
Discussion and correspondence 
A n alternative for the 'completer1 function 

W. A . Zaremba 
Bechtel Inc, San Francisco, California 

The need to provide conditional exits out of some large program units, such as loops or closed 
clauses, arises frequently in practice and is usually accomplished by jumps and labels. In this note 
we define an alternative mechanism avoiding this disadvantage at the cost of introducing one 
additional delimiter. 
(Received June 1978; revised February 1980) 

The need to provide conditional exits out of some large 
program units, such as loops or closed clauses, arises frequently 
in practice and is usually accomplished by jumps and labels, as 
in the following skeleton program in ALGOL 60: 

for . . . do 
begin u;u; . . . if . . . then go to L; . . . u;u end; L: . . . 

or by the 'completer' construction of ALGOL 68: 
BEGIN u;u . . . IF . . . THEN L; . . . FI ; «;«; . . . EXIT 
L: u;u; . . . END 

where u stands for some arbitrary computational unit, possibly 
another contained closed clause, and L is some label. 

This type of flow control is contrary to the principles of 
structured programming and in this note we define an alter
native mechanism avoiding this disadvantage at the cost of 
introducing one additional delimiter. The new construction is 
described in the context of ALGOL 68, but the results are 
applicable to other programming languages allowing the nested 
structuring, such as ALGOL 60, PL1, Pascal, etc. 

Assume now that at the desired exit point we put a special form 
of conditional clause distinguished by the use of a new delimiter, 
say 'CUT' instead of 'THEN' (echoing film directors' lan
guage ?), which opens the branch containing a series of units to 
be executed, followed by a jump to the start of the first serial unit 
after the innermost closed clause enveloping the entire conditional. 
In ALGOL 68 this would be some range contained between 
nesting delimiter pairs: 
BEGIN . . . END or ( . . . ) or DO . . . OD or THEN . . . ELSE 

or ELSE . . . F l , etc. 
Since exit is the last action in the 'cut' branch, no serial unit can 
be blocked within it, and since we only allow 'CUT' as a 
replacement of 'THEN' but not of 'ELSE' we can guarantee 
syntactically the existence of at least one path through the 
control tree, hence any serial units after the conditional remain 
accessible. Clearly, an IF clause not containing an ELSE 
branch also implicitly has such a through path of flow control, 
so that we are, in all cases, in line with ALGOL 68 philosophy 
expressed in the introduction to the revised report (van 
Wijngaarden et al, 1976) as: *... most syntactical and many 
other errors can be detected easily . . . . Furthermore, the 
opportunities for making such errors are greatly restricted.' 
The restriction of 'CUT' to replace the 'THEN' branch only 

enforces a reasonable programming discipline, but the key
word itself is a kind of 'remote action token', just like DO, 
WHILE, etc. so that its effect comes at a later place in the code 
than the one at which it actually appears. It would be possible 
to avoid this separation of command and action by merging 
'CUT' into the delimiters closing the exiting branch, e.g. 
CUTELSE, CUTELIF, CUTFI. Unfortunately this would not 
only multiply the number of new keywords, but also require a 
complicated syntax to prevent the possibility of blocked code. 
Therefore we conclude that this idea cannot be accepted. 

It would be easy to generalise the idea of forward exiting jump 
by allowing also its inversion, i.e. a backward jump to the 
beginning of the innermost range containing the entire conditional 
(encoded possibly by, say, 'CUTBACK'). An obvious applica
tion would be in screening terminal entry data for errors, each 
one sending the user back to re-enter the input line. Any closed 
clause could now be made into a nest of loops, all starting at its 
beginning but reversing at different places in its range. Used 
within genuine loops however, this would cause them to re
start upon each executed back transfer—hardly a sensible 
effect! Another possible extension would be to permit exits 
through any number of levels of nested conditional clauses 
stopping ultimately at the first unit following the innermost 
ordinary closed clause containing the nest. While this causes no 
blocking, we could not arrest the consecutive jumps at any 

286 The Computer Journal Volume 23 Number 3 

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/286/375316 by guest on 09 April 2024



intermediate layer without the introduction of another special
keyword. Since it is so easy to produce undesirable side effects
we will ignore both these possibilities in further discussion.
To define more formally the new construct we shall adopt a

variant of regular expressions language with the following
replicators used in the exponent position:

<f> option : one or none,
+ sequence : one or more,
* sequence option: empty or a sequence.

Braces { } serve to delimit the scope of replicated construction,
a choice is indicated by listing the alternatives in successive
lines within braces, and a special abbreviated notation for serial
phrases is defined as:

{A\\B}+ = A{BA}*
This is a generalisation of the method used by Woodward and
Bond (1974). Now the user-oriented syntax of exiting con-
ditionals can be compactly written as:

IF b FIsc || ELIF *j/ELSE

where b stands for some clause yielding a Boolean, and sc is a
serial clause. For implementation a more detailed syntax would
be required, since the left and the right recursions have to be
distinguished and, of course, no specification can guarantee the

freedom from logical errors as it is always possible to block a
section of a program by coding some tautological predicate,
e.g. ' I F 2 » x « . x > x * x CUT. . . FI'. This, however, occurs on
a semantic level, and cannot be prevented.
A side-by-side example of a flow graph containing the exiting

conditionals, and an equivalent skeleton program are shown in
Fig. 1. The code should be largely self explanatory. Note that
the introduction of CUT makes all but unnecessary the WHILE
option in a loop, and in addition can be placed anywhere in it,
not just at the head. For multiple exits from the same range one
can discover which one actually took place by the value of some
flag variable set just before the jump. Exits can be easily
cascaded since the first statement after the exited closed clause
can itself be another exiting conditional.
Lastly, we may note in passing that the abbreviated notation

for series used here is a particular instance of a new hyper-rule
definable by Van Wijngaarden syntax as:
NOTION 1 separated by NOTION2 sequence:
NOTION 1;
NOTION1 separated by NOTION2 sequence, NOTION2,
NOTION 1.

There are numerous other instances of such non-empty alternat-
ing chains used in definitions, so a compact notation applied
here to the exiting conditionals could be quite useful in general.

References
VAN WUNGAARDEN, A. et al (1976). Revised report on the Algorithmic Language ALGOL 68, Springer-Verlag.
WOODWARD, P. M. and BOND, S. G. (1974). Algol 68-R Users Guide, HMSO (Appendix 3).

Porting virtual object files
M. K. Crowe
Paisley College of Technology, Department of Mathematics and Computing, High Street, Paisley,
Renfrewshire PA12BE

Software portability generally deals with moving source code
from one machine to another. The development of 'virtual
machines' emulated on a number of different systems opens the
possibility of transferring binary object files.
In this paper, a method is described of overcoming the main

snag that is encountered in transferring binary data from one
machine to another. This is the fact that machines differ in
word length, or even where the word length is the same, the
way bits are arranged in a word.
The idea for this paper arose out of our work at Paisley in

porting the EM-1 Pascal compiler developed at Vrije Uni-
versiteit, Amsterdam from the PDP-11 machine to our Prime
computer.

The problem file
EM-1 is a stack based virtual machine architecture, with 16-bit
word size. An executable object program file consists of

HEADER (WORDS)
TEXT OF PROGRAM (BYTES)
EXTERNAL DATA AREA
VARIOUS TABLES (WORDS)

The external data area consists of all program constants to be
loaded into.the stack prior to execution. This data is a mixture
of bytes and words.
In the specification of the EM-1 machine, it is not defined how

the bits in a word are arranged. Speed considerations demand
that the same arrangement as in the host machine should be
used. This is where the problem arose, as the PDP-11 and the
Prime disagree on this point.
If two words, one of which contains the string

"AB"
and the second the integer 21, are transferred from the PDP-11
to the Prime, the resulting bit pattern is as follows

01 000 001 01 000 010 00 010 101 00 000 000
The Prime is fairly happy with the first word, which lacks only
parity bits in the characters. But the bytes in the second word
have been transposed. Similar problems will be encountered in
transferring binary data from an Intel to a Motorola micro-
computer.
Now there is no means of detecting this transposition when

executing a program, as integers can be loaded using the same
instruction as a two character string (loi 2). If the same object
file is to be used, the only solution is to retain the PDP-11
ordering in the stack and swap bytes whenever any integer
arithmetic requires to be performed. This must be ruled out
because of the cost in execution time.
In our porting exercise, we took the usual way out of such

difficulties, by porting ASCII files only. But in the future, as we
begin porting on to various micros, some systematic way out of
the difficulty will become essential.

The Computer Journal Volume 23 Number 3 287

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/23/3/286/375316 by guest on 09 April 2024


