each legal position for the final correct algorithm. For com-
parison, the corresponding figures for the near-correct
algorithm produced after six iterations to the automatic
refinement process (excluding the 728 positions from which
White fails to win) are given in parentheses. This algorithm also
requires 60 ply to win in the worst case. In both cases, 679 of
positions are played optimally, with no move increasing the
depth by more than 13 ply.

From the previous discussion, it is clear that the method of

References
BeaL, D. F. (1977).
ment of Computer Science and Statistics.

win tree examination can enable a fully correct algorithm to be
obtained by refinement within the overall framework of an
original algorithm, as well as providing a means of testing the
correctness of an algorithm without any knowledge of the total
number of theoretical draws, losses or even legal moves.

By enabling the incorrect positions for a given algorithm to be
examined and thus suggest possible modifications, this method
would therefore seem to make the development of correct as
opposed to optimal algorithms a feasible proposition.

Discriminating wins from draws in King and Pawn versus King chess endgames, Queen Mary College, London, Depart-

BRAMER, M. A. (1975). Representation of knowledge for chess endgames, Mathematics Faculty Technical Report, The Open University.

BrRAMER, M. A. (1977).
University.

BRAMER, M. A. (1978).
University.

BRAMER, M. A. (1980).

Representation of knowledge for chess endgames: towards a self-improving system, Ph.D thesis, The Open
Computer-generated databases for the endgame in chess, Mathematics Faculty Technical Report, The Open

An optimal algorithm for King and Pawn against King using pattern knowledge, in Clarke, M. R. B. (ed.),

Advances in Computer Chess 2, Edinburgh University Press, pp. 82-96.

BRAMER, M. A. and CLARKE, M. R, B. (1979).
Machine Studies, Vol. 11 No. 5, Sept. 1979.

BRATKO, 1. (1978).
230.

BRrATKO, I., KoPEC, D. and MicHig, D. (1978).
2, pp. 149-153.

Pattern-based representation of chess endgame knowledge, The Computer Journal, Vol. 21 No.2

A model for the representation of pattern-knowledge for the endgame in chess, Int. J. Man-U

é
Proving correctness of strategies in the AL1 assertional language, Information Processing Letters, Vol. 7 No. 5, pp. 2232

peo!

[)

o4 p

HuUBERMAN, B. J. (1968). A program to play chess endgames, Ph.D. dissertation, Technical Report no. CS 106, Stanford University, Computer3

Science Department.
Tan, S. T. (1972).
Intelligence, Memorandum MIP-R-98.

ZUIDEMA, C. (1974). Chess, how to program the exceptions? Afdeling Informatica, IW21/74, Math. Centrum, Amsterdam.

Representation of knowledge for very simple pawn endings in chess, University of Edinburgh, School of ArtlﬁClalw

Book reviews

ulwoo/woo dno-olwapese)/:

Introductory ALGOL-68 Praogramming, by D. F. Brailsford and A. N.
Walker, 1979; 281 pages. (John Wiley, £12-00, £5-95 paper)

chart of the language subset that the book describes (no syntax rules>:
are stated formally in the text). There is also a very useful appendxxm
on program development and error detection.

The book is written in a highly conversational style, with all the®
missionary zeal of self confessed disciples. Whether you like thez
jokes and asides or not, the book manages to convey better than any
other I have read the underlying ethics of ALGOL programming;§
what is ‘right’ and what is not. Because this kind of background is sob
important this reason alone should commend the book to people form
use with introductory programming courses or indeed to any w1shmgm
to absorb the ALGOL-68 style of programming. g

ALAN BLANNIN (Readmg)‘(%

Z/eP

Yet another textbook derived from a lecture course given to an
undergraduate audience, this time at the University of Nottingham.
The book is aimed at students learning their first programming
language, and deals principally with the basic aspects of ALGOL-68
as may be applied to simple undergraduate problem solving activi-
ties. The authors argue that the more advanced features of the
language are adequately dealt with elsewhere, and that even elemen-
tary ALGOL-68 provides a more efficient and attractive alternative
to other languages now taught at this level. After a most welcoming

foreword and introduction, Chapter 1 launches straight into the most a
crucial aspects of ALGOL-68 thinking, the concepts of objects and Assemblers, Compilers and Program Translation by P. Calingaert,g
(reference) modes. This is immediately followed by a chapter on 1979; 270 pages. (Pitman, £13-50) 23

program structure, covering blocks, scopes, ranges, expressions, etc.
Taken together they form the most formidable part of the book to
the naive reader (especially one with no ALGOL-60 or Pascal
experience), with no running examples or problem solving goal in

>
Designed as a textbook for a one-semester course at the University .
of North Carolina, this book is about the mechanics of assembly,
macroprocessing, compilation, modules and their activations,Y

mind. However both chapters proceed at a slow pace, carefully
explaining and expanding upon the issues.

It is only with Chapter 3 that we see the reason for it all; some
elementary programs. Chapter 4 brings us arrays and structures
followed by procedures in Chapter 5. Here we see the main weakness
of the book; procedures are introduced too late, and their crucial
importance is not emphasised sufficiently. The best that can be
managed is that they are ‘perhaps the cornerstone of good ALGOL
programming’. Whether their value is obvious to the naive program-
mer or not, I feel it does no harm to labour the point more than the
authors have done here, particularly with a language of the pedigree
of ALGOL-68. Chapter 6 follows with transput, and then there are
four case studies, all with well stated problems and coded solutions
in ALGOL-68. The final chapter deals briefly with advanced
features, with particular emphasis on the dialectic differences. The
appendices contain solutions to the excellent exercises, descriptions
of the environments of revised ALGOL-68 and -68R, and a syntax

352

linkers, loaders, etc. It assumes the reader understands how to use
program translators and wishes to study how they work.

There are eight chapters with plenty of examples and good reading
lists. There are chapters on assembly, macroprocessing and program
modules which are self-contained, but later chapters are not so well
organised, although their content is satisfactory. Lexical analysis,
syntax analysis (by recursive descent and by operator precedence
methods) and hash tables are well explained, mainly by example.
Semantic processing is treated, also mainly by example, but is not so
clearly explained. Optimisation and code generation get slight
treatment, as do linkers and loaders.

There is no theory in this book and little abstract discussion: the
treatment is by explanation and example, which succeeds best in the
early chapters, where the simpler translators are discussed. The style
of writing aims at precision with some success but at the expense of
succinctness.

A. E. GLENNIE (Reading)

The Computer Journal Volume 23 Number 4





