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1. Introduction

There have been many studies made of the throughput of
computer systems using what is by now a standard set of
assumptions of queueing theory (Bhandiwad and Williams,
1974; Buzen, 1973; Chandy et al, 1975; Cox and Smith, 1961;
Gordon and Newell, 1967; Jackson, 1963; Kleinrock, 1975;
Lipsky, 1974), namely that all servers have exponentially dis-
tributed service times, and the steady state solutions apply.
There has been some success in this approach (Boyse and Warn,

1975; Brandwajn, 1974; Chiu et al, 1975; Giammo, 1976;
Kleinrock, 1976; Lipsky, 1974; Lipsky et al, 1977; Lipsky
and Church, 1977) and several attempts have been made to
apply this technique to ‘time sharing systems’, where the
computer is not a closed network, but rather is opened to
a so-called ‘thinking’ stage (Chandy et al/, 1975; Kleinrock,
1976; Scherr, 1967). Such models have been less successful
at estimating response time versus active terminals, for
instance, because the models are very sensitive to certain
unknown or poorly known parameters.

Our purpose here is to examine and compare several methods
for dealing with time sharing systems and see what conclusions
can be drawn therefrom. It is sometimes useful to have an
illustrative example, so when appropriate, we will use para-
meters pertaining to the PDPI11/45 minicomputer running
under ‘UNIX’ which is operated by the Computer Graphics
Group at Nijmegen University, the Netherlands (Lipsky, 1977).

2. Theoretical background

It is assumed here that the reader is familiar with any one of
several articles where the theory is expounded in detail. We
only summarise here. It has been shown by Jackson (1963) and
by Gordon and Newell (1967) (see also Buzen, 1973) that for
any network of M service stages with exponentially distributed
service times, and serving a total of N customers the proba-

bility of being in the state 7 = {n,, n,, . . . , ny} where
ny +n,...+ny=Nis
PGy = i XP .X_M"_/G(N) (1a)
ﬁ (ny) ﬁz(”z) Bu(ny)

n; is the number of customers at stage ‘i’, and the X’s can be
defined to within an arbitrary multiplicative constant, as the
fraction of time a customer spends at each of the stages when
there is no one else in the system. The function, G(N), nor-
malises the probabilities so that their sum is 1, so

Xm

M
=21 lmm

All i=1

(1b)

The load functions, f,(n) are deﬁned by:

Bin) = a(1) x ay2) ... x ayn) 2
where the mean service rate when there are n customers at the
i'" stage is a;(n)/t;. By definition, o;(1) = 1. A customer may
return many times to the i™ stage, and ¢, represents the mean
time it takes to serve him for each visit. When B,(n) = 1 for all
n, the i™ stage is ‘load independent’.

There is one class of load-dependent stages which should be
mentioned. Consider a stage with one queue emptying into
several (r > 2) identical servers. The probability of a comple-
tion in a small interval of time A4z if there is only one customer
there is simply At/t, where t = mean service time of one server.t
However, if there are two customers in the queue, then both are
being served and the probability of a completion becomes
24t/t. In general,

Probability of completion

Il

ndt/t forn < r
=r

= rdtft for n (3a)
In this case,
p(n) = n! forn<r
=rlr forn > r (3b)

If a situation occurs where n can never exceed r then f(n) = n!
always. This is the case in a time sharing system, where the banks
of available terminals can be considered to be a single stage, and
the number of customers (programmers using terminals) can
never exceed the number of terminals. A given server (terminal)
is ‘active’ while the customer is preparing his request to the
computer system (thinking), and is inactive while waiting for
the computer’s response. The computer load in responding to a
request is called a ‘transaction’.

Several general statements can be made concerning properties
relating to equations (1). First, it can be shown that

P(n;, N) = Probability of n; customers being at queue i with a
total of N in the system
X
= g{N — n)/G(N) (4a)
Bin) ‘
where the function, g; is defined by:
Xpe
gin
8 = Z B famy
X"i’l’ X"MM
i e (4b)
Bis1(nis1) Bum(ny)
and the sum is over all possible sets of n; such that
M
Znj=n< N, andn; 20 (4c)
JFi

Furthermore,
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Fig. 1 Diagram of a Terminal-Computer System. The computer is of
arbitrary complexity, having ‘M’ distinct devices, and there
are N terminals ‘logged on’ and active

= — . 5

This is a special case of a more general statement which allows
(1b) to be written in the form:

G = Z g,(n)gsN — ) (5)

where g, and g, are normalising functions for any pair of dis-
joint subsystems whose union is the entire system. That is, they
are of the same form as G, in equation (1b), each including only
those X;’s which correspond to servers in its subsystem.

It can be shown (Williams and Bhandiwad, 1976) that the
mean service rate of stage i with arbitrary load dependence is
simply

L(N) = ,5 x G(N — 1)/G(N) ©)

where 1,(N) is the mean number of customers passing through
stage i per unit time when there are N customers in the entire
system. In the case when the i™ server is load independent
(Bi(n) = 1), we also have
A{N)t; = probability that the server is active,  (7a)
while for f(n) = n!,
A{N)t; = mean number at stage i . (7b)
Equations (7) follow directly from Little’s Law (Kleinrock,
1975), which states that the mean arrival rate of customers to a
subsystem multiplied by the mean time spent by a customer in

or at that subsystem is equal to the mean number of customers
there (71 = Ar).

3. Time sharing model

Consider a system according to Fig. 1. The M-stage computer
can be of arbitrary complexity, but from which a generating
function g(n) can be calculated according to equation (4b) for
i = 0. From equation (5a)

N
n N-=n
T Zav—m = > L g 6

n=20

G(N) =

n= 0

where Z = mean time a customer takes to submit the next

request to the computer after receiving his previous response

(so called ‘think time’). The X;’s for the computer subsystem

(the parameters needed to calculate g(n)) have been normalised

to be the mean times spent by each stage in satisfying a single
transaction. The expression:

Z"g(N = n)
n' ~G(N)

represents the probability of there being n active transactions,
and N — n customers thinking when there are N in the system.

W(N = n) = (8b)
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The mean number thinking at any time (from equations (6)
and (7b) with i = 0) is:

No(N) = Z G(N — 1)/G(N) , %a)
owing to the specific normalisation selected, where Z = X, =1,,
and the mean number of transactions processed per unit time is

AN) = G(N — 1)/G(N) . (9b)
The response time R(N) (the time a transaction spends in the
computer subsystem) must be by Little’s Law

R(N) = Number in Subnetwork = N — N, N
A(N) AN) — AN)
(10)
Observe that R grows with N, and for Large N,
N 1
RIN) = — — Z o — 11
) = o= 7 + () an

A(o0) is itself determined by the maximal capacity of the
computer and is independent of Z
lim 1 lim G(N) lim X;
L 12a
N0 I(N) = Neroo GN = 1)~ Ne»co ’,?’I,ai‘ | 12
provided the a;(N)’s have a limit greater than zero. This 11m1t§s
independent of the ‘think’ stage because Z/oo(N) = Z/N — 0@s
N - o0.
It is interesting to note that since A(N) has a finite limit,

o}pbopes

also has a finite limit. From equation (9a) it follows that 3
lim - =
Nevoo No(N) = Z x A(0) (lzg)

In other words, as a system gets more and more overloaded, tge
vast majority of users are waiting for a response to their p@

vious request, while only a limited number of users (N(00)) are
preparing their next transaction.

4. Example

This behaviour might best be described by an example. C
sider the minicomputer system at the University of Nljmeggn
shown in Fig. 2. This system, running under the operatifig
system ‘UNIX’, is made up of one PDP 11/45 central procegs-
ing unit (1); one fixed head disc unit (5); and one movable
head disc controller (2) with two movable head discs (3, #)
attached. Disc 3 contains the system information and swappi&
areas and is, therefore, by far the most active server. A soft-
ware monitor was written which kept track of the use made of
each device by all the time sharing users. At the time this study
was made, only three terminals could be active at any time, ~§To
the swapping rate measured was less than that which would
expected under heavier loads. The utilisation times quoted
equation (13) below reflect the projected increase in swappmg:;f
and when more terminals are added. In partlcular it was
assumed that each T-S request would require a ‘swap-in’, a@i

-
N

©, ®

Py (®

u%o/LuOO'dn

(1)

@

Diagram of a Minicomputer System composed of one CPU
(1), one disc controller (2), two movable-head discs (3, 4), and
one fixed-head disc (5). Each transaction requires several I/O’s,
with CPU activity in between. Some I/O’s (namely swaps)
require several disc accesses, hence two feedback paths

Fig. 2
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Fig. 3 Response time versus number of active terminals for two
different ‘think’ times Z = 11 and Z = 12, for the case of
unlimited storage (curves 1 and 2). Restrictive approximation
‘A’ is also included

0.6 ‘swap-outs’, but no swap-outs wouldinvolve presently active
transactions (no thrashing). See Section 7 and Lipsky (1977) for
further details.
The expected mean times per transaction are:
0~1244’ 0-3096 0-4545 0-0616 0-0499 13)
c c ¢ ¢ ¢

X={XO=Z’

5
where 2 X; = I/c = 1/0-70588 = 1-4167 seconds.
i=1
1/c is the time it takes to complete one transaction if no other
activities are being performed. This is also the response time
with only one active terminal.

Fig. 3 shows the response time as a function of the number of
users, for two ‘thinking’ times. We see that the slope of the
asymptote (which is 1/A(c0)) does not change with Z, nor does
R(1). The figure shows the obvious, that the longer the users
take to think, the better is the response time, since the load on the
system is less. Curve ‘1’ (corresponding to Z = 11) has marked
on it the mean number of transactions which are actively seek-
ing service on the CPU or one of the I/O devices (N — N,). For
example, when there are 28 users on the base system, on average
four of them are ‘active’ and 24 are thinking. It is clear from the
curve that this number grows with N, and system response time
‘degrades gracefully’ with increased load.

In most computers the amount of available main storage is
limited, so the number of transactions which can be simul-
taneously active is bounded, making some of the equations
described above invalid. The question then is how to incorporate
into the model a restriction of the number of active users. In the
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next section we discuss and compare several approximate ways
of doing this. The exact solutions for some simple systems are
discussed by Carroll and Lipsky (1979).

5. Restrictions on number of active transactions in main
memory

Before examining various ways of modelling the restriction on
the number of active transactions it would be helpful to discuss
the following properties. First, define A(n) as the mean number
of transactions which the computer can complete per second
when there are exactly n active tasks in the subsystem. (n does
not include the number ‘thinking’.) It can be shown (using the
normalisation of equation (13)) that:

A(n) = g(n — 1)/g(n) (14)
where 0 < A(n) < A(n + 1), and the value of A for every n will
be on or below the straight line drawn through any two succes-
sive points of {n, A(n)} (Lipsky, 1973). Next define W(n, i) to
be the probability (or the fraction of time) that there are n active
transactions, where

N
2 Whn,n =1
n=20

(15a)
and

N

2 nW(n,n) =

n =1

It follows that (Lipsky, 1973)

S|

0 < A) = ; W(n, n)A(n) < A(n) (15b)
n=20

That is, the weighted average must always be less than or equal
to the value of the function at the mean. The lower bound is 0,
for consider the particular activity function:

_ n
wWo(,n) =1 — N
W(N, n) = A/N
W(n, i) = 0 otherwise
Equations (15a) are satisfied, and

(16a)

Ay =2 AWN), (16b)
N
which goes to zero with increasing N, since A is a bounded
function.
Next look at equation (8a), inserting equation (14).

N -1 N -1
T 2 N A+ gl + 1)
GOV — 1) ‘zg(")ﬁv——ﬁﬁ‘ Z (n + g
n=20 n=20
ZN—l—n
*(N=1=n)! (7
N
_ A(n)g(m)Z" "
N Z (N — n)!
n=1
This, together with equation (9b) leads to
HN) = £ Am)Wy(n) (18)
1

where Wy(n) is the same as that in equation (8b). It is seen then,
that A(NV) can be written as a weighted average over the A(n)’s.

Case A

From an examination of the base response curve of Fig. 3,
together with equation (10) it is evident that the slope of the
straight line drawn from (0, —Z) to the point (N, R(N)) is
equal to 1/A(N). It also corresponds to having n = A(N)R(N)
(Little’s Law) active transactions on the average. The simplest
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restrictive assumption would be to suppose that when #n
reaches some N, (core saturated on average), the throughput
no longer increases, but remains constant. This produces a
response curve which follows the straight line for large enough
N which goes through (0, —Z) and crosses the response curve
at N, Such a line for Z = 11 (labelled ‘A’) is drawn on Fig. 3
for N,, = 4.

The line drawn from (0, — 12) to its corresponding response
curve at N,, = 4 has a slightly larger slope than that for Z = 11.
In this approximation then, the maximum number of trans-
actions which can be processed per unit time actually decreases
with increasing Z.

Case B

A reasonable approach to restricting the number of active
transactions is to introduce a ‘pseudo-queue’ with the para-
meter, ¢, and vary f until the mean number active (i7) equals the
mean number allowed (N,,). The queueing model appears in
Fig. 4. When 7 for t = 0 is greater than N,,, the waiting stage
becomes active. At this point a new generating function must be
defined.

G(N, 1) = % "GN — n). (19a)

n=0
It is not hard to show that G satisfies the recursive equation

G(N + 1,1) = G(N + 1) + tG(N, 1) . (19b)
That t must be found for which:
F@(,Ny=N—-N, — N, —N, =0 (202)
where N, is defined by equation (9a), and:
N
N, = Z nt"G(N — n)/G(N, 1) . (20b)

n=1

This root-finding problem can be solved in various ways. It
turns out that G'(N, t) = dG(N, t)/dt satisfies the same
recursive equation as G, so it is computationally easy to apply
the Newton-Raphson method for finding the appropriate ¢.
Details are given in Appendix 1, where the auxiliary function:
F(t, N) = F(t, N) x G(N, 1) @n
= (N — Ny)G(N, t) — ZG(N — 1,t) — tG'(N, 1)

is used.

Curve B on Fig. 5 shows the result of this procedure for
N,, = 4. The curve does not follow line ‘A’ of Fig. 3 but in fact
rises more steeply, finally following a different asymptote (see
Fig. 7). The productivity of the system actually decreases with
more users. This sort of behaviour is generally observed on
overloaded systems, and is usually explained as due to ‘thrash-
ing’ or increased overhead, items which are not included in this
model.

This can be explained to some extent by observing that since
the average number of active transactions is held constant, the
fluctuations about the mean must increase with increasing N.
Generally, as the number of users goes up, in order to maintain

‘N' ACTIVE
TERMINALS

'M-STAGE
"WAITING" COMPUTER

QUEUE

Fig. 4 Diagram of a Terminal-Computer System, with a pseudo-
queue of transactions waiting to become active in the computer
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Fig. 5 Response time versus number of active terminals, éﬁd
restrictive approximations B, C, and D of the text. ‘Thl@(
time is 11 seconds

/Ul

a fixed average, the probability of having less than N, tagks
active must also go up, thereby giving increasing welght to tﬁe
smaller values of A(n) in equation (18).

N

¥€/06¢/v/

Case C
Although the above results have been observed in real systems
(e.g. Tiemann et al, 1978) it may be fortuitous to some extent,
since there is no direct correlation between a transactign
complcting, and another jumping in to take its place. In tﬁis
section it is assumed that the waiting stage is of the multlfﬂe
server type in an attempt to make the ‘waiting’ queue respond

more directly to completion of tasks. Here, ©
N 1
t" =
G(N, 1) = Z LGN - n) 2)
n! N
n=20

and

F(t, N) = (N — ng)G(N, t) — (Z + t)G(N — 1) (23)
The mathematical details are presented in Appendix 2. Discus-
sion is similar to that in case B. These results are also plotted in
Fig. 5 labelled curve C. Notice once again that the response
time increases rapidly with increasing numbers of terminals,
while the service rate actually decreases, but not quite as much
as in case B.

Case D

In many computer systems, particularly where each user has a
fixed partition (e.g. TSO for IBM/370 systems), the maximum
number of active transactions, N,, is fixed. Then, as the load is
increased, the mean number active approaches N,,. In this case
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we would expect the response time to go asymptotically as
N
A(N,)

The queueing theory of systems where the number of cus-
tomers which can simultaneously be active in a given subsystem
is restricted has not been studied in great detail. The following
discussion considers an approximation which gives the correct
results both when the load is small, and when the load is very
large. It has been discussed by Williams and Bhandiwad (1976),
Kleinrock (1976), Chandy et al (1975), and Carroll and Lipsky
(1979).

First consider a single load dependent server whose service
rate is A(n), the same as that for our M-stage computer. The
probability of a service completing between ¢t and ¢t + At, when
there are n active tasks is

A(n)At
_ A(n) At
ORI (242)
In comparing with equation (3a) it is seen that
a(n) = A(n)/A(1) (24b)
= 1/A(1),
and
_ A)AQ) . . . Am)
Ar) TN (24c)
where f(0) = 1.
But, from equation (1‘4) A(n) = g(n — 1)/g(n), so
_[fO1 8@ V) g 1)
pe) [g(l)] 2D 2@ g
Noting that g(0) = 1, the above leads to
B~'(n) = [e(1]" x g(n). (24d)
For any load dependent server,
N
ZN—n " ZN—n 1 n
G(N) = = = =
W= 2w =mam = Z,w = s -
g(n) [g(1)]"
N ZN—n
= m g(n).
n=20

This is identical with equation (8a), showing that this single
stage whose behaviour does not depend on Z or N, provides
results which are identical to that of the M-stage computer. We
must warn that this remarkable result which says that any sub-
system can be replaced by a one stage ‘black box’, is only true
for exponential servers with no restrictions on the number of
active customers. Even so, it is asymptotically true (Carroll and
Lipsky, 1979). See, however, Denning and Buzen (1977).

With this insight we can restrict the service rate of our
equivalent server by making the following ‘Natural
approximations’.

A(n) = A(n) forn < N, (26a)
A(n) = A(N,,) forn = N,

or
B(n) = [g(1)]"/g(n) forn < N, (26b)
_ g1 [g(N,, — 1)] "N
hn) = g(N,) [ g(N,,) ]
forn > N, (26¢)

This leads to the generating function
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Q

N El

Z 3

G(N) = S ~—' g(N — n)for N < N, (27a)§

and for N > N 8
Nm S

ZN n ZN n ©

G(N) = g(n) + g(Nm) 3
N = n)! (N = n)! S

n=20 n=~Nm+1 -

>

~~
N
2
o
6 kG

[ g(N,,) ]"‘”m
gN, — 1)

It follows directly from equation (5b) that an arbitrary closedé_
queueing network with exponential servers in the steady state,o
can be decomposed into two disjoint subsystems, where each
subsystem can be replaced by an equivalent single stage. In%>
cases where the number of active customers within each sub-—-
system is restricted, equatlons (24) and (25) provide ano
approximation which is asymptotically correct. The excess™
customers are waiting to enter one or the other subsystem. This
is different from the ‘finite waiting room’ problem (Cox, 1961),
where customers are actually turned away, or the ‘blocking
effect’ (Morse, 1958 ; Konheim, 1976) where one server cannot
take on a new customer until another server completes its task.
It is not known in general how accurate this approximation is
except that it must be asymptotically correct as N — co.

Equations 27 have been solved for our computer system with
N,, = 4, and plotted on Fig. 5, labelled D. As expected, this
curve gradually diverges from curve 1, asymptotically going to
the throughput A(N,,). Observe that the response time under
heavy load is actually less than the response times in cases B and
C even though there are fewer active transactions on the
average. (B and C have an average of 4, whereas D has a
maximum of 4.)

The Computer Journal Volume 23 Number 4



The mean number of transactions which are being simul-
taneously processed can be calculated by evaluating

N N

_ ZN-'I ZN_"

A(N) = Z n = g(n) + N,g(N,) Z (N = n)!
n=1

n = Nm+ 1

O

[g(N... - 1)] %
On Fig. 6 are plotted 7(N) together with N,, the number
‘thinking’, for several of the cases we have discussed. Note that
N — N, equals #i(N) plus the number waiting to get into main
memory.

6. System throughput

In the study of time sharing systems, the response time is
usually the most important property to be examined. Even so,
an examination of the system’s throughput can provide some
interesting insights into its performance characteristics. The
two properties are directly related by equation (10), which is
rewritten below:

N
A(N)
This equation is significant, since it is universally valid, irre-
spective of the various service time distributions or restrictions
on the computer subsystem. The throughputs of the various
systems described previously are drawn on Fig. 7. Every
horizontal line here, corresponds to a straight line eminating
from —Z on Fig. 3. Also, the line labelled 3, which corresponds
to the most optimistic system behaviour:

AN) = NA(1) (30)

produces the constant response time R(N) = R(1).
Curves B and C show clearly how system behaviour actually

R(N) = (29)

D
]
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o
T

SACTIONS | SECON
o
]
|
|
|
|
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A(N), SYSTEM THROUGHPUT (TRAN
D o
T T

- N
T

1 1 1 1 1
o 20 30 40 50
NUMBER OF ACTIVE TERMINALS, N
Fig. 7 Number of transactions processed per second (A(N)) versus
number of active terminals. Same systems as Figs. 3, 5 and 6
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gets worse with increasing load. In such cases it is better to
restrict the number of users than it is to allow more users to
share the degraded system. Examination of Figs. 3, 5 and 7
indicates that the essential characteristics depend strongly on
saturated throughput A(c0), and initial throughput, i(1). Both
of these numbers, like equation 29, are independent of various
detailed assumptions of a given model, and can generally be
measured or reasonably estimated, provided there are no
unstable influences such as ‘thrashing’ (see next section) which
can make response time grow exponentially (therefore making
A(00) zero) rather than linearly. It is easy to show that

_ A (31)
1 + ANZ

where A(1) is the ¢ of equation 13, and is independent of Z.
Several semi-imperical approximations may suggest them-
selves for consideration. For instance, the response time can be
assumed to follow line 3 of Fig. 3 until it crosses the appropriate
asymptote (sometimes called the ‘saturation point’), or it can be
assumed that the response curve goes linearly through R(1) apd
R(2) (a number which must be measured or calculated indg-
pendently) and continues until it crosses the appropriate
asymptote. From Fig. 7, one might assume that A(N) is of the
form A(1)[N — (N — 1)%], where a = 2 — A(2)/A(1) also must
be evaluated independently. g
These approximations can help provide ‘back of the envelope’
estimates of how a given system might behave for low Jo
moderate loads, or under saturated conditions, but in the
transition region (in our example, for 15 < N < 25) mugh
more detail is necessary. In any case, even though the systemat
the University of Nijmegen never had more than three users
simultaneously, expansion plans were made based on the state-
ment that ‘certainly 15 terminals can be supported, but not 25’
a factor of less than two in cost uncertainty.

A1) =

ulwoo/wookd

7. Comments on ‘swapping’ and ‘thrashing’ El
In any time sharing system, there is usually not enough mdin
memory to hold all material that may be needed, so mdst
material resides on some disc file. When a user enters a cofi-
mand, the system program checks to see if the material needgﬁ)i
to execute the command is already resident in memory. If it &,
then the transaction becomes ‘active’ and enters the CPU ready
queue. If, however, the material is not already resident, the
system must check to see if there is space available in the
memory, and where the material is stored. The action of bri 2-
ing this material from disc to main memory is called a ‘swap"gf
there is no unused space, then the system checks to see if soﬁéie
of the space is taken up with material which belongs to a user
who is not presently ‘active’. If enough of this space can be
found, then the swap proceeds, after checking to see if the ofd
material should be saved and if so then swappingit out. If thete
is insufficient space available for the material, then diﬂereﬁt
systems make different decisions. One common algorithm
is to check to see which of the active programs has been active
the longest, and if this time exceeds some preset number, say
3 seconds, then this task is swapped out, put at the end of the
memory queue, and the new one is swapped in. This is done
to protect against very long transactions dominating the
computer.

If the load on the system becomes very great, then even short
transactions will remain active for a long time. We then observe
the phenomenon of a given transaction with average or less
than average demand on the system, being swapped in and out
more than once. This puts an even greater load on the system,
thereby reducing productivity, forcing jobs to remain active
longer, and thereby swap more frequently. This phenomenon is
called ‘thrashing’.

Although the four cases described in this paper may not cover
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precisely the reality of most time sharing systems, they all have
something in common. When available memory gets scarce
(when the average number active approaches the number
which can be held), each of the cases discussed indicates that
response time goes up rapidly (degradation is not so graceful),
since most transactions spend most of their time waiting for
memory to become available. Thrashing cannot occur until this
situation is reached, so we see that thrashing may accompany
core saturation and poor response time, but it does not
necessarily cause the poor response. It merely makes an already
bad situation worse.

For the system at Nijmegen, even when there are few users, a
swap occurs for one in every two transactions (new material
must be brought in). As the number of users goes up, so that
there are more users than there is space, this may go to one
swap in for every transaction (and some fraction of a swap
out). With greater increase in load, this should remain relatively
constant, until the mean response time exceeds the cutoff time
parameter. But from Fig. 3 and Fig. 5 that means the average
transaction is already taking over 3 seconds to respond, with
5% taking more than 9 seconds. Most of the time is spent
waiting for main memory to become available. An ‘anti-
thrashing’ algorithm could be implemented which allows a
program to be swapped out only after it has used a certain
amount of resource time, not ‘wall clock’ time. The time it
spends waiting for resources to become available should not be
included. Such an algorithm would produce a response curve
similar to those in this paper, without any explosive degradation
of service with increased load.

In any case, time sharing systems can reasonably be modelled
under the assumption that there is always one swap per trans-
action (plus a fraction more for swap outs). This will over-
estimate the response time when the system is under light load
(and who cares?) but in the critical region, when the response
curve is beginning to rise rapidly, the model can be expected to
give reasonable results.

Appendix 1
We wish to find that ¢ for a single server ‘waiting’ stage which
allows precisely N,, to be active, on the average.
The mean number ‘thinking’ is
N

N, = Zn%G(N - mO/e@,) (D)
n=20

where G is the normalising function of the entire system
excluding the time sharing or ‘thinking stage’. That is,

N
G(N,t) = X t"g(N — n)
n=0

and
N
zZ" -
G(N, 1) = Z Z" G(N - n, 1) (1.2)
n.
n=20
From (1.1)
N n
N, = z _Z"_G(N - m 0/GIN, 1) = Z x
(n— 1!
n=1
N
zZ" -
=i G(N — 1 — n, t)/G(N, 1)
n=0
=ZG(N - 1,1)/G(N, t) (1.3)
The number in the waiting queue (using equation (4a)) is
N
N, = Z nt"G(N — n)|G(N, t) (1.4)

n=20

dG(N, 1)

Compare this with . Since
N
G(N,t) = Z t"G(N — n) (1.5a)
n=20 ~

we see that

N N
G'(N,t) = Z nt" ' G(N — n) = ;Z nt"G(N — n),

n=1 n =1

(1.5b)
which on comparison with (1.4) leads to
N, (N, )G(N, t) = tG'(N, t) (1.6)
The number in core is equal to N — Ny — N, and if it is
desired that this number be N,, then 7 must be found such that
F(N,1) = (N = N,, = No — N,)G(N, 1)
= (N — N,)G(N,t) — ZG(N — 1,1t) — tG'(N, 1)
(1.7)
In order to use the Newton-Raphson method, we must alsog
evaluate F'(N, t), which is:
F'(N,t) = (N — N,, — NDG(N, 1) — ZG'(N — 1,1) — tG"(N, 1)g
( 1.8)§
Finally, G’ and G” can be evaluated recursively from thegz
equations obtained by differentiating the recursive forms for3

umo

G(N). Here, g
G(N,1) = G(N) +t x G(N — 1, 1) (1.92)%
Differentiating: g8
G'(N,t) = tG'(N — 1,1) + G(N — 1, 1) (1.9b)2

and again: o
G'(N, 1) = 2G'(N — 1, 1) + tG"(N — 1, 1) (1.90)3

with the initial conditions: 3
o

GO.0=G(,0=16@0n =1 (1.94)2

QO

G'(0,1) = G'(0,1) =G'(1,1) =0 g

All that remains is to iteratively evaluate ¢t « t — F/F’ until’3
some predetermined accuracy is satisfied. &

L¥€/062/Y,

Appendix 2
We now wish to find that ¢ for multiple server ‘waiting’ stage=,
which allows precisely N,, to be active on the average. As in;{,’

Appendix 1, Q
N, = ZG(N — 1, 1)/G(N, 1) Q1%

But now, S
N ©

n >

N, = Z n" GV — iGN, 1) = (GIN — 1, 0/G(N, 1) 2
- n! §
Q.2

This yields
F(N,t) = (N = N, — Ny — N, )G(N, 1)
= (N = N,)G(N,t) = (Z + )G(N — 1,1). (23)

Also
F'(N,t) =(N — N,)G'(N,t) = (Z + )G'(N — 1,1) — (2.4)
GIN - 1,1)
and
G'(N,t) = tG(N — 1, 1)/G(N, 1) (2.5)
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Calls for papers

The First British National Conference On Databases will be held on
July 13-14, 1981 at Jesus College, Cambridge, following the success
of the International Conference On Databases (ICOD-1) at Aberdeen.
The BNCOD series is meant to focus primarily on British work,
although overseas papers are also welcome. This conference is being
organised jointly by the Aberdeen University Computing Science
Department, The British Computer Society and Middlesex Poly-
technic. It is intended to publish the conference proceedings.
Research papers are invited on all aspects of data bases such as:
data modelling; data base design; restructure and reorganisation;
performance optimisation; data dictionaries and design tools;
privacy, integrity, consistency and recovery; end user facilities; data
base machines; distributed data bases.
Implementation oriented research work is particularly welcome.
Please submit an abstract of about 500 words by 2 February 1981
and five copies of the complete paper (not more than 8,000 words
each) by 2 April 1981 at the latest. The abstracts will be used for
a preliminary selection, the final selection based on complete
papers being made by the beginning of May 1981. All communications
should be addressed to
Dr S. M. Deen (conference chairman)
Department of Computing Science
University of Aberdeen
Aberdeen AB9 2UB
Telephone 0224-40241 ext 6421 or 6417 Telex 73458
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Papers are invited for the international symposium on algorithmig
languages to be held in Amsterdam, The Netherlands on 26-29
October 1981. Authors are invited to send five copies of a full draff
not exceeding 5000 words, by 1 February 1981, to the programg
secretary: J. C. van Vliet, Mathematical Centre, Kruislaan 413, 10!
SJ Amsterdam, The Netherlands. Further details may be obtameﬁ
from him also. P

N
The IEEE Computer Society conference on Pattern Recognition
and Image Processing will be held in conjunction with ACM
SIGGRAPH 81 at the Hyatt Regency Hotel, Dallas, Texas on 3-5
August 1981. A joint session on topics of common interest to image
processing and computer graphics will be held. Papers are invited on
all aspects of the subject. Four copies of the complete draft papers
should be submitted by 15 January 1981 to Azriel Rosenfeld,
Computer Science Center, University of Maryland, College Park,
MD 20742, USA.

The Australian Computer Journal will publish a special issue on
‘Recent developments in computer networks’, with special attention
to developments in Australia, in May 1981. Both full papers and
short communications will be considered. Prospective authors should
write to Dr John Lions, Guest Editor, ACJ Special issue on Com-
puter Networks, Department of Computer Science, University of
New South Wales, Kensington, NSW 2033, Australia.
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