Entities, functions and binary relations: steps to a

conceptual schema
M. J. R. Shave

Computer Science Department, University of Bristol, School of Mathematics, University Walk,
Bristol BS8 1TW and CAC/ Inc-International, 289 High Holborn, London WC1V 7HX

A DBMS-independent method of data analysis, which has been used with considerable practical
success, is described and assessed in relation to some more formal approaches to data modelling.

(Received November 1978; revised August 1980)

1. Introduction
Considerable experience has now been gained in the use of a
wide variety of systems of data base management. Ironically
this very experience had led to an awareness of the benefits to
be gained from a data model which is independent of any one
such system, and, indeed, independent of any type of system—
hierarchical, network, or relational. The objective of this
model has been variously called a conceptual schema, an
entity relationship model, an enterprise description, and a role
‘model. In each case, the aim is to describe the items and
relationships of the data ‘as they are’ in the perception of the
organisation involved, and not ‘as they have to be’ in order to
conform to the rules of a particular system of implementation.

Sections 2 to 6 of this paper describe a practical DBMS-
independent approach to data analysis which can subsequently
be mapped on to existing models of data systems, whether
hierarchical, network, or relational in form. The analysis is
carried out in two phases, known as entity analysis and
functional analysis respectively, whose objectives can be briefly
described as the determination of the fundamental objects of
the system under investigation, and of the manner in which they
are used. The principles of the method resemble those of the
entity-relationship model of Chen (1976), though it is presented
as a practical tool rather than a formal model. A comparison
is made with this and certain other models in Section 7 of the
paper.

The entity-functional method is being developed and used
extensively by CACI Inc-International, a consultancy company
specialising in data analysis and data base implementation. In
this paper the conventions used in the diagrams are those
devised by lan Palmer and Geoffrey Baker of CACIL The
opinions expressed in Sections 7 and 8 are those of the author.

2. Entity analysis

The first step is to attempt to identify all the different types of
entity or basic object which are involved in the system. An
entity type is a generic term representing a set of items (which
may be empty); each item of the set is one occurrence of the
entity type. Entity types provide a classification of the items in a
system, but are not themselves classified. Thus entity types can
represent widely different sets of items, such as people, objects,
concepts, or even events—for example the types Student, Book,
Course, Registration.

The occurrences of an entity type will in general be dis-
tinguished by the distinctive values of certain properties. Each
entity type will possess one or more characteristic artributes
whose differing values provide one means of identifying the
separate occurrences of that type—for example, a student
name, a book number, a course code or a registration year.

The next task is to consider whether a relationship exists
between a pair of identified entity types. The relationship may
once again take many different forms and its identification
simply reflects some natural structure in the data. The con-
nection may involve, for example, ownership, propinquity,

similarity, structure or sequence. More than one relationship
type can exist between two entity types (e.g. the entity types
House and Person can be related by Ownership and/or by
Occupation). A relationship may also involve only one entity
type (e.g. an involuted relationship Sibling between two
occurrences of the entity type Person). Each relationship has a
degree, which may be (1, 1), (1, n) in either direction, or (m, n).
As for entities, relationship types are identified at a generic
level, and an occurrence of a relationship type is an ordered
pair of entity occurrences which satisfy the definition of the
relationship.

. . . 1
Having identified a set of n entity types, up to in(n -1

relationship types could in theory exist, even if involuted and
multiple relationships were excluded. In practice it will be
obvious that many entity types are quite unrelated; further-
more, the objective is to record only direct relationships. For
instance, direct relationships exist between the entities Parent
and Child, and between Child and School, but the relationship
between Parent and School is indirect—it exists only by virtue
of the child. (If the parent is also a Governor of the school this
is a separate relationship, which also introduces the question
of a ‘role’. This is discussed later.)

3. Entity, attribute and relationship definitions

The objects and concepts of a system do not fall irrevocably
into one of the three categories of entity, attribute or relation-
ship type. A classic example is provided by data which refers to
marriages. The concept of marriage could be regarded as an
entity type (with attributes such as date, place, name of bride
and bridegroom) or as an attribute type (a status associated
with the entity type Person), or as a relationship type (con-
necting occurrences of the entity types Man and Woman).
One of the tasks of the data analyst is to decide which of these
viewpoints is the most appropriate within the system he is
considering.

This intrusion of system semantics into the modelling process
is perfectly proper; it means only that the model is being
developed within its overall context, not that it has become
application dependent. Any object may appear in different
roles according to the viewpoint from which it is observed and
the objective of data analysis is to avoid representing the object
in the model in a way which is applicable only to one aspect or
application of the system. In this respect an entity type provides
the most flexible form of definition.

It will be apparent that the definitions which are formulated in
the initial stages of the process of entity analysis may in
practice be reconsidered as the nature and scope of the data
becomes more apparent. For example, Contract may initially
be defined as a relationship type between the entities Customer
and Company; however, the nature of a contract may deter-
mine the department to which the work is allocated and the
stock required. This would imply that Contract is more
suitably regarded as an entity type in its own right, participating

CCC-0010-4620/81/0024-0042 $03.00

42 THE COMPUTER JOURNAL, VOL. 24, NO. 1, 1981

© Heyden & Son Ltd, 1981

20z udy 01 U0 1s8nB Aq ££919€/2¥/1/2/a01E/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojumMoq

in relationships with Customer, Company, Department, and
Stock.

Space does not permit a detailed discussion in this paper of the
basis for distinguishing entity, attribute, and relationship types.
However, it is important to decide on, and work to, a suitable
‘level’ in modelling the system, in which the fundamental con-
cepts are not obscured by too much detail. Thus ‘address’ may
be defined as an attribute of an entity type Person, even though
it has, at a more detailed level, its own properties such as street,
town, and postcode. If, however, the area in which a person lives
is an important feature (for example, for a district nurse) then the
area may be recorded as a distinct entity. Since the descriptive
properties of attributes are defined in this model only in
association with entity types, a finer level of detail inevitably
implies an increase in the number of entity types. Similar
remarks apply to the definition of relationship types. For
practical purposes it has been found helpful to aim initially for a
level of description which will produce not more than about 50
entity types, connected by at most twice that number of
relationships.

4. Entity model

Once the definitions have been agreed, they can be illustrated by
constructing an entity model of the system. To demonstrate
this, consider the following simple scenario.

A local Education Authority appoints a Governing Body for
each of its colleges. Each college employs a Principal and the
staff are organised into departments. Each course run by a
college is the responsibility of a single department but it may
be taught by more than one member of staff. Students who
apply to a college must have appropriate qualifications and
provide a guarantee of financial support from a parent or a
local Authority. On entry, each student is allocated one
member of staff as his tutor, and registers for one or more
courses. For each course which he joins he is allocated a
numbered textbook from a stock associated with each course.

From this information the following entity types and relation-
ship types may be defined:

Entity types Relationship types and their degree
Local Education
Authority LEA Governing Body 1:n
Governing Body LEA Student l:n
College Governing Body College 1:1
Principal College Principal 1:1
Staff College Department l:n
Department College Student l:n
Course Department Staff l:in
Student Department Course 1:n
Qualification Staff Course m:n
Parent Staff Student 1:n
Registration Course Registration l:n
Book allocation ~ Course Book stock 1:n
Book stock Student Registration l:n
Student Qualification 1:1
Parent Student I:n
Registration Book allocation 1:1

Attribute types have been omitted from this example for clarity,
but on the basis of the brief description above it would be
reasonable to define Principal, Qualification and Book
allocation as attributes of College, Student and Registration
respectively, rather than as entity types.

The entity model corresponding to these definitions is shown
in Fig. 1. An oval box is used to indicate an entity type as a
distinction from the rectangular box commonly used to
represent a record at the storage level. A delta notation is used
for a multi-valued relationship in preference to an arrowhead in

© Heyden & Son Ltd, 1981

Governing body LEA

Principal

Qualification

Department

\ Course }--(Registrati@
(E?ok stoct) (lBock allocat?gzj

Fig. 1

order to emphasise that access to occurrences of entities may be
made in either direction of the relationship. A broken line in
the representation of a relationship indicates that occurrences
of the adjoining entity type may exist without participating in
the relationship. Thus every student must have a member of
staff as his tutor, but not every member of staff will act in this
capacity. By contrast, a local authority may not be sponsoring
any students and also a student (e.g. a foreign student) may not
be sponsored by any local authority; the arc in the diagram
shows, however, that every student must have a sponsored
relationship with either a local authority or a parent.

In practice, before a model such as this is constructed, a more
detailed knowledge of the system would be obtained by
discussion than is represented by the brief description given
above. This would help to clarify the semantics of the data;
whether, for example, the relationship between a college and
members of its staff always occurs via their department, as
shown, or whether a further direct relationship should be
included in the model.

Attributes, even where they are defined, are commonly
omitted from the entity model diagram since they do not add to
an appreciation of its structure. The entity model as a diagram
is simply a crude, though valuable, means of demonstrating and
understanding the model of the system which has been con-
structed. However it also exists in a complete and precise form
by means of documentation which is completed in conjunction
with the diagram and which includes the definition of each
entity, attribute and relationship type. As much subsidiary
information as possible is recorded with each definition, such
as the frequency of occurrences, period of validity, department
or individual responsible for the definition, etc. . . .

5. Functional analysis

In carrying out data analysis it is possible to draw a distinction
between basic objects and their structure on the one hand, and
the mode of use of these objects and relationships on the other
hand. The former viewpoint is reflected in the entity model,
while the latter is the operational or functional aspect of the
system which has not as yet been considered in detail. The
distinction is not entirely clear-cut—for example, operational
considerations may determine whether an entity definition or a
relationship definition is the more appropriate for some con-
cept, such as ‘tutor’—but it is nevertheless useful and worth
attempting.

The functional viewpoint is inevitably more application
dependent than the phase of entity analysis and should therefore
play a secondary role in the construction of a conceptual model.
Yet it is the tasks of a system which make its existence mean-
ingful, and thus functional analysis will often throw fresh light
on the semantics of the data in the entity model. The explicit
recognition of the two phases of entity analysis and functional
analysis, especially if two distinct teams of analysts are
involved, working separately but in parallel, can provide

THE COMPUTER JOURNAL, VOL. 24, NO. 1, 1981 43

20z udy 01 U0 1s8nB Aq ££919€/2¥/1/2/a01E/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojumMoq

§> Department

<
Q Staff H Course)—»(Registration)

.
Fig. 2
C LEA Parent
_D A
1

__..<]zegistraticn)

—_———- —————

Course

<

4
Book stock) {Book anocauon)
oo At

Fig. 3

valuable cross-checks on the validity, completeness and
redundancy of the entity model.

The objective of the functional analysis phase is to identify
which entities and relationships must be accessed, in what
order, by what means (by ‘owner’, by key, in sequence, etc.),
and for what purpose (retrieve, create, delete, update) so as to
carry out the necessary tasks of the system. So far as possible,
this must be done without being influenced by any existing
methods of operation. The result of this analysis is documented
as for entities, attributes and relationships, including any
available statistics on frequency of use of the function, volumes
of data involved, etc. The data structure which is accessed by
each function can then be shown diagrammatically in a
functional model. Each such model should appear as a subset
of the entity model, subject to the addition of symbols showing
the access paths required. Any discrepancies between the
models must be investigated and reconciled. To illustrate
functional models, consider two functions based on the previous
scenario.
Function 1 Determine the staff|student contact ratio for a given
department
The initial data is the department concerned. (This is indicated
in the diagram by a fat arrow symbol.)

Thereafter it is necessary to access:

(a) all staff of this department
(b) each course taught by a member of staff

(c) each member of staff associated with a course (if three
members are concerned, each counts only 1/3 of a unit in the
staff total).

(d) each registration of a student for a course in the depart-
ment.

This analysis can be briefly documented as follows:

Entities Relationship used Selection Action
accessed criteria
Department Department

name Retrieve
Staff Department/Staff . All Retrieve
Course Staff/Course All Retrieve
Staff Staff/Course Course code Retrieve
Registration Course/Registration All Retrieve

The corresponding functional model is shown in Fig. 2, where
a small triangle is used to indicate the direction of access in a
relationship.

44 THE COMPUTER JOURNAL, VOL. 24, NO. 1, 1981

Function 2 Given the name of a new student and the course he
wishes to take, check his qualifications and guarantor, create
suitable registrations, and allocate to him a tutor and appropriate
books.

A brief documentation is:

Entities Relationships used Selection Action
accessed criteria
Student Student name Retrieve
Qualification Student/Qualification Retrieve
Either: Parent Parent/Student ‘Owner’ Retrieve
or: LEA LEA/Student ‘Owner’ Retrieve
Course Coursecode Retrieve
Book stock Course/Book stock Sequence Modify
Registration Course/Registration
and Student/Reg. Create
Book Registration/Book
allocation alloc. Create
Department Department/Course ‘Owner’ Retrieve
Staff Department/Staff All Retrieve
Staff/Student Staff load Connect

The functional model is shown in Fig. 3. Those entity and
relationship occurrences which are created by the function are
shown with broken lines.

A practical difficulty in functional analysis is to choose a
suitable level of interest at which functions are to be defined.
At one extreme the entire system is a ‘registration function’ or
a ‘payroll function’. At the other extreme, too much detail
may lead to an undesirable mimicry of existing processing
methods. A guide can be obtained from the aim of matching
functional models with the entity model. Also the level should
be such that the objective of a function remains unaltered even
if the method of doing it is changed. Thus one might consider a
function ‘book issue’ which requires the identification of a
book, a borrower and the date of issue, but the analysis would
be likely to ignore details such as the classification of the book
or the method of processing the borrower’s ticket.

6. Database system models

Once the entity model has been completed and validated by
functional analysis it is used as the basis for the construction of
a specific Logical or Schema model. This remains largely
independent of physical storage considerations but is, now,
subject to the constraints of a chosen data base management
system, such as DMS 1100 or Total, or to a type of system—
network, hierarchical or relational. The details are beyond the
scope of this paper but, for example, an (m, n) relationship
between two entity types such as Staff and Course may have to
be replaced by two (1, n) relationships using a newly defined
entity type Lecture. ‘Link’ records of this type are a common
means of accommodating the additional constraints imposed
on the natural data structure by the syntax of programming
systems.

7. Comparison with other models
The similarity between the entity-functional model described
above and the entity-relationship model of Chen (1976) has
already been mentioned. Both models are based on the three
concepts of entity, attribute and relationship, but Chen allows
a richer form of definition of relationship which includes the
possibility of attributes, as for entities. Neither model allows
relationships themselves to be associated, although this could
be appropriate if one connection is a prerequisite for another—
for example, a library book cannot be ‘overdue’ unless it has
already been ‘borrowed’.

The more formal approach of Chen’s method is illustrated by
the declaration statements used to describe the model and the
associated data manipulation language. In this respect the

© Heyden & Son Ltd, 1981

20z udy 01 U0 1s8nB Aq ££919€/2¥/1/2/a01E/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojumMoq

entity-functional approach also insists on a clear and unam-
biguous documentation of its model, but does not attempt to
describe its subsequent operation, which is left to the data base
system modelling stage. By contrast, Chen’s method does not
include a phase of functional analysis, and it is true that this does
avoid an element of application dependency. However this
aspect takes effect only at the point of transforming the entity
model into a feasible data base system model and prior to this
stage the independent viewpoint provided by functional
analysis forms a useful check on the accuracy of the entity
model.

The so-called network model is usually taken to be synony-
mous with a Codasyl system (1971; 1973). As such it takes a
comparatively low-level view of data which includes statements
of record format and, to some extent, physical placement, so
that it is not comparable to the entity-functional model. It is
true that entity analysis is not based on formally defined data
types and uses only simple binary relationships. But its aim is
to identify the conceptual structure on which an organisation
or operation is based, irrespective of the representation of those
concepts, so that it is properly regarded as a high level, system
independent, tool of analysis. It is noteworthy that the method
of analysis mirrors the natural mode of thought: one thinks
first of the basic features of a problem, and then tries to
structure or organise these thoughts—a process in which binary
relationships are perhaps more readily identified than those
involving numerous objects.

The long-running argument between advocates of the network
model and those of the relational model is often based on the
false assumption that both are describing a system from the
same viewpoint of data. In fact the latter model should be
regarded as a predecessor to, rather than a competitor of, the
network model since it aims to provide a general, application
independent, description. However the mannerin which domains
are allocated to, or associated in, a relation is often arbitrary
rather than reflecting a natural structure. For example, given
the scenario previously used to illustrate the entity-functional
model, suppose that two relations Course and Student are
established; to which of these should the domain Book be
allocated? In addition, the choice of a key value within a
relation can significantly affect the process of normalisation
which is an integral part of the relational technique. A number
of other semantic problems have been pointed out by Schmid
and Swenson (1975), and by Fagin (1977).

Although the aim of the data base approach to systems is to
establish an integrated, organisation-wide body of data, it can
be a weakness of the relational method that it forces (or at
least encourages) an analyst to consider aggregates of data
types. This not only causes conceptual difficulties when more
than a few types are involved in a relation but, more impor-
tantly, there is a danger that it can imply associations between
types which are not inherent in the data, or ignore others which
do exist. Provided that this problem is resolved, one great
merit of the relational approach is that it gives the basis for a
storage independent data manipulation language, using
relational algebra. In this respect it is more powerful than the
entity-functional model described in this paper, which simply
provides a tool for data analysis, and not for the description of
operations on data. However the merits of such languages
depend on the existence of implementations which permit
efficient manipulation of data on a very large scale and progress
in this direction has generally been slow.

Advocates of the relational model, aware of its semantic
limitations, have recently proposed several modifications. One
of these is that the ‘value set’ of a domain (a set of characters or
a range of numbers) should, in suitable circumstances, be
replaced by an ‘entity set’. As seen by Hall er al. (1976), this is
a set of occurrences of, say, the entity type Person. But the

© Heyden & Son Ltd, 1981

members of such a set are represented by internal identifiers
which are allocated by the system of implementation and which
remain inviolate so long as the entity occurrence continues to
belong to the data. In particular, an internal identifier would be
unchanged if the external ‘key’ of its entity (e.g. a reference
number) were amended. The purpose of an entity set is to
provide an invariant synonym for an external concept and to
separate this synonym from any external key which may be
changed at the whim of the user. This problem of changes in
values used as keys is one which has caused difficulties for all
data models.

A quite different view of entities in relations is taken by
Boulanger and Flory (1978). They propose that each user’s
view of a system should be analysed and decomposed down to
a (suitably defined) level of atomic attributes. This phase of
analysis is then reversed, first reconciling and rationalising the
attributes so as to define entities for each application and
subsequently synthesising these entities into a set of relations
which constitute the conceptual schema of the system. It is
doubtful if an atomic level of decomposition would be helpful
in practice, and in other respects the analysis phase of this
method is similar in principle to that of the entity-functional
model. However it is notable that the definition of a domain of
a relation is once again widened to include the concept of an
entity.

A second modification suggested by Hall ez al. (1976) concerns
the concept of an ‘irreducible relation’. This is defined as a
relation which cannot be broken by projection into several
relations of smaller degree, and subsequently joined to recon-
stitute the original relation. They give the following example.

The relation RESULTS:

Person Subject Position
A X 1
A Y 1
B X 3
B Y 2
C X 2
can be broken by projection into two smaller relations:
Courses: Grades:
Person Subject Person Position
A X A 1
A Y B 3
B X B 2
B Y C 2
C X

If these two relations are now joined on their common domain,
we shall obtain two tuples for which (Person, Subject, Position)
equals (B, X, 2) and (B, Y, 3) respectively, in addition to those
of the original relation.

A tuple in an irreducible relation represents a ‘basic fact’ in
the sense that it cannot be broken down further without giving
the possibility of deducing erroneous information. Thus
irreducible relations form a desirable goal for a relational
model and, because of the number of combinations of domains
that will otherwise be possible, they will frequently (though not
necessarily) be binary in form. However there is no canonical
method for reducing a relation to this form, and no guarantee
that the basic facts which are represented will correspond to
relevant concepts in the external system. It is possible that
irreducible relations offer a more economical form of descrip-
tion that the binary relationships used exclusively in the entity-
functional model, but both methods rely heavily on an intuitive
understanding of the data semantics and the latter seems the
more straightforward approach.

In an attempt to overcome the weaknesses of network and
relational models Bachman and Daya have proposed a ‘role

THE COMPUTER JOURNAL, VOL. 24, NO. 1, 1981 45

20z udy 01 U0 1s8nB Aq ££919€/2¥/1/2/a01E/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojumMoq

College

Fig. 4

model’ (1977). They argue that the real world is concerned not
only with basic entities but also with the roles which entity
types may play. For example a ‘person’ can take the role of a
parent, a customer, or an employee; but conversely a ‘customer’
can be either a person or a company. Thus neither entity types
nor role types form a subset of the other. Bachman and Daya
consider that failure to recognise these as distinct concepts has
been the cause of considerable confusion. They propose that
each entity type definition should specify one or more roles
which it can support. The same role could be specified by more
than one entity type definition, and the common properties of
any one role would be the subject of a role type definition. An
entity occurrence would thus be the union of one or more role
occurrences.

The entity-functional method does not make this distinction,
and the entity model which is constructed may include types
which represent concepts (a role is effectively a concept) as
readily as types which represent objects, people or events. The
criterion for identification is simply relevance to the problem
area which is being analysed. A weakness of this approach is
that attributes which are common to two or more entity types
are not apparent in the model (though they will be documented).
For example, in Fig. 4, one member of staff may also be a
governor of the college. (In this case the common attributes
would be precisely an ‘entity occurrence’ of the role model.)
However the model represented by Fig. 4 is a conceptual tool
and the fact that two entity occurrences are unified in one
person is, in this view, an ‘accidental’ relationship, not an
inherent property of the entity types Staff and Governor. It is
therefore not represented in the model. The level of implemen-
tation is a different matter. Then the common attributes must
be recorded, but this can be achieved by placing their data in a
separate physical record, linked to the data which is specific to
‘staff’ or ‘governor’. .

The question is thus whether the eventual implementation of
the system being analysed will be best served by identifying and
distinguishing in the conceptual model between roles and those
objects which can adopt the defined roles, or by concentrating
on the recognition of distinctive roles as concepts and post-
poning consideration of common properties until an imple-
mentation phase. In principle the former is the more structured
and the more satisfactory approach but, as Bachman admits,
there is as yet no DBMS capable of implementing a role model
once it is constructed.

Another consideration is whether roles and entities can always
be clearly separated. The problem is most likely to occur in the
case of objects, where the dramatic analogy is less familiar.

References

BacHMAN, C. W. and DAya, M. (1977).
Technology, London.

BOULANGER, D. and FLORY, A. (1978).

For example, a college seems to be a well defined object and
hence a suitable subject for an entity type definition, but it is
seen in quite different ways by its students, its staff, and its
governors. Should one therefore define a number of role types
(e.g. ‘place of work’, ‘area of responsibility’) to be associated
with the entity College? Does ‘place of work’ include both the
roles ‘place of study’ and ‘place of employment’ ? If occurrences
of these role type are infrequent in the system under review,
there is a danger that there will be a proliferation of definitions
and the modelling process will become unnecessarily
complicated.

8. Summary

This paper has two objectives. Firstly, to describe a practical
method for the analysis of data in a complex system and for the
design of a coherent model of the concepts and relationships
involved; secondly to place this pragmatic technique in the
context of a number of formally based theoretical methods.
These objectives could be said to correspond to the two most
important properties of a conceptual model: simplicity of use
and a sound theoretical basis (Date, 1977).

The entity-functional model uses just three data constructs—
entity, attribute and relationship—and the last of these is
employed only in a binary form. These constructs are not
formally defined but, as ‘concepts’ themselves, it is difficult to
do so in any way which is meaningful and not recursive.
Examples have been given to show that, in formulating
definitions, the most appropriate view of an item of data is not
absolute and must often depend on knowledge of the data
semantics. Unlike the relational model, these data constructs
are not used as the basis for a data manipulation language.
However the entity model is validated by a separate but
parallel phase of analysis which considers the functions of the
system and their impact on the data structure.

The model does not attempt to distinguish between roles and
objects as has been advocated recently. It would be possible to
develop the method on these lines if it was found that the
resulting structure, in gaining precision, still retained clarity
and simplicity. The closest theoretical parallel with the method
is the entity-relationship model of Chen (1976). This allows a
more detailed form of relationship and, although it has no
explicit phase of functional analysis, operations on the model
can be expressed in a SEQUEL-like language (Chamberlin and
Boyce, 1974). However its basis is essentially the same three data
constructs as used in the entity-functional method.

This latter method does not pretend to be a complete system
for data description and manipulation, but in practical
applications of data base systems it has been found to provide
a tool which is simple, coherent and flexible for the crucial
initial stages of data analysis and conceptual design.

Acknowledgement

The entity-functional method has been developed and used by
the Database and TP group of CACI Inc-International and I
am most grateful to them for their permission to publish this
paper. The opinions expressed in the paper, are however,
entirely the responsibility of the author.

The Role Concept in Data Models, Infotech State of the Art Tutorial on Advances in Database

La Notion de Type d’Entité dans le Modéle Relationnel, Proc. des Journées d’Etude sur le théme

des Mod¢les Relationnels, Institut de Programmation, Université Pierre et Marie Curie, Paris, pp. 1-18.

CHAMBERLIN, D. D. and Boyck, R. F. (1974).
California.
CHEN, P. P-S. (1976).
pp. 9-36.
CopasyL DBTG. (1971).
CobasyL DDL CoMMITTEE. (1973).

46 THE COMPUTER JOURNAL, VOL. 24, NO. 1, 1981

SEQUEL: A Structured English Query Language, IBM Research Report RJ 1394, San Jose,
The Entity-Relational Model—Towards a Unified View of Data, ACM Trans. on Database Systems, Vol. 1 No. 1,

Report, ACM, New York, and British Computer Society.
DDL Journal of Development, ACM, New York, and British Computer Society.

© Heyden & Son Ltd, 1981

20z udy 01 U0 1s8nB Aq ££919€/2¥/1/2/a01E/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojumMoq

Darte, C. J. (1977). An Introduction to Data base Systems, 2nd Ed, Addison-Wesley, p. 445.

FaGIN, R. (1977). Multivalued Dependencies and a New Normal Form for Relational Databases, 4CM Trans. on Database Systems, Vol. 2

No. 3, pp. 262-278.

HaLL, P., OWLETT, J. and Topp, S. (1976). Relations and Entities, Proc. IFIP TC-2 Working Conference on Modelling in Data Base Manage-

ment Systems, ed. G. M. Nijssen, North-Holland, pp. 201-220.

ScHMip, H. A. and SWENSON, J. R. (1975). On the Semantics of the Relational Data Model, Proc. ACM-SIGMO D International Conference

on the Management of Data, ed. W. F. King, pp. 211-223.

Book reviews

PDP-11 Assembler Language Programming and Machine Organi-
zation, by M. Singer, 1980; 178 pages. (John Wiley, £6-80)

This book is aimed at the reader who has no prior knowledge or
experience of computers, but who wishes to ‘enjoy the fullest range
of communication with the machine by understanding its machine
code’. While many would argue with the assumptions inherent in this
aim, or indeed with the desirability of fulfilling it, the author covers
his subject with an admirable clarity that does much to justify his
viewpoint. By concentrating on the PDP-11 range, a thoroughly
practical approach is adopted, and it is assumed that the reader has
access to a PDP-11 installation on which to develop programs.

Chapter 1 introduces the PDP-11 computer system. It includes a
discussion of the operating systems insofar as this is necessary to get
a simple program to run. Unfortunately, despite the wise decision to
narrow the book’s focus to a single machine architecture, the
diversity of Digital operating systems leaves the reader in consider-
able doubt as to how to accomplish simple tasks, and he is in danger
of being overwhelmed at the outset. The author makes a valiant
attempt, but inevitably fails to bring solid order to this quagmire.

Chapters 2 and 3 introduce a broad range of assembler language
instructions as they are required in the process of developing working
programs. The use of monitor calls for I/O is encouraged to enable
real programs to be written at this stage, but a full treatment is
deferred until Chapter 4. A structured approach to programming is
introduced unobtrusively as a consequence of program function.
This and subsequent chapters are written with a refreshing clarity,
and painlessly achieve the objective of covering the entire range of
instructions. The author has a useful, if slightly irritating habit of
interposing a penetrating question, just as the reader’s mind is
glossing over a not quite obvious point. This is a real aid to fuller
understanding.

Chapter 4 covers peripheral control starting with a brief, but
adequate treatment of direct I/O, interrupts and UNIBUS operation.
The use of monitor calls for handling storage devices is discussed,
followed by an overview of their operation and control requirements.
A section on memory management winds up the discussion of
operating system function.

Each section of the book has a good range of exercises, though no
sample solutions are provided. A description of floating point
arithmetic is sensibly banished to an appendix, as is the use of the
debugging tool ODT. In all, the book is a useful and readable
introduction for both the newcomer to assembly language pro-
gramming, and the specialist meeting the PDP-11 family for the first
time.

I. M. C. SHAND (Kingston)

Introduction to the Computer—An Integrated Approach, by J. Frater
and W. Holdrup, 1980; 449 pages. (Prentice-Hall, £11-65)

The book is intended primarily to be a text for use in a one-term
introduction to data processing courses and possibly in courses on
computers and society. It claims that its ‘integrated approach’ is
unique. It is certainly an approach which I believe would work well
in a teaching situation in which the aim was to give students a well

© Heyden & Son Ltd, 1981

rounded appreciation of computers and data processing. The
essence of the approach lies in the format of each chapter, in which
certain new technical concepts are described followed by a substantial
section on applications and implications. Thus the student is able, as
he builds up his knowledge of the computer, to see in parallel some-
thing of the applications and social implications of the concepts he
has mastered. Each chapter opens with a statement of the main
concepts, applications and implications which are covered in it
together with a list of the new terminology which it introduces.
Chapters conclude with a summary and a set of about 10 relevant
exercises. The book is thus well structured for use as a course text or
for self-study; the preface contains helpful suggestions for both
teachers and students on how it might best be used.

While it does not attempt to go into the various technical concepts
in depth (it is not aimed primarily at those wishing to pursue a career
in data processing), the range of topics covered is sufficiently
comprehensive to enable the reader to acquire (as stated in the
preface) ‘the much needed computer literacy which is almost a pre-
requisite for entering any field’. Chapters 1-4 are concerned with
basic concepts, 5-8 with hardware, 9-11 with programming and
software and 12-14 with advanced systems and future trends. No
specific programming language is presented in the main text but
short appendices on BASIC, COBOL, FORTRAN and Pascal
provide sufficient information on these languages to enable the
student to write simple complete programs in any of them. The last
three chapters cover such important topics of the present time as
teleprocessing, networks, data base systems and the microprocessor
revolution.

The book is well and accurately produced, although some of the
photographs are not helpful, and the author’s style is readable if a
little repetitive in parts. The use of cartoons here and there provides
welcome light relief and some well chosen quotations give additional
insight throughout the book.

One small but important criticism: I felt that the fundamental
concept of the stored program was not adequately explained early
enough; I would have expected this to have been included in the first
chapter. In one or two places, e.g. the chapter on ‘The computer and
its heritage’ the writing is very much from an American standpoint,
but I do not believe this necessarily invalidates the book from being
usable in a British situation. Despite the length of the book some
topics mentioned, e.g. computer art, are not developed sufficiently
to give any real insight into them. Another general criticism is that
the book does not provide directly for any practical access to a
computer and the reader would certainly need to have such exper-
ience for much of the material to come alive.

In summary this is a readable and usable text, providing an all
round appreciation of computers and data processing. It should
certainly succeed in debunking any misconceptions the reader may
have had and generate in him a moderate and critical attention to
computers and their applications, convincing him that the ubiquitous
computer is simply a powerful tool which man may use for good or
ill as he chooses. It is a large book, perhaps a little longer and more
expensive than is ideal for its purpose, but has the advantage of being
more up to date than many of the alternative texts currently available.

JouN LINDLEY (Middlesbrough)

THE COMPUTER JOURNAL, VOL. 24, NO. 1, 1981 47

20z udy 01 U0 1s8nB Aq ££919€/2¥/1/2/a01E/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojumMoq

