On a subset of all the permutations of n marks

Y. L. Varol

Computer Science Department, Southern lllinois University, Carbondale, lllinois 62901, USA

A subset of all the permutations .of » marks arises naturally in interval exchange transformation

problems. Each permutation pip: . .

. Dn in the set represents a transformation having a dense
orbit, and has the properties pi-1 # pi+1 and p1p2 . .

. pi is not a permutation of {1,2,..., i}

foralli,1 < i < n — 1. A recursive formula is given for the cardinality of this subset, and two
algorithms for generating in alphabetic order all the permutations in it are presented.

(Received February 1979)

1. Introduction

Enumerating and generating all the permutations of » distinct
marks has caught the fancy of many people since campanology
became a popular pastime (MacCallum, 1977). Subsets of
permutations satisfying certain conditions such as a partial
order on the marks to be permuted (Knuth and Szwarcfiter,
1974), or prescribed up-down and inversion sequences (Foulkes,
1976), and many other subsets (Riordan, 1958) have also been
of interest. In this paper we consider a particular subset which
arises naturally in Interval Exchange Transformation prob-
lems (Keane, 1975), where the permutations represent trans-
formations having a dense orbit.

Forn > 1,letZ, = {1, 2, ..., n} be the set of marks, and P,
denote the set of all n! permutations = = p,p, . . . p, where
pieZ, forall 1 < i < n. Consider the set G, = P,, where
n ¢ G, if and only if

Pi+1 #pi + 1foralll < i
m; = ppP,...p;isnota permutatlon of {1,2,...
ie. ;¢ Piforl <

<n-—1,and ¢))
i} (2)

i < n — 1 (this is equivalent to saying
S p; # 3G+ 1))
=
For n = 4, G, contains the following seven permutations:
2413 3142 4132 4321

2431 3241 4213

Permutations not belonging to G, can be divided into 2n — 2
mutually disjoint subsets depending on the nature in which they
violate (1) and/or (2).
For1 < i < n — 1define S, ,, T;, = P, as follows:
n ¢ S; , if and only if ; ¢ P; and there does not exist a j < i
such that n; ¢ P;

if and only if n ¢ S, , for any k, mark i + 1 appears
immediately to the right of mark i, and there does not
existaj < isuch thatme T .

For the case of n = 4:
S1.4 = {1234, 1243, 1324, 1342, 1423, 1432}
S,.4 = {2134, 2143}
S3.4 = {2314, 3124, 3214}
T, , = {3412, 4123, 4312}
T, , = {2341, 4231}
T, , = {3421}.

From the definitions it is clear that the above sets are mutually
disjoint and that

neT;,

n-1 n-1

P—G U(US,,,)U(UT,,,)

i=1
Using the small letters to represent the cardinality of sets
denoted by capital letters; respectively g,, s;,, #;, for the

34

cardinality of G,, S; ,, and T, ns WE have that
n—1 -
gn_n'_zsln Z (3)
i=1 = g
Expressing s; ,and ¢; , in terms of g;’s, j s i, we can obtain thg
following recursive formula for gwh > 2,

n—1

=(mn-1mE-1)! -
n—1 i=2

oS- (1)

k=0
A sample of s, t, and g values is listed in Table 1.

-dno-olwepeoe//:sdyy wolj papeo]

2. Generation algorithms
We now present two procedures to generate in alphabetrc
order all the permutations in G,. The first procedure constructs
the subsets of marks that can be placed in each location an&
uses standard backtracking to update these subsets an&
generate the permutatlons

Assume p, . .. p; is a subsequence satrsfymg both of oun
conditions and let R be the set of remaining marks (the set>
REMSET in the procedure below). R = Z,/{p,, P5, - . . , Pi}o
where / stands for the set difference operator. Constructing the
set of all marks which could occupy location i is based on théﬁ
fact that condition (2) is satisfied if and only if m; = maxrmungg
(P1sP2...,p) > i.Ifm; =i+ 1, then there exists a mark?®
xeR,x < i,and p;y, must not be allowed to take on the valug
of x, except for the case wheni = n — 1.If m; > i + 1 then th&
choice of p;,, is not constrained by (2) since for any p,+b
chosen from R, m;,;, > m; > i + 1 and this implies the.
presence of a mark larger than i + 1 in the subsequence?’
Finally to exclude the possibility of violating condition (1), w&
simply consider R/{p; + 1} when we derive the set of markg
that can occupy the i + 1’st location. N

/3[o1e

Table 1 Sample values for s, ¢, and g

S120=153=25,=655=24 5,6=1205,,=720
S23=1585,4=2585,5= 6 5,6= 24 5,,=120
534=3535= 6 5s536= 18 s53,= 72

S45 =13 s46= 26 54, = 78

Ss6= Tl 554 =142

56,7 = 461

Lh=01t3=11t,=318ts=13 t; = Tl t, ;=461
hha=11t,s=21=10 1= 58 t,; =390
Lha=11t5= 8 t35= 48 t;, =332

ths= T t 6= 40 t,, =284

lse= 33 t5, =244

ts 7 =211

82= 18 =1 g4=7 gs= 33 g =21l g, =1525

The Computer Journal Volume 23 Number 4

Assuming array P contains a permutation in G,, but not the
alphabetically last one, the procedure below generates its
immediate alphabetic successor. The sets LOCSET contain
those marks which are larger than P[i] and can replace it with-
out changing the fact that the first ; marks satisfy both of the
conditions.

(*type subset = setof 1 .. N; *)
(*var REMSET :subset; I, N,TEMP integer, *)
(* LOCSET:array[l .. N] of integer; *)
(* P,MAX:array[0 .. N] of integer; *)
(*To find the alphabetically first permutation *)
(*satisfying both conditions, initialise *)
(*LOCSET[1] :=[2,3, ..., N]; *)
(*REMSET :=[1,2,...,N]; *)
(*MAX[0] := 0; *)
(*for K :=2to Ndo Y[K] :=[1; *)
(*and call PERMBACK with I := 1. *)
(*For subsequent permutations set / := N and *)

(*REMSET := [P[N]] prior to calling PERMBACK. *)

procedure PERMBACK;
begin while / < N do
begin while LOCSET[I] = [] do
begin/ := 1 — 1;
REMSET := REMSET + [P[I]]
end;
TEMP := 1;
while not (TEMP in LOCSET[I])
do TEMP := succ(TEMP);
P[I] := TEMP;
LOCSET[I] := LOCSET[I] — [TEMP];
REMSET := REMSET — [TEMP];
if MAX[I — 1] > TEMP
then MAX[I] := MAX[I — 1]
else MAX[I] := TEMP;
LOCSET[I + 1] := REMSET — [succ(TEMP)];
if(I <> N-—1and MAX[I]=1+1)
then begin TEMP := 1;
while not (TEMP in REMSET)
do TEMP := succ(TEMP);
LOCSET([I + 1] := LOCSET[I + 1] —
[TEMP]
end;
I:=1+1
end
end

A somewhat different algorithm which doesn’t use explicit
backtracking can be based on Dijkstra’s (1976) solution to
finding the next permutation. This would also eliminate the
need for the extra memory required for the locational and
remainder subsets in the previous algorithm.

Given p,p, . . . p,, Dijkstra uses the following four steps to
transform it into its immediate alphabetic successor.

Determine i: find the maximum value i less than n, such that
Pi < Di+1-

Determine j: find the value of jin therange i + 1 < j < n such
that p; is the smallest value satisfying p; > p;.

Swap (i,j): exchange p; with p;.
Sort the tail; reverse the order of elements from p;, to p,.

Clearly the resulting permutation will not in general satisfy our
requirements and therefore, a number of checks and further
exchanges need to be performed. Assuming the original
permutation belonged to G, the subsequence p;p, . . . p;—;
would still satisfy our requirements following the four steps of
Dijkstra’s algorithm. If the exchange of p; with p; results in
pi; = pi—1 + 1, then clearly, there can not be any permutation

The Computer Journal Volume 23 Number 4

in G, starting with p,p, . . . p;. The algorithm loops back and
determines new i and new j and swaps the corresponding
marks. This process is repeated until p; # p;_, + 1, which can
always be achieved if we start with a permutation different to
the alphabetically last one and let p, = 0. Following the
execution of this loop, p; will not contradict (2) since the new p;
is larger in value than the old one.

After sorting the tail in increasing order, we must check that
each of the new tail marks conforms with the two conditions.
Assume that the check has been satisfactorily performed up to
p;- The addition of p;,, can not violate (1) and (2) simul-
taneously, since this would imply that p, . . . p; contradicted
(2).If p;y, = p; + 1 or if the sum of the first i + 1 marks is
equal to the sum of the integers from 1 to i + 1, then swap
Pi+1 With p,.,. If this does not lead to an acceptable subse-
quence, it must result in having (1) compromised. In the latter
case we execute one more swap and exchange the new p,, ,
with p;,; when i < n — 3. This must lead to an acceptable
subsequence of i + 1 marks since p;, ; was larger than its two
immediate predecessors. If i > n — 3 and the last swap could
not be performed then we begin again and search for new i an
new j.

(*var I, J, K, N, SUM, TEMP:integer;

(* P, VSUM:array[0 . . N] of integer;

(*Initialise P[0] := O;

(*for K := 1to Ndo VSUM[K] := K*K + 1)/2;

(*For the alphabetically first permutation satisfying

(*both conditions, set P[1 .. N] :=[I,N,N —1,...,2].
(*For subsequent permutations, P[1 .. N] will contain
(*the previous permutation. In either case

(*call DIJKSTRA_MOD followed by PERM DIJK.

procedure SWAP(L, M :integer); ‘
begin TEMP := P[L]; P[L] := P[M]; P[M] := TEMP
end;

*

= apeo|und

S

*

* *

procedure DIJKSTRA_MOD;
begin repeat
begin / := N;repeat] := 1 — 1
until P[] < P[I + 1];
J:=N+ l;repeatJ =J — 1
until P[J] > P[I];
SWAP(,J)
end
until P[I] <> P[I — 1] + 1;
K:=1+1;J:=N;
while K < J do begin SWAP(J, K);
K=K+ 1;J:=J-1

202 1udy 61 U0 }sanb Aq €92/ €/47€/7/€2/d101Ke/|ulod/woo dn

end;
SUM = 0;
for K:=1tol — 1do SUM := SUM + P[K]
end;
procedure PERM DIJK;

begin while / < N — 1 do
begin SUM := SUM + P[I];1:=1+1;
if(P[I]=PI—-11+1)
or (SUM + P[I] = VSUMII]) then
begin SWAP(I, I + 1);
ifP[I]=P[I — 1] + 1 then
if] < N — 1then SWAP(I, I + 2)
else DIJKSTRA_MOD
end
end
if PIN] = P[N — 1] + 1 then SWAP(N — 1, N)
end
The above algorithm and the preceding outline of its correctness
are considerably more complicated than our backtracking

345

based solution; however, empirical results indicate that it is
more efficient.

Appendix Cardinality of G,

Lemma 1
(i) sy,p =@ — D!

(i) s;, =(n — i)s; p_yfori<n—2
n—-2

(i) Sp-y,p = (0 — D! = F 554
i=1

Proof:

(i) By definition S, , consists of all the permutations having
mark 1 in their leftmost position. This leaves n — 1
locations that can be occupied by any one of the remain-
ingn — 1 marks, and there are (n — 1)! distinct ways this
can be accomplished.

(i) Consider an element in S; ,_,. In it are n — i positions
into which mark » can be placed which would leave the
subsequence 7; ¢ P; intact, and produce distinct per-
mutations in S; ,. Thus s; , > (n — i)s; ,_;. To prove
equality let n; ¢ P, Mark n can not occupy the first i
locations. Thus forsome k,i <k <n,m =p;...p;...
Di—1MPx+1 - - - Pn- By removing n and shifting all the marks
on its right one location to the left we obtain a permuta-
tion in S; ,_;. This implies that by our previous con-
struct # is obtained from S; ,_,. Thus equality.

(i) Let #r = p, . . . py—y € P,_y and © ¢ S; ,_, for any
i < n — 2. Then by definition p; . . . p,—n € Sp—y
Conversely, = = p, ... p, & S,-,,, implies that p, . . .
Pn-18P,_yandm; 4 P,_;and ;e P;for anyi<n— 2.
Thusp, =nand n,_, ¢ S;,-, forany i < n — 2. This
one-to-one onto correspondence completes the proof.

Lemma 2

n-2
@) ty,p=@~-=1! _.glsj,n—l

i-1
—th,n—l’
j=1
for2 <i<n-1.

i) trn = (1 = 1) =%)0y
i=1

Proof

For 1 < i < n — 1 define the mapping f;:T; , - P,—, by the
following construction: given 7 ¢ T; , shift all marks to the right
of i + 1 one place to the left erasing mark i + 1 in the process,
and then replace all marks k > i + 1 by k — 1. The proof now
consists of showing that f; is a one-to-one mapping of T,, on

n-2
to P,_; — U S;,_y, and similarly that f; is a one-to-one
i=1 n—-2 i—-1
mapping of T;, onto P,_; — U S;,_y — v T;, , for
1 j=1

2 < i < n — 1. The rest is straightforward.

In the theorem below, to simplify the notation G, is taken to
be the empty set, and consequently g, = 0. For the case n = 2,
g, = 1 since the permutation 21 satisfies both conditions.

Theorem n—1

go=(n—1)(n - 1)!—Zg,

i=2

References

o fit k-
or (44

1)] foralln > 2.

Proof
From Lemma 2,

n-—2 i
tiw=(n— 1! _'lej,n—l _'thj,n-—l t+ tin-1
j= j=

=tivg,n T lin-1
Repeated application of this recursion formula yields

n-1-i
n—1-—1i
tim = k R ——
k=0
which can also be written as

Since f,_y g p-x = 8n—1-x from (3) and Lemma 2. Fromy
Lemma 1 we have that

Syp=@-—1)1,
andforl <i<n-—1,

Sin=M =8y =...= (n — i)!si.Hl

=@ -)G - 1) —;é::s,,i] = (n — D![ty,u]

i—1

—(n— 1) Z (’; 1>g,._,‘.

k=0
Substituting all this into (3) we get

-1 i-1

g"=n!—(n—1)!—'2[(n‘i)!z<i;1)gi-*]

i=2 k=20

S e

17/SZ/8101e/|ulwoo/wo dnoolwepeoe//:sdiy WOy papEojuM

For the last term above, lettingn — 1 — k =jandi + 1 =@
we can combine like terms of g; and transform the double sum;

i

into g
-1 i+ 1 -1 [
< n—1 _n ‘n—l ;c})

8§ L \n—j—1)" LB \n—j @
j=2 1=2 ji=2 8
n- 1 . . o
_§g‘(1+(n—1)—1> 3

= i o 2

=1 g z

The other double sum can also be transformed similarly by,
considering all possible pairs of i and k such thati — k = ji
constant. Combining like terms together we get

n-1 n—-j-1

Z&-Z(n—(jﬂ))!(f“l-l)

j=2 I=0
Putting all the pieces together and renaming j as i, and / as k
completes the proof.

AA

DuKSTRA, E. W. (1976). A discipline of programming, Prentice Hall, Englewood Cliffs, N.J.)
Fourkes, H. O. (1976). Enumeration of permutations with prescribed up-down and inversion sequences, Discrete Math., Vol. 15, pp.

235-252.
KEANE, M. (1975).

Interval exchange transformations, Math. Z., 141, pp. 25-31.

KNuTH, D. E. and SZWARCFITER, J. I. (1974). A structured program to generate all topological sorting arrangements, Inf. Proc. Letters,

Vol. 2, pp. 153-157.

MacCALLUM, L. R. (1977). Letter to the Editor: Surveyor’s Forum, Comput. Surv., Vol. 9 No. 4, pp. 316-317.

RIORDAN, J. (1958).

346

An introduction to combinatorial analysis, John Wiley, New York.

The Computer Journal Volume 23 Number 4

