Discussion and correspondence
Measuring students’ attitudes towards structured

walk-throughs

R. S. Lemos

Department of Business Information Systems, California State University, Los Angeles,

California 90032, USA

The effect of classroom team debugging activities (structured walk-throughs) on student’s attitudes
towards this process was empirically assessed with a sample of 87 undergraduate Business Admini-
stration majors enrolled in an introductory COBOL programming course. For each assigned
program, students read and critiqued team members’ program listings.

Attitudinal outcomes were measured by a ‘perceived team effectiveness survey’ constructed for the
experiment. This survey consisted of positive and negative statements about programming which
were measured on a Likert-type scale. Analysis of variance was used to check for the consistency
of responses between classes and t-tests were used to test for differences from ‘neutral’ responses.
The significantly positive responses on 81.7 % of the questionnaire items were found to be consistent
between classes. These findings provide empirical support to the assertion that students perceive

structured walk-throughs to be an effective pedagogical approach.

(Received January 1980)

With software costs continuing to increase, more attention is
being focused upon formalised software design and develop-
ment practices. One group of intuitively promising practices
are the so-called ‘group debugging’ techniques. These tech-
niques are based on the assumption that reviewing someone

else’s work provides the following benefits (Weinberg, 1971,

pp. 54-60):

1. Error detection is improved since it is easier to detect errors
(in both grammar and logic) in someone else’s work than
one’s own. Weinberg describes this phenomenon as
‘cognitive dissonance’.

2. Humans are not consistent with respect to the quality of
their day-to-day work output. We all have ‘bad days’.
However, if our work is reviewed, there is a good chance
that most errors will be detected by group members. This
decreases the variability of work output.

3. Estimates of the progress that has been made will be more
realistic since more than one person will be familiar with the
work.

4. The maintainability of the software will be improved since
more than one person must be able to understand how it
works.

5. The most important alleged benefit is that reviewing some-
one else’s work raises the proficiency level of the reviewer.

The last benefit is expected to be realised in one of two ways.
First, if an ‘expert’ person is reviewing poor work, their
debugging skills are going to be challenged since they must
suggest the most appropriate modifications. This is difficult to
do since the reviewer has to decide from several alternatives
(including the recommendation to start again). Second, if an
‘inexpert’ person is reviewing quality work, their skills will be
increased by being given the opportunity to study and be
influenced by the work of their more proficient peers.
However, the formality of the group review process can vary
quite a bit. At one end of the ‘formality’ continuum are the
design or code inspections. As described by Fagan (1976), these
inspections include a designated moderator with specialised
training, definite participant roles, checklists of potential
errors, process follow-up and detailed error feedback to the
participants. The other end of the continuum is represented by
informal walk-throughs that vary in terms of regularity and
throughness. Yourdon (1975) and Hughes (1977) use the term
‘structured walk-throughs’ to describe a review procedure that

The Computer Journal Volume 23 Number 4

apeojumoq

is less formalised than inspections, but more formalised than
walk-throughs. While similar to inspections in many respectg
structured walk-throughs involve participant motivated review
sessions and the team roles are less rigidly defined. One of tlﬁ
most well known advocates of the peer review process is
Weinberg (1971) who supports the incorporation of the%
activities in a classroom environment that emphasises ‘egoleg
programming’. Egoless programmmg encourages an_open,
shared programmmg approach that is essential for an effectx@
group review process.]

While incorporating group review procedures like structure3:i
walk-throughs into our instructional programs can be int
tively appealing, the following questions must be objectiv
answered :

0

&05

@one/

1. Will instructor motivated structured walk-throughs increa:
the programming proficiency of students ?

2. What will be the effect of structured walk-throughs
students’ attitudes toward programming?

ve/LLBvIET)

3. How will the implementation of group review procedures it n
the classroom affect students’ ratings of the teachirg
effectiveness of the instructor? g

4. How do students feel about the group review process itsel‘g?

This paper deals specifically with the last question and is bas&l
upon a research study that empirically addressed all of the above
questions. The study involved the teachmg of introductor
COBOL to undergraduate business majors. Results showed
that students participating in structured walk-throughs scor&’l
significantly higher on a programming examination (Lemos
1979b). These students also exhibited more positive attitudes
towards programming (Lemos, 1978). However, these students
rated the instructor lower in selected indices of teaching effec-
tiveness than did students who did not participate in team
activities (Lemos, 1979a).

While these results are useful in evaluating the effectiveness of
structured walk-throughs, it is also important to gauge student
attitudes towards working in teams. Jones (1974) has discussed
and emphasised the importance of developing team skills for
entry level people. In addition, support for this position is
definitely the current trend. Therefore, it is important that
students perceive team activities in a positive manner. They
will be experiencing such activities in their professional careers
and will be more effective with positive attitudes.

This paper describes the effect that structured walk-throughs

3n

had on students’ attitudes towards the team review process, as
measured by a post-experiment attitudinal survey. Specifically,
student responses were analysed for significant differences from
an ‘undecided’ response to the items on the questionnaire. Also,
the three classes were checked for significant differences
between sections on their responses to the questionnaire items.

Subjects

The subjects consisted of 87 undergraduate business majors
who completed one of three sections of a required intro-
ductory COBOL course at California State University,
Dominguez Hills. Table 1 presents a general description of the
sections. The three sections, taught by two instructors, had
been randomly assigned to the treatment group that was to
participate in the structured walk-throughs. Four other
sections, totalling 128 students and taught by three instructors,
did not participate in the team activities. All instructors had
been teaching for about two years, had taught the course
before, and had never used a team approach in their classes.

Procedure

Five programming problems were assigned during the quarter.
The last program involved control break processing. For each
of these assignments, students were required to bring to class
(on designated days) a listing (not a run) of the current assign-

Table 1 The population for the study

Section Quarter Class size
A Winter 34
A Spring 27
B Winter 26
87

*Instructor A is the researcher.

ment. The students who complied with these instructions were
randomly assigned to three-person teams. If participants did
not number a multiple of three, then four-person teams were
formed and worked in a ‘round-robin’ fashion. Each member of
the team than proceeded to critique the listings of the other
two members of the team formally. These written evaluations
focused upon identifying all grammar and logic errors, and
recommending the modifications necessary to correct the
errors. The instructor’s role was that of a consultant who
could be called upon to answer any questions raised by the
reviewers. At the end of the session, each participant used the
two independent critiques of his/her listing to make any
needed corrections. The students then ran their programs and
reported back to the teams at the next session to discuss their
results. Successive run attempts were the responsibility of the
individual student.

The mean number of listings contributed by students to the
team activities was 3:28 or 65-6%.

The perceived team effectiveness survey
This questionnaire was developed by the researcher to obtains
information on the attitudes of the students towards the team>
activities. The thirty items on this questionnaire surveyed§_
attitudes towards: the teams in general; their fellow teamQ
members; the degree of team participation; the contribution of
team activities towards learning; and the usefulness of the3
critiques. The questionnaire used a Likert-type scale to scoreg
the twelve positive and eight negative statements in theZ
following way:

Positive Comment Negative
statements statements
5 points Strongly Agree (SA) 1 point

4 points Agree (g) 2 points

3 points Undecided (Und) 3 points

2 points Disagree (Dis) 4 points

1 point Strongly Disagree (SD) 5 points

Table 2 Descriptive and inferential statistics for experimental group responses on the ‘attitudes toward team activities’

questionnaire.

Item no. The experimental group

Test for differences
between the sections

Class 1 (n = 34)

Class 4 (n = 27)

Class 5 (n = 26)

20z Iudy 61 uo 3senb Aq zve/¥e/L.L8/v/EZ/o1P1E/|ulWOd/Wwo dno-olwapede

Mean Std dev Range Mean Std dev Range Mean Std dev Range F P
1 3-62* 0-99 2-5 3-74* 0-98 2-5 3-54* 0-99 1-5 0-28 075
2 3-85* 096 2-5 3-74* 0.71 2-5 3-62* 0-94 2-5 0-53 0-59
3 271 1-14 1-5 2-85 0-99 1-4 2-73 0-87 1-4 017 0-85
4 3-44* 1-02 1-5 3-44* 097 1-5 3-54* 099 2-5 0-08 092
5 3-44* 0-89 1-5 3-30 1-03 1-5 3-08 0-94 1-4 1-08 0-34
6 3-82* 0-87 2-5 3-70* 0-82 2-5 3-54* 1-24 1-5 0-62 0-54
7 3-68* 1-00 1-5 3-85* 095 2-5 3:65* 0-94 1-5 0-34 071
8 3-53* 075 2-5 3-63* 0-74 2-5 3-39*% 0-75 2-5 072 0-49
9 3-62* 095 1-5 3-89* 0-89 1-5 3-85* 093 1-5 0-77 0-47
10 4-06* 0-78 2-5 3-85* 0-99 1-5 4-12* 0-59 3-5 0-81 0-45
11 3-59* 1-02 2-5 3-67* 1-07 1-5 3-81* 1-06 2-5 0-33 072
12 3:35 1-10 1-5 3:56* 1-12 1-5 3-73* 092 2-5 1-47 0-25
13 3-65* 0-69 2-5 3-30 0-99 1-5 3-54* 0-76 2-5 1-42 0-25
14 3-44* 1-05 1-5 3-67* 0-56 2-4 3-77* 1-03 1-5 1-01 0-37
15 3-15*% 0-86 1-5 3-74* 071 2-5 3-58%* 0-86 2-5 4-38 0-016**
16 3-82% 0-67 2-5 4-11* 0-58 3-5 4-12* 071 2-5 201 014
17 3-62* 099 1-5 3-74* 098 1-5 4-12* 0-82 2-5 217 0-12
18 294 0-81 2-5 322 0-85 2-5 315 093 1-5 0-90 0-41
19 3-59* 1-08 1-5 3-63* 0-88 2-5 3-81* 0-90 2-5 041 0-67
20 3-47* 1-11 1-5 3-74* 0-98 1-5 3-81* 0-94 1-5 0-94 0-40

*Item questionnaire responses significantly different (p < 0-05) from a response of ‘undecided’ or neutral
**Jtem responses of the three classes are significantly different (p < 0-05) from each other.

378

The Computer Journal Volume 23 Number 4

Thus, index scores greater than 3-00 indicate favourable
attitudes while index scores less than 3-00 indicate unfavour-
able attitudes. The questionnaire was administered on the last
day of class and is shown in Appendix 1.

Results

The questionnaire responses were analysed with an extension
of the Static-Group Comparison Design described by Campbell
and Stanley (1963, p. 183). This extension was used for
comparisons and single sample inferences of the three classes
participating "in the structured walk-throughs. It .can be
diagrammed as follows:

X, 0,
- } 2 — _02_ -
- } 3 - _03_ -
where
X; ::rlza;;ninent (structured walk-through) administered to

O; observation of post-test variable (questionnaire response)
of class i;

: experimental units (students) are not randomly assigned to
groups (however, classrooms are randomly assigned to
treatments).

Table 2 presents the descriptive and inferential statistics for the
three classes on each questionnaire item. Analysis of variance
(unequal sample sizes) was used to test for differences between
the sections on the individual questionnaire items. Three one-
sample t-tests were used to test if student responses to the
questionnaire differed significantly from an ‘undecided’
response. An assumption was made that the population of
students had a pretreatment mean response of ‘3’ (undecided)
to the questionnaire items. This seems reasonable since
students entering the class did not have any previous experience
with programming teams.

The results in Table 2 show no significant negative responses
in any of the classes. Only 18-:3% of the responses are not
significantly different for a ‘neutral’ response. The following
two items yielded nonsignificant results from all three classes:

3, Poor team members reduced the effectiveness of the teams.

18. This class will do better on the final examination than if the
team approach had not been used.

The test for differences between the sections is concerned with
Appendix1 Perceived team effectiveness survey

Working in teams was fun.
Poor team members reduced the effectiveness of the teams.
. Students did not take the team approach seriously.

. The team approach is a good way to learn programming.
. It would have been better not to use a team approach.

VOAIAULNBAWN =

. The team approach should not be used next quarter.

10. Students were upset when others found errors in their programs.

11. The critiques were useful in getting programs to run.

Working in teams gave students a better understanding of COBOL.

. Students in the class made an honest effort to participate in the teams.

. Students in the teams didn’t really do what the instructor had intended.

the consistency of responses between the three classes. Only
item 15 (‘Students in this class felt the team approach was
good’) results in a significant difference in responses among the
three classes (3-15, 3-74, and 3-58).

Discussion
This study presents empirical evidence that the team activities
described in this paper elicit significant positive attitudes
towards the structured walk-throughs, with no consequent
significant negative attitudes. Based on the significant positive
responses on 81-7% of the questionnaire items, it seems safe to
state that the students were in favour of team activities. This is
an important finding for two reasons. First, by polling all
students, inferences about the attitudinal effects of the treat-
ment have an empirical basis. All too often we read and hear
about new pedagogical approaches without real objective
evidence as to the effectiveness of these approaches. For
example, many studies conclude with the assertion ‘students
seemed to enjoy this approach’. This type of data is of little use
to instructors contemplating alternative pedagogical approach-5
es. The instructor needs to have a feel for how a particulars
approach will be perceived by all students (good, fair, anC%
poor). Q

The second reason the findings of this study are interesting 1ﬁ
that the study suggested that the positive results are consxsteng
among classes. Only item 15 (Students in this class felt thes
team approach was good) results in a significant difference 11‘8
responses among the three classes. As shown in Table 2, this iss
probably the result of the statistically ‘neutral’ response of
Class 1 versus the statistically ‘positive’ responses of Classes @
and 5.

The data presented in this paper have coincided with my posto
experiment experiences in teaching programming languages3
Student verbal and written evaluations of the perceived effec<
tiveness of the team activities have been overwhelmmglg
positive.

The evidence presented in this study strongly supports thg
incorporation of structured walk-throughs into the pro2
gramming language class. However, more empirical research i3
needed in this area to determine if these results can be replicated:
independent of programming language taught, studenﬁ
population characteristics, or formality of the review processys
The undertaking and publishing of such studies will serve tg;
increase our knowledge of effective pedagogical approaches t&
computer programming.

)
: o]
26z Iudy 61 U0 Jsenb Aq

V

..............................

..............................

........................

..............................

..............................

..............................

12. Students would have learned more if the time taken in class for team work

had been used for lecturing.

13. Students in this class followed the instructor’s directions in preparing for

the team activities.

14. Critiquing someone elses program makes it easier to do your own programs.

15. Students in this class felt the team approach was good.

16. A person can get good ideas looking at someone elses program.

17. Most students simply copied each others programs.

The Computer Journal Volume 23 Number 4

..............................

Appendix continued
18. This class will do better on the final exam than if the team approach had

not been used.
19. Reading a poor students’ program was still beneficial since a lot of errors

could be found.
20. Students appreciated the critiques of their programs.

..............................

References

CaMpBELL, D. T. and STANLEY, J. C. (1963). Experimental and quasi-experimental designs for research on teaching, Handbook of Research
and Teaching, N. L. Gage (ed.), Rand McNally and Co.

FaGaN, M. E. (1976). Design and code inspections to reduce errors in program development, IBM Systems Journal, Vol. 15, pp. 182-211.

HuaHEs, J. K. and MicHTON, J. I. (1977). A Structured Approach to Programming, Prentice-Hall, Englewood Cliffs, NJ, pp. 225-236.

JonEs, L. (1974). Programming training appraisal a unique specialty, Computerworld, Vol. 8 No. 19.

LeMos, R. S. (1978). Students’ attitudes towards programming: the effects of structured walk-throughs, Computers and Education, Vol. 2
No. 14, pp. 301-306.

Lemos, R. S. (1979a). Structured walk-thoughs and student ratings of faculty: effectiveness versus expediency, Journal of Educational Data
Processing, Vol. 16 No. 1, pp. 1-9.

Lemos, R. S. (1979b). An implementation of structured walk-throughs in teaching COBOL programming. CACM, Vol. 22 No. 6, pp.
335-340.

WEINBERG, G. M. (1971). The Psychology of Computer Programming, Van Nostrand Reinholt Co., NY.

YOURDON, Y. (1975). Technique of Program Structure and Design, Prentice-Hall, Englewood Cliffs, NJ, 74-77.

peojumog

To the Editor which are not shared by the others, e.g. date of graduation for a

9

The Computer Journal graduate. o
In addition to being a generalisation of those objects, individual iso

Sir also an aggregate, but it is an aggregate of primitives, such as nameg
Using data base abstractions for logical design date of birth, and job title. =

For a complete discussion of clusters, see the two articles by Smith®.

I read with interest Jay-Louise Weldon’s paper (The Computer
(CACM, Vol. 20 No. 6 and ACM TODS, Vol. 2 No. 2) referenced in3

Journal, Vol. 23, pp. 41-45) but was puzzled by the inclusion of the

spurious ‘cluster’ entity. In the first example to use it, ‘performer’ is my paper a
clearly a generalisation comprising two elements ‘musical performer’ %
and ‘non-musical performer’, each of which is itself a generalisation To the Editor g
of two primitive objects. The Computer Journal £

The second example of the ‘cluster’ occurs in the decomposition of 8
the category ‘individual’. ‘Individual is in fact an aggregate of the Sir 3
objects ‘citizen ship’ and ‘university status’ and not a generalisation The unconditional branch—a modest proposal 8
at all. The term ‘cluster’ may be a convenient way of regarding data Several years have now passed since Knuth’s convincing demon%

stration (1974) of a number of common problems in programming
which can best be solved by the controlled use of the goto statement.=:
In that period, no general solution has been produced, and all majoro
programming languages contain an explicit goto construct.
I do not wish to repeat here the arguments against the use of<
goto’s; the case was well-stated originally (1968) and formal analysis
of the semantics of the goto has only added weight to those argu-g
ments. I would simply propose two restrictions on goto, which7
could be implemented cheaply in any new language or new
of the aggregation and generalisation model. implementation. g
Yours faithfully, 1. Exactly one goto must be provided for each label in a program.q
S. N. JoHNSON 2. The goto must precede the label (i.e. only forward jumps are®

permitted).
The first restriction ensures that anyone reading a program can”.
rapidly assure himself that he has found all potential paths through ©
it, and eliminates needless fears about overlooked jumps, since forij_z>
each label there would be one and only one goto. The second
restriction ensures that, except for explicit loops, statement execution 3
flows steadily down the pages of source listing, with a further ™

structures which correspond to no records but it is also confusing
and certainly not required by the methodology. Indeed, as is shown
in the paper, the aggregation and generalisation model is inadequate
to deal with any but the simplest data base application, anchored as
it is to a two-valued logic system. If data base abstraction is to be of
general use in logical design then it must be accepted that complex
semantics can only be dealt with in higher-valued logics.

For example the problem of relationships changing through time
can be handled easily in three-valued logic but is insoluble in terms

€/vIEC/B1D

0}

25 Stafford Street
Aberdeen
Scotland
22 February 1980

Dr. Weldon replies:
In data base abstraction a ‘cluster’ is used to classify similar objects

according to some characteristic. It represents the inverse of the
generalisation process. For example, performers can be classified
into groups based on their type of talent (e.g. musical or non-
musical performers) or on the basis of some other characteristic
such as nationality (e.g. American performers, British performers,
Chinese performers, etc.).

In the example given in the paper, ‘individual’ is indeed a generalis-
ation of the lower level objects shown. ‘Citizenship’ and ‘university
status’ are simply two characteristics that can be used to classify
individuals. In either case individual is still a generalisation of the
classes derived. For example, if we disregard university status the
objects applicant, prospective student, student, and graduate can be
generalised to the object individual. As such, individual would
include attributes that are shared by all four groups, e.g. name,
address, date of birth, etc. The four lower level objects would
differ based on university status and each could include attributes

increase in clarity and security. (I ignore the possibility of branching
out of called procedures, as this is just an example of the wider
dangers inherent in the use of global identifiers from within pro-
cedures, and is beyond the scope of this letter).

These restrictions could easily be incorporated as warnings in
implementations of current languages, to provide support for
improved programming style without affecting the portability of
existing programs.

Yours faithfully,

MARTYN THOMA

South West Universities Computer Network
South West Universities Regional Computer Centre
University of Bath
Claverton Down
Bath BA2 7AY
21 May 1980

The Computer Journal Volume 23 Number 4

References

KnNuTtH, D. E. (1974). Structured Programming with goto state-
ments, Computing Surveys, Vol. 6 No. 4.

DuksTrA, E. W. (1968). Goto Statement considered harmful,
CACM, Vol. 3, pp. 147-148, 538, 541.

To the Editor
The Computer Journal

Sir
Using data base abstractions for logical design

Jay-Louise-Weldon (1980) reports on an application of the relational
methods of Smith and Smith (1977a, 1977b) and draws attention to
some secondary shortcomings of those methods. This department of
Honeywell is concerned with the development of network models
using the role extension. We endorse the concept of generalisation
and aggregation although we tend to work from the general to the
specific, using the word ‘includes’ when we are specialising an
abstraction.

We believe that the difficulties described are precisely because the
role aspect was not recognised, and thus the form of the defined
entity types was uniform and permanent. Table 1 is a fragmentary
schema definition defining just those things which caused some
difficulty, and Fig. 1 is the corresponding role diagram. The follow-
ing brief remarks are meant to clarify those illustrations:

1. Anentity is a tuple of attributes. It has at least one (identity) role

of the same name.

2. A network is a graph composed of entities as nodes and owner-
membership projections as edges. The explicit network relieves
the necessity for clusters and reference by keys.

3. Roles are the partitioning of the nodes (entity tuples) into dis-
joint tuples, each having certain owner and member capabilities.
Role types may be shared by different entities and represent the
same capabilities and tuple type wherever they occur. They may
be essential or optional.

4. Projections (sets) have a syntactic name according to their
terminal roles, and they may also have a semantic name. Thus:
‘role — role{esemantic}’.

5. ‘dependence’ is a precedence relation between roles.

——® projection
~——s=g» dependency

attribute plane

C> o

disjunctive dependency

entity

individual

aided
student

research
assistant

financial
scholarship -aid K‘
-award

\ financial
-aid

-decision

loan

Fig. 1 Part of University schema

The Computer Journal Volume 23 Number 4

Table 1
schema University
domain citizenship enumeration 7
value US Foreign
domain status enumeration 10
value full-time part-time
domain types enumeration 11
value loan scholarship assistant
domain number decimal 8
domain names char 32
entity individual
natural citizen citizenship
role university-status
essential individual
primary-natural id :number
role applicant
non-essential individual
dependent university-status
precludes prospective-student student graduate
role prospective-student
non-essential individual
dependent university-status
derive id university-status.id
precludes applicant student graduate
natural status:status
role student
non_essential individual
dependent university-status
derive id university-status.id
precludes applicant prospective student graduate
role graduate
non-essential individual
dependent university-status
precludes applicant prospective-student student
role aided student
non-essential individual
dependent prospective-student + student
primary-derive id prospective-student.id student.id
entity financial-aid-award
primary-natural type:types
entity loan includes financial-aid-award
entity research-assistant includes financial-aid-award
entity scholarship includes financial-aid-award
entity financial-aid-decision
member financial-aid-award — financial-aid-decision
match type financial-aid-award.type
member aided-student — financial-aid-decision
match id aided-student.id
end University

‘precludes’ is an exclusion relation between roles.

‘derive’ is a virtual attribute arising from a dependency.
‘match’ is a key used to find an owner at instantiation time. 2z
‘primary-natural’ and ‘natural’ (non primary) are real attributes.
. Indenting of statements in the schema definition implies thit

some context is inherited from less indented statements. N
It can be seen exactly how financial-aid-awards are related to certain
kinds of individual, and what the prerequisites are.

Not all the difficulties are solved by this approach. There are still
various ways to model something, not just one way. We have no
auditing facility to record the past and we have no explicit role
transition directives. We do have state domains with constrained
transitions between allowable values, and we see now that there
may be a requirement for ‘state’ roles as well.

Yours faithfully

61 U0 1§0NB AQ ZvE . ¥E/L L€ /PIEZ/RIPNIE/UIWOD W00 dNO"DIWSpEoR)/:SA]Y WO} POPEOJUMOQ

Swoo

1

R. REEVES
Advanced Systems Engineering
Honeywell Information Systems Inc.
300 Concord Road
Billerica
Massachusetts 01821
USA
10 June 1980

381

References

WELDON, JAy-Louise. (1980). Using data base abstractions for
logical design, The Computer Journal, Vol. 23 No. 1, pp. 41-45.

SMITH, J. M. and SMiTH, D. C. P. (1977a). Database Abstractions:
Aggregation, CACM, Vol. 20 No. 6, pp. 405-413.

SMITH, J. M. and SMITH, D. C. P. (1977b). Database Abstractions:
Aggregation and Generalization, ACM Transactions on Database
Systems, Vol. 2 No. 2, pp. 105-133.

BacHMAN, C. W. (1980). The Role Data Model approach to data
structures, Proceedings International Conference on Data Bases,
Aberdeen, Herpen/BCS Workshop Series, pp. 1-18.

To the Editor
The Computer Journal

Sir,

With reference to the recent paper ‘An efficient predictor-corrector
algorithm’ by D. Westreich, published in The Computer Journal,
Vol. 23 no. 2, I would like to make the following remarks:

1. To correct misprints in the published algorithm, step 4 should

read ‘Let I = —I" and step 9 should read ‘Compute
Y1 = F(tiv1, Jie1).
d,
2. The use of the standard test equation ‘—1'; = —)y, with A real and

positive, to examine the behaviour of the algorithm shows that
(a) the computed values y2, y4, ys, . . . exhibit fourth order
convergence, but the values of y1, ys, ys . . . have only second
order convergence
the method is stable when used with a step size A, provided
0 < hA < 1-240. There is also an extremely small interval
2 < hX < 2-165 for which the method is stable as well.
Yours sincerely,

)

J. SNELL

Department of Computer Science
The City University
Northampton Square

London EC1V OHB

16 July 1980

To the Editor
The Computer Journal

Sir,

Procedure calling and structured architecture
The paper by Bishop and Barron (The Computer Journal, Vol. 23
No. 2) states that ICL’s 2900 system programming language, S3, is
faced with a procedure calling sequence as long as that given for a
particular Pascal implementation. This is not the case.

It is true that, like the Pascal implementation, S3 keeps a copy of
the display elements in the local data frame. However there are four
important differences:

1. Each display element is only a single word holding an address
rather than a full descriptor.

A separate static chain is not maintained since this would only
duplicate the chain already formed by the first element of each
display.

3. On procedure entry all the display elements are copied from the

_ display of the statically enclosing procedure. The display copy is

held between the last parameter and the first local data item. The
first element of the local display, the static chain pointer, is passed

2.

as a parameter in the precall sequence.

4. Unlike the Pascal implementation a local display copy of an S3
procedure contains elements not needed by this procedure.
However, elements for the nearest n levels are omitted if neither
this procedure nor its containted procedures require them.

The code sequences involved for S3 procedures are:
Previous entry (level m) Bytes
m < = 2: nocode
m>2: LXN (LNB + basen-1) 2
LSS/ repeated
LSD/ (XNB + basem-2) pas 4
LSQ necessary
ST TOS 2 [inter-
mediate
instruc-
tions are
combined
into
stack-and-
load
SLSS etc.]
5
Precall (level m calling level n) 3
PRCL 4 2 8
G.e. STLN TOS 8
ASF 4 as in paper) =
. . parameters (ending ST TOS) S
n= no code 0 =
m < n: STLN TOS 2 S
m >= n: SLSS (LNB + bases-1) 0 [replaces =
the ST g
TOS at thed
ST TOS 2 end of the 3.
parametersg
©
Call 8
RALN 5or6 2 3
CALL proc 4 g
- 3
Exit “:,\’
EXIT 2 S
@
N
Access (to item at level n) g
LXN (LNB + basen) 2 or 0 [may b@l
set up~
access via (XNB + item) +2 al- %
readyld

Note that this access method uses XNB in the intended mannep

(XNB = Extra Name Base—i.e. extra to LNB, the Local Namé
Base). e

Comparison of maintenance and access costs

Table 4 of the paper is reworked to include the 2900 S3 figures. T
2900 Pascal figures have been modified to take account of the PRC
instruction.

& uosen

20z [Ud&

Notes

*Extra 1 instruction and 2 bytes if there are no parameters and
m > = n. (level m calling level n).

tLess 2 bytes if XNB already set up.

First call Other calls Nonlocal access
Overhead
Instr Bytes Instr Bytes Instr Bytes
B6700 5 11 4 5 0 0
2900 Pascal 11+p+gqg 24 + 2p + 2q 7 14 1 4
2900S3p =0 4 10 4 10 — —
p=1 5 12 5 12 1 4}
p>1 7+§1 16+4§*1 5 12+ 1 !
1900 subr. 5+p 18 + 3p 5+p 18 + 3p P 3p
1900 inline 12 + p 36 + 3p 12 + p 36 + 3p P 3p
382 The Computer Journal Volume 23 Number 4

15 is rounded to the nearest integer.

§p = n — 1, for S3 decremented by the number of immediately
enclosing unaccessed levels (see above), i.e. the value of p for S3
may be smaller than that relevant to Pascal implementation.
g = number of levels accessed (< = p).

Nothing in the above strategy is particular to S3 and it could be used

for any block structured language including Pascal. Therefore we

conclude that the above data for S3 are a better comparison of 2900

with the other machines.

There is almost no difference between S3 and Pascal in the overhead
of access. Obviously B6700’s hardware display gives the expected

Erratum

We apologise to Dr Westreich that errors crept into his paper ‘An
efficient predictor—corrector algorithm’, published in the May 1980
issue of the Journal, at the typographical stage. We are therefore
reprinting the algorithm and complete references.

We take this opportunity also to publish Dr Westreich’s up to
date address. He is now at Depzrtment 3605, Israel Aircraft Indus-
tries, Ben-Gurion Airport, Israel.

The algorithm
Consider the system of first order differential equations

y = F(Y) (¢))
with initial value
Wto) = Yo
where y is an n vector to be determined and F(¢, y) is a contin-
uous n vector function of ¢ and y. To find the solution at ¢,
1. Choose a step size A.
2. Find the solution y, to the equation at ¢, = ¢, + h
(say by a Runge-Kutta algorithm).
3.8eti =11, =t +h y, = F(to, yo)
yy = F(t;,y))and I =1
4. Letl = —1
References
KEersHAW, D. (1974).

eds, Clarendon Press, Oxford, pp. 140-161.
WESTREICH, D. and CAHLON, B. (1979).

Volterra Equation of the Second Kind, in Numerical Solution of Integral Equations, L. M. Delves and J. Walsh,

Solution of Volterra Integral Equations and Differential Equation with Continuous or Dis-
continuous Terms, Math. Tech. Report, Ben-Gurion University, to appear.

advantage in access to outer level data.

However, the difference in the cost of procedure call between the

Pascal and S3 implementations is substantial. The number of

instructions executed by 2900 S3 is closer to the number executed by
B6700 than the number executed by 2900 Pascal. In some important
cases 2900 appears to equal or even better B6700.
Yours faithfully,
D. K. MEessHAM and A. ELLIOTT

International Computers Limited
Westfields, Kidsgrove, Stoke-on-Trent ST7 1TL
24 June 1980

5. Use the predictor
Jirr = Yi-1 + 2hy;
to obtain an approximation to the solution at
ti+l = ’0 + (i + l)h.
6. Compute }_)H’-l = F(tl+1’ yii—l)
7. If I = —1 go to step 12 otherwise go to step 8.
8. Use the corrector
Jivr = Vi + Sh(y; + §iiy)
to find an approximate solution at ¢;, ,.
9. Compute y, ., = F(ti+15 Viv1)
10. Use the corrector of step 8 again to obtain
Yier = Vi + Sh(y; + yiy)
11. Go to step 14
12. Use the corrector
Yier = Yie1 + Byl + 4 + Fi)/3
13. Compute
Vier = Fltis 1, Yiv1)
14. If t;,, = t, we stop, otherwise we let i = i + 1 and
return to step 4.

[Wo9/wWo9°dno"oIWeped.//:sd)y Wol) papeojumoq

Book review

Computing Principles and Techniques by B. L. Vickery, 1979; 182
pages. (Adam Hilger, £11-95)

As the author explains, the aim of the book is to provide a basic
introduction to computing principles. This would seem to be a
worthwhile objective as the greatest difficulty in understanding a new
subject is often to understand the jargon. What this book provides,
at one level, is almost a dictionary of common computer terms. This
is particularly useful, for while the author deliberately avoids the use
of jargon whenever possible, the same is certainly not true of the
computer world. In fact the inverse is true. Another pleasing feature
of the book is the section dealing with computer arithmetic. Pre-
sumably the beginner will be vaguely aware that computers use binary
arithmetic, but such terms as hexadecimal or octal may be far less
clear. Examples are also given which show how numbers of one base
can be converted to another. It could be argued that the average
user of a large computer system may never need to know such
details, but this is certainly not true of the micro or even the mini-
computer user.

The next two chapters cover the first elements of programming.
The topic is introduced at the level of operation codes and memory
addressing and leads on to consider mnemonic programming. The
subject of bit manipulation is also discussed and some very basic
concepts in Boolean algebra are mentioned. This section highlights
one of the fundamental weaknesses of a book of this type, i.e. the

The Computer Journal Volume 23 Number 4

q 2veLvelLLEIVIEC/DPWE/U

desire to introduce a whole range of topics like Boolean algebra,;
which can only be touched on in the most superficial way. The nextg
section covers the basic concepts of communicating with a computerﬁ*
from a remote device like a terminal. The common problems=
involved in an operation of this type are discussed, e.g. the type ofo
character codes which are in common use. To this end one of theZ
appendices provides a useful comparative table for octal, decimal=
and ASCIL S

The last three chapters which discuss the general concepts of§
computing cover higher level operations. Another important topic
discussed in this section of the book is that of errors. Mastery of
the various types of error which are bound to occur in any
program is essential particularly for the beginner.

The final chapter covers certain aspects of medical computing.
Although interesting, the examples chosen are somewhat specific and
in practice the programming problems involved are rather complex.
The reason for including the final chapter was, presumably, to justify
the book’s inclusion in a medical physics series. The author might
have been better advised to extend the applications section con-
siderably because the reader is likely to be interested in the medical
applications of computing. Nevertheless, on balance the objective
of the book is a good one and the author has produced a text which
should go quite a long way towards meeting the needs of someone
entering the field of medical computing.

R. I. KiTNEY (London)

383

