terms of the number of
function evaluations used ; here, the number of times the kernel
K(x, y) is evaluated provides a measure. However, unlike the
situation in numerical quadrature, optimisation and (usually)
ordinary differential equations, ‘red tape’ operations can
completely dominate the time taken; on the examples run,
routines typically spend less than 10% of their time in kernel
evaluations, given the rather simple kernels used here. It would
take a complicated kernel to change this situation significantly,
and we therefore quote also the mill-time taken, in milliseconds,
on an ICL 1906S computer.

Requirements 1 and 2 are interdependent: a routine writer can
trade speed for reliability at the stroke of a keypunch (by setting
&rest = 0’1 X ¢g;,,, for example). The Lyness and Kaganove
(1977) analysis for automatic quadrature routines, which we
follow here, attempts to disentangle the intrinsic speed of a
routine from its intrinsic reliability by factoring out the effect
of such possible internal scalings; and they achieve this in the
following manner.

Suppose we wish to evaluate a routine with a particular

Pi}RA OLIC SPIKED KERNEL,PROBLEM(1,5),C=0.1

0 | Y ER SR NN T Nl RS N N W B
\ 10 15 20 25 30 35 40 45 S50 55 60 65
o - fftna
-2 + - fred2b
o - d0Scab
v - fe2sr(s)
fe2sr (c)
-4
-6 |
I
o
@
o
w
W
a
<
fo
£ -8
=
)
o
'
-10
-12
Fig. 8

SPIKED SOLUTION, PROBLEM (4, 1),C=0. |

0 TR S T T B Nn L L]
5 10 15 20 25 30 35 40 45 50 S5 60 65
o - fftna
-2 + - fred2b
n - d0Scab
v - feZsr (s)
fe2sr (c)
-4
_6 }
@
o
@
o
we
w
o
<
o
Y 8
=
E)
o
!
-10
-12
Fig. 9

The Computer Journal Volume 23 Number 3

279

¥202 Iudy 20 uo 1senb Aq £62G/¢/v.2/S/Sz/e101e/|ulwod/woo dno-ojwepeoe//:sdiy wolj papeojumoq

LOG (EPINP (S, cPRr0)) , VALUE OF cPINP FOR CONi I' eNCe

LcVEL 0.85 Figs. 10-12 Plots of

0.85

01,5=
LOG (EPREQ) , REQUIRED TOLERANCE

RIDGE KERNEL,PROBLEM(1,3),C

T a8 ? 3 b

-6
-7

+ - boole

+ - ffra
v - gauss
o - galerkin

automatic results using
o Problem (1,3), ¢ = 01,
' 5 =085

Fig. 10 Plot of log(Epinp
(s,epreq)) v. log(epreq)

V (EPINP (S, EPREQ)) , AVERAGE NUMBER OF KERNEL EVALUATIONS

n CPN~ O N 3 [o~ @ WM~ O 1w " o~ M OWN O o T Ll o~ ~ °
= e e <
[%a) - ’T
a0
S
[¢p) -J ('\ll
-
o I,
n 4w 2Q
< -
[a 4
2 o
= -1 [en]
= T O
& o
5 2
[+s] Q0 =
(=) | 5
o
g < o
< <
| v o
2 3 & 1% 2
& g S =)
o < © LJ
hV4 o o o
ﬁ ~ o
w | i 7o
Q
o > O [.
= 1s S Fig. 11 Plot of V(Epinp
0 (s,epreq)) v. log(epreq)
T (EPINP (S, EPREQ) } , AVERAGE TIME TAKEN
o
moowno v " o~ .,omuavxv n [o~ ,,,oowrso woo (3 o~ N‘_E
[Fa) — ._l
«©
S
o
w
4 19
S]
1 4™ Z
it -
Ny o
" =
- - - o
< [
=
& 2
= @
o 4un £
o | =
[s 4 [o
a - (18]
T ~ @
LT’J [0 [- 0 -
= - [v] (] (] —~
(a4 [o] o 3 - [od
w o ot (0] @ (18]
pV4 L0 - (02} o g
Wy [! ! t ™~ W
(=] (€] .
= oy 0o S Fig. 12 Plotof ¢(Epinp
[a 4

Jo (s,epreq)) v. log(epreq)

The Computer Journal

Volume 23 Number 3

¥202 Iudy 20 uo 1senb Aq £62G/¢/v.2/S/Sz/e101e/|ulwod/woo dno-ojwepeoe//:sdiy wolj papeojumoq

HYPERBOLIC SPIKED KERNEL,PROBLEM(1,4),C=0.2,5=0.85
LOG (EPREQ) , REQUIRED TOLERANCE

0
3 -7 -6 -S -4 -3 -2 -1

-1 —
()
3]
m
o
=
©
-2 &
-
m
©
o]
m
e
<
- <
3 >
=
[
m
o
il
m
-4 o
z
©
o
o
ps)
S
-S =
EA
—
® - sim [un]
P m
&
+ - boole m
6| M
+ - ffta B L
m
—
v - gauss o
@
v

|7

-8

Fig. 13
Figs. 13-15 As Figs. 10-12 using problem (1,4), ¢ = 0-2, s = 0-85

HYPERBOLIC SPIKED KERNEL,PROBLEM(1,4),C=0.2,5=0.890°

9
8
7
6
5
4
3

-
m
2 B
=z
bS]
o
o B
10| =
o] M
s 2
b Rt
N
o >
s| m
=
LNy
m
=
W E
=
@
m
2| o
o
n
=~
m
s =
10°1 &
9
s
Em
s
81—
st &
it}
=
‘o
5
3
2
4y N 4 4n?
8 -7 6 -5 -4 -3 B3 0

LOG (EPREQ) , REQUIRED TOLERANCE
Fig. 14

problem family ; then for each value of input tolerance (g;,,) we
run the routine a number of times with random values of
problem parameters. At the end of each run we note the
following:

€ac1 (6inp» P)—the actual error. This is related to the input
tolerance ¢;,, and the values of the problem
parameters p = (p,, P, P3, Pa)

V(€inps P)— the number of kernel evaluations. Again this is
related to ¢;,, and p

#&inp, Py)— the mill-time taken
where i is the number of the run. This information is used to
construct the following statistics:

I M
v(elnp) = A—'l Z v(einp! pl)

T=1

1 M

’(sinp) = A—f Z t(elnp’ pi)
=1
O(x; &p) = A-l_l {number of values of i for which
Ieact (8lnp’ pi)l < X}

Here M is the total number of runs for each value of ¢,,;
@(x; &;,p) is a statistical distribution function and gives the

The Computer Journa! Volume 23 Number 3

proportion of the time an actual error x is achieved for a given
input tolerance.

We now put ourselves mentally in the place of a knowledgeable
(or cynical) user who will reason as follows:

1. Letg,,, be the accuracy I require. No automatic routine can
achieve the accuracy I want every time. I will nominate a
percentage, s, and ask that it achieve the desired accuracy
exactly s % of the time. To achieve more will siow the
routine down, to achieve less will be to fail.

2. I will make sure the routine does this by taking as input
tolerance the value E,,, (s, ¢,.;), which is the value of ¢,
for which the tolerance ¢,,, is achieved exactly s percent of
the time. We find E,, (s, ¢,.,) as the largest value of ¢;,, for
which s = @(e,¢45 E1np)-

Plots of v(E,,, (s, &.,)) and t(E,, (s, &,.,) against ¢, then

indicate the intrinsic efficiency of the routine, while a plot

of E,,, (s, &.,) against ¢, indicates the quality of the error
control in the routine. The plots depend upon the percentage
reliability s chosen, but in practice the relative orderings of
different routines are not sensitive to s (if they were, it would
be difficult to interpret the results) and here we take the standard
value s = 0-85 (i.e. 85%).

Results
We give results for the following routines

281

¥202 Iudy 20 uo 1senb Aq £62G/¢/v.2/S/Sz/e101e/|ulwod/woo dno-ojwepeoe//:sdiy wolj papeojumoq

HYPERBOLIC SPIKED KERNEL, PROBLEM (1, 4) ,C=0.2,5=0.830°
9

8
7
6
S
4
3

—

]

2| 3

=

T

o

o B

10 o]

9| m

s 2

;] Z

<

6| >

=

s| m

o

B

m

3| —

=

m

2| =

>

Pl

m

z
10}
9
8
7
]
S
4
3
2
L 1 1 1 1 L 1102
8 -7 -6 5 -4 -3 2 1 o0

LOG (EPREQ) , REQUIRED TOLERANCE
Fig. 15

PARABOLIC SPIKED KERNEL,PROBLEM(1,5),C=0.1,5=0 85
LOG (EPRE® , REQUIRED TOLERANCE

-6 -7 -6 -5 -4 -3 -1

-2

-3

-4

-5

+ - ffta -6

<
1

gauss

-7

Fig. 16 -6
Figs. 16-18 As Figs. 10-12 using problem (1,5), ¢ = 0-1, s = 0-8§

1. FFTA— Delves (unpublished)

A simple extension of the non-automatic routine FFTNA
considered previously. A value of the error is estimated for a
starting value of N and if this is not sufficiently small then the
value of N is stepped up and the procedure is repeated.

2. SIMP—K. E. Atkinson (1976)

An ALGOL 68 translation of the routine IESIMP based on the
Nystrom method using Simpson’s rule and interative solution
of the Nystrom equations.

3. BOOLE—K. E. Atkinson (1976)
As SIMP with higher order quadrature rule.

4. Galerkin—a version of FFTA based on the standard
Galerkin rather than Fast Galerkin (1977) technique.

5. Gauss—a routine also by K. E. Atkinson similar in ap-
proach to SIMP and BOOLE, but using a sequence of Gauss-
Legendre rules to provide basic approximations.

Our initial intention was to convert Gauss also to ALGOL 68.
However, it makes heavy use of COMMON and
EQUIVALENCE, and the FORTRAN facility to break up
workspace declared to be of one mode and to use it as another
mode. It proved easier to rewrite the test package in
FORTRAN, and to run the FORTRAN Gauss routine. To

282

estimate the relative speeds of the ALGOL 68 and FORTRAN
compilers, we have run routine SIMP in both FORTRAN and
ALGOL 68 versions. The timings obtained are shown in
Table 1; they differ by an order of under 10%, which is not
significant in the current context.

Performance results for the above routines, with problem
families (1,3), (1,4), (1,5) are shown in Figs. 10-21.

Discussion of these results
1. Problems with smooth solutions: (1,3), (1,4), (1,5)
Several features of these results stand out clearly

1. The Fast Galerkin procedure used in FFTA is much more
economic in practice than the standard Galerkin procedure;
indeed, we discontinued tests with GALERKIN because of
the costs involved.

2. Routines based on high order rules: FFTA, GALERKIN,
GAUSS, are much more economical of kernel evaluation for
these families than those based on low order rules (SIMP,
BOOLE).

3. Nonetheless, the low overheads of SIMP and BOOLE make
their run times competitive with FFTA (but not with
GAUSS) for accuracies up to 107°,

4. Routine GAUSS emerges as a clear overall winner for these

families of problems. For some reason not clear to us,
BOOLE fails to improve on SIMP.

The Computer Journal Volume 23 Number3

G870 13AI7 JINIAIENOD ¥Cd4 dNIdI 40 3INTVA ' ((038d3 ‘S) dNIdI 907

¥202 Iudy 20 uo 1senb Aq £62G/¢/v.2/S/Sz/e101e/|ulwod/woo dno-ojwepeoe//:sdiy wolj papeojumoq

PARABOLIC SPIKED KERNEL,PROBLEM (1,5),C=0.1,5=0.85 10°

[C - N]

-~

r

Vi o0 N0

SNOTLYNTIVAT T3NY3Y 40 H3GWNN 3DVUIAY ' ((D3Ud3 'S) dNIdD A

L [} 1 [i I I 1 }

8 7 6 5 -4 3 2 1 0
LOG (EPREQ) , REQUIRED TOLFRANCE

Fig. 17

PARABOLIC SPIKED KERNEL,PROBLEM(1,5),C=0.1,5=0.85 10°

& N 0 VD o

&S N O VOO
NAMVL JWIL 3BVYHIAY (0 'S) dNIdD L

1 |) | 1 1 1102
v

8 7 6 5 4 3 2 -t 0
LOG (EPREQ) , REQUIRED TOLERANCE

Fig. 18

2. Problems with ‘difficult’ solutions: (4,1)
Only results for BOOLE and SIMP are given here. Routine
FFTA returned results which it predicted correctly were of low
accuracy while routine GAUSS failed to compute any solution
at all. Routine SIMP is therefore declared a winner in this
class.

Finally we note that, again following Lyness and Kaganove,
we find it hard to say much about the error control figures.

Acknowledgements

We are grateful to Kendall Atkinson for discussions of his
routines, and to the Science Research Council for the award of
a Research Studentship during the tenure of which this work
was carried out.

References

Table 1 Values of log,ot(Epinp(s, epreq)), the average time
taken to achieve the requested accuracy EPREQ in exactly
100s %, of the runs made, using the ALGOL68 and FORTRAN
versions of the routine SIMP with problem (1,3), ¢ = 0-1,
s = 0-85.

log(EPREQ) log, ot log, ot t(ALGOLG68)/
(ALGOL68) (FORTRAN) #(FORTRAN)

0 2270 2-161 1-285
~1 2-666 2-:601 1-161
-2 2-986 2-891 1-245
-3 3-235 3-212 1-054
-4 3-497 3-458 1-094
-5 3-801 3-836 0-923

ATKINSON, K. E. (1976). An automatic program for linear Fredholm integral equations of the second kind, Trans. on Math. Software, Vol.

2, pp. 154-171.

CASSELLETO, J., PICKETT, M. and RicE, J. R. (1969). A comparison of some Numerical Integration Programs, SIGNUM, Vol. 4, pp. 30-

40

DELVEs, L. M. and ABD-ELAL, L. F. (1977). The Fast Galerkin algorithm for the solution of linear Fredholm equations, Algorithm 97, The

Computer Journal, Vol. 20, pp. 374-376.

EL-GENDI, S. E. (1969). Chebyshev solution of differential, integral and integro-differential equations, The Computer Journal, Vol. 12, pp.

282-287.

ENRIGHT, W. H,, HuLL, T. E. and LiNDBERG, B. (1975). Comparing numerical methods for stiff systems of ODE's, BIT, Vol. 15, pp. 10-

48.

The Computer Journal Volume 23 Number 3

283

¥202 Iudy 20 uo 1senb Aq £62G/¢/v.2/S/Sz/e101e/|ulwod/woo dno-ojwepeoe//:sdiy wolj papeojumoq

Figs. 19-21 As Figs. 10-12

LOG (EPINP (S, EPRE®)) , VALUE OF EPINP FOR CONFIDENCE LEVEL 0.85

Downloaded from https://academic.oup.com/comijnl/article/23/3/274/375297 by guest on 02 April 2024

~
3%
T o
g r
8 [3]
g~
)
20
g1
=Y

-

s

o

8jcoq - «
dwis - ©

G-

-

.-

¢

Nl

-

P S T S T A A S

J

AONVH3T0L GIWIN03Y° 18Re D01
G5°0=6"1°0=J" (1 “9) WIT904d NOTLNT0S GINIJS

V(EPINP (S, EPREQ)) , AVERAGE NUMBER OF KERNEL EVALUATIONS

Fig. 20

JONVHIT0L 03HINOIY’ (0FMdI 9071
0 - c- g~ - G- 9= 2= 8-

NC— T 1§ T T T T T 1

Ll

8j00q - +

duis - o

N~ O N e

0l

M

o~ O N

Ol 5870561700 (i "%) WIIA0Yd "NOILNTOS GINIdS

T (EPINP (S,EPREQ) , AVERAGE TIME TAKEN

Fig. 21

JONVHII0L GIAIN0IY° (BIa) 907

L= ¢ & 7 S- 9- - 8-

NC— T T T T T T 1
2

£

Y

s ejooq - +
?

¢ dwis - ¢
3

6

01

2

£

[}

S

?

2

S

6

4,01

4

H

4

S

?

i

9

6

L 6570757170707 (1 ") WI908d “NO1LNT0S GINIdS

Volume 23 Number 3

The Computer Journal

HuLL, T. E., ENriGHT, W. H., FELLON, B. M. and SEDGWICK, A. E. (1972). Comparing numerical methods for ordinary differential equa-

tions, S.I.A.M. J. Numer. Anal., Vol. 9, pp. 603-637.

KAHANER, D. K. (1971). Comparison of Numerical Quadrature Formulas in Mathematical Software, ed. J. R. Rice, Academic Press, N.Y.,

pp. 229-259.

LyNEss, J. N. and KAGANOVE, J. 1. (1976). Comments on the nature of automatic quadrature routines, ACM Trans. Math. Soft, Vol. 2,

pp. 65-81.

LynEss, J. N. and KAGaNovg, J. J. (1977). A technique for comparing quadrature routines, The Computer Journal, Vol. 20, pp. 170-177.
MILLER, G. F. and Symm, G. T. (1975). Procedure FRED2B, NPL routine, ref. no. DS/06/1/Algol 60/7/75.
TuoMas, K. S. (1976). On the approximate solution of operator equations, Part II, Preprint, University of Oxford.

Book reviews

Information Management Systems/|Virtual Storage, by Myles E.
Walsh, 1980; 308 pages. (Prentice-Hall, £11-00)

How to put a record in a file quickly, allow for a possible future
change in its size and make it appropriately cross referenced to
permit rapid retrieval, is the problem. This book deals with the
specific solution for batch and real time using IMS/VS (which is the
most comprehensive of Data Base Management System packages).
More restrictively this book is for DP managers of departments with
IBM mainframes who need to bridge the gap between the glowing
descriptions of the salesmen’s glossy flysheets and the volumes of
technical manuals. Within this brief the author does very well. The
book is readable without being juvenile or condescending, basic terms
are defined and there is a good index.

The first chapters build up a clear idea, with the help of analogues,
of a data base and its management. Mr Walsh then proceeds to deal
with the technical aspects of the system, its batch and telecom-
munications features, its utilities and other features. A chapter deals
with actual managerial problems, like staffing and educating.
Another chapter intercompares major DBMS packages: The
author’s honesty is to be commended when he says some think
IMS/VS is the cat’s whiskers (Cadillac) and others believe it to be a
lemon (Edsel). Likewise he admits IBM was a world follower in so-
called Virtual Storage.

The book is understandably peppered with IBM buzz words but
unfortunately there is no glossary of mnemonics. IMS/VS may be
ideal for many DPDs (Data Processing Departments) but is nvg (not

very good) for smaller mainframes DBMSs (Data Base Management .

Systems) or distributed micro network TP (Teleprocessing) systems,
which are now part of the EDP/MIS (Electronic Data Processing/
Management Information System) landscape. However having said
that the book is well worth selectively reading in order to understand
the architecture and concepts of one manufacturer’s answer to IMS,
especially as other solutions cannot be radically different.

I. R. WiLLiams (London)

Learning to Program in Structured Cobol, by Edward Yourdon, 1979;
465 pages. (Prentice-Hall, £10-35)

Structured Analysis and System Specification, by Tom De Marco,
1979; 348 pages. (Prentice-Hall, £16-25)

A fashionable algorithm for the construction of book titles is: (1)
devise a title which describes the content in a form suitable for the
market; (2) select a noun from the title; (3) insert the word ‘struc-
tured’ before the selected noun. That this algorithm fails on occasion
is illustrated by the first of the books reviewed here: it is really about
‘Learning to write well-structured programs in ANSI 1974 Cobol’.
There are two parts: ‘Part 1 [co-authors Gane, Sarson] can be used
as a stand-alone introduction to structured programming or it can be
used in conjunction with the more advanced concepts and features
presented in Part 2 [co-author Lister])’. These ‘advanced features’
include inter alia arithmetic expressions, arrays, and the call state-
ment. A punched card environment is assumed throughout. Yet for
the intended readership—‘people with no previous knowledge of
computers’—this book is much better than many which are currently
available. It always explains why particular coding techniques are
chosen and it makes the reader aware of the virtues and dangers of
each language feature.

The best post-ANSI 1974 tyro’s book I have seen is McCracken’s
latest offering (Wiley, 1976) despite its use of flowcharts and its
failure to treat indexed and relative files adequately. Yourdon’s

The Computer Journal Volume 23 Number 3

book, for all its virtues, cannot match McCracken’s for price,
elegance or, most important, accuracy—the naive reader, of all
people, should be spared the confusion and insecurity which result
from even a few errors of detail.

De Marco’s is another ‘structured’ book from the Yourdon
organisation. Structured analysis turns out to consist of disciplined
use of a number of familiar tools: data flow diagrams, a data
dictionary, ‘Structured English’ (resembling pseudo-code) and
decision tables. The process of ‘deriving a logical file structure’ is
akin to Codd’s normalisation of relations, but there is no indication
that the author is aware of the relational model—indeed, he declares
himself indebted to two other Yourdon denizens who have remarked
that his logical file structure is a ‘third normal form set’ from ‘set
theory’. De Marco argues strongly for the use of data flow as a means
of partitioning the analysis, and for the use of all theabove toolsasa
means of communicating with users (‘something you can’t showtoa
user is totally worthless as an analysis tool’), with much advice on how
to make them acceptable to the users. Given this view, it is not sur-
prising that the end-product of the analysis phase, the functional
specification (called here, of course, ‘structured specification’) is
itself expressed in terms of the above tools. Data flow diagrams are
supported by the data dictionary, the processes being elaborated by
Structured English or decision tables as appropriate. The information
which the author recommends be included in the specification could
well be supplemented (see the paper by S. J. Waters in this journal,
vol. 22, no. 3) without affecting the approach. The author is at pains
to specify methods which eliminate redundancy from the specifica-
tion; he dismisses the unrealistic and undesirable notion of a
‘frozen’ specification and regards maintainability as being of prime
importance.

The practising systems analyst will find this book painless to read;
the exposition is clear, the pace slow, and the arguments strongly
presented. Jim INGLIs (London)

Digital Networks and Computer Systems 2nd Edition by Taylor L.
Booth, 1978 ; 592 pages. (John Wiley, £14-75)

The first edition of this book, published in 1971, pioneered the
unified hardware/software approach to the introduction of digital
and computer systems which is gaining popularity in universities on
both sides of the Atlantic. Indeed, the increasing realisation that this
grey area between Mathematics and Engineering is fast becoming a
third discipline indicates the need for such a book. The second
edition has the same form as the successful 1971 text, but the content
has been consolidated and enhanced. It is aimed at the first year
undergraduate who wishes to invest his meagre funds in a single
textbook covering introductory courses on logic design, digital
systems, computer organisation and computer programming.

Taylor Booth adopts a rather formal, but not pedantic, approach to
the specification and design of digital information processing systems,
Hardware and software implementations of algorithmic processes are
given equal weighting, However the means of implementation show
the age of the original text. Hardware realisations are mainly at the
SSI gate level; MSI and LSI devices are hardly mentioned. A
simulated educational computer, called SEDCOM, is used to
illustrate the principles of computer organisation and assembly
language programming. SEDCOM is a rather thinly disguised
version of the PDP 8 which is rather too long-in-the-tooth for many
readers.

I recommend this book to the serious student as a good foundation
for more advanced study. R. M. LA (Uxbridge)

285

¥202 Iudy 20 uo 1senb Aq £62G/¢/v.2/S/Sz/e101e/|ulwod/woo dno-ojwepeoe//:sdiy wolj papeojumoq

