Port directed communication*

A. Silberschatz
Department of Computer Sciences, The University of Texas, Austin, Texas 78712, USA

In his paper, Communicating Sequential Processes, Hoare has introduced a clean concept of a
process, in which the states of processes are isolated from one another, except at explicit communi-
cation points. Communication and synchronisation in this system is accomplished through the I/O
facility and Dijkstra’s guarded command. Hoare insisted in his proposal that every input and output
command must name its source and destination explicity. In this paper we propose an alternative to
Hoare’s scheme. We suggest that communication and synchronisation should be handled through
port names. We define the notion of ownership of a port, and require that each port will have a single
owner and as many users as needed. These concepts provide the means for:

(a) clean handling of subroutines

(b) allowing both input and output commands to appear in guards

(c) obtaining an efficient implementation of the communication and synchronisation constructs.
These issues and concepts will be dealt with in this paper, and their usefulness will be demonstrated
providing solutions to a variety of familiar programming exercises.

(Received October 1979)

1. Introduction
In his paper Communicating Sequential Processes (CSP),
Hoare (1978) has introduced a language concept for concurrent
processing which is suitable for a microcomputer network
environment with distributed storage. As with any new concept,
there are several aspects that seem to deserve further explana-
tion and discussion. The purpose of this paper is to examine
Hoare’s proposal in greater detail with a view toward gaining
a better understanding as to how communication and syn-
chronisation should be handled in distributed systems.

We start by presenting a brief survey of the essential features
of CSP. Central to the language are the following concepts:

1. A CSP program consists of a fixed number of sequential
processes, that are started simultaneously. A program
terminates when each of its processes reaches the end of its
execution.

2. Eachsequential process contains a private data structure and
a list of commands (instructions) to manipulate the data.
One process cannot operate on the data of another process.

3. Communication and synchronisation are accomplished
through the Input/Output facility. In order to exchange
messages, the source and destination processes must name
each other explicitly.

4. The sequential control structures are based on Dijkstra’s
guarded commands (Dijkstra, 1975). A guard may include a
single input command; output commands may not appear
in guards.

These features allow one to specify systems that are composed
of a finite number of disjoint processes which are driven by their
inputs and synchronised by their outputs.

Hoare emphasised in his paper that his proposal is at best only
a partial solution to the problem of finding an appropriate
language for concurrent programming. In particular, Hoare
noted that the following topics need further study and develop-
ment:

(a) the question of relaxing the requirement for explicit
naming (e.g. that every input or output command must
name its source and destination explicitly)

(b) the question of permitting output commands to appear in
guards

(c) the question of efficient implementation of his constructs.

Some of these issues have recently been addressed in the
literature. The problem of allowing output commands to
appear in guards and the question of an efficient implementa-
tion were considered in Silberschatz (1979). The approach
taken there was to impose a strict order among each pair of
communicating processes. Thus for each such pair, it was
required that one process be the master of the other (or
conversely, one process be the slave of the other). This replaces
the asymmetry of the I/O constructs by an asymmetry between
the various processes. With this approach it is possible to
obtain a simple deadlock free implementation of the I/O
commands. Moreover it allows both input and output com-
mands to appear in guards with the restriction that a slave
process can have I/O commands in guards which involve only
those processes that are his masters. This scheme suffers from
the fact that there is no complete symmetry between the
various processes. It also does not address the issue of the
explicit naming requirement.

Related work was performed in connection with the develop-
ment of the US Department of Defense high level language
(1977). The preliminary Green language, which was influenced
by CSP, attempted to resolve the difficulties associated with the
explicit naming requirement by making naming one sided only.
Tasks in that language were characterised as services and users.
Communication between these tasks was carried out through
boxes. A user of a service task was required to specify the name
of the task (as well as the name of a box) whenever he wished to
communicate with that task. On the other hand, the service
task was required only to mention the name of a box in order
to communicate with its users. Although this strategy handles
issue (a) above, it does not address the question of permitting
output commands to appear in guards (issue (b)). This short-
coming has led to the development of the entry concept in the
final version of the language Green (Ada reference manual,
1979). Entries are structurally similar to procedures; they
accept parameters and are called in the same manner. The
main difference lies in the way calls are internally handled. Thus
the input and output primitives of CSP have been replaced by a
much higher level primitive. A similar approach has been taken
by Brinch Hansen (1978) in his work on distributed processes.

In this paper we wish to examine the three issues posed above by
sticking as closely as possible to the original CSP constructs. In
Section 2 we present another approach for handling com-

*This research was supported in part by the National Science Foundation under Grant No. MCS 7702463, and in part by the Office of

Naval Research under Contract N 00014-80-C-0592.

CCC-0010-4620/81/0024-0078 $02.50

78 THE COMPUTER JOURNAL, VOL. 24, NO. 1, 1981

© Heyden & Son Ltd, 1981

202 udy 60 U0 1s9n6 Aq £2619€/8./1/¥2/101E/UlWOd/ W00 dNo"dlWspeoe)/:SAjY Wolj paPEojuMOq

munication and synchronisation by introducing the concept of a
communication port. In Sections 3 and 4 we provide illustrative
examples and further developments. Finally, in Section 5 we
outline a general method for implementing our proposed
constructs.

2. Communication ports
An alternative to Hoare’s explicit naming requirement would
be to name ports through which communication is to take
place. The port names would be local to the system processes,
and the manner in which processes are to be connected to the
ports would be declared locally in each individual process. The
concept of ports as a communication mechanism is not new
(Balzer, 1971 ; Walden, 1972). What is new about our proposal
is that it pertains specifically to Hoare’s work. Moreover, it has
a different semantic interpretation.

Each CSP process can declare in its address space a set of port
names. This declaration is accomplished via the statement:

(list of port names): port;
For example, a process P may declare
A, B, C: port;
We will say that process P is the owner of the ports A, B and C.
The notion of ownership of a port will play an important role
in our discussion concerning synchronisation and

communication.
A process can use a port that it does not own, by declaring:

use ({list of port names));
For example, a process Q may declare
use (A, C);

This declaration specifies that process Q may communicate
with process P through the ports A and C. We will denote this
fact by saying that Q is the user of these two ports.

These concepts can be illustrated via the use of directed
graphs. Circles correspond to processes, squares correspond to
ports, and arcs correspond to user/owner relationship. Thus an
arc from process Q to a port A indicates that process Q is the
user of the port A. Similarly, an arc from port A to process P
indicates that process P is the owner of port A. In general, a
port has one and only one owner and several users. Thus the
general graph (called port graph) corresponding to one port is
as shown in Fig. 1.

It should be pointed out that in order for this scheme to work
all port names need to be distinct. This is necessary so that no
confusion will arise when a process declares its intention
for the use of ports. An alternative is to extend the use primi-
tive to allow the inclusion of owner names with each port name
defined in the use list. Since this is semantically equivalent
to the present proposal, we will restrict our attention in
this paper to the case where all port names are distinct.

Thus far, we have described the manner by which processes
can be connected to a common port. We now describe how
communication can take place through ports. Suppose that
two processes wish to communicate. In order to accomplish
this the processes need to be connected to a common port.
Moreover, one of these processes needs to be the owner of that
port. For example, in Fig. 1, the only communication that can
take place through port A is between the n pairs of processes P
and Q;. Through port A, Q; cannot communicate with Q;.

As with Hoare’s proposal, communication through ports is
accomplished through the input and output commands. The
only difference is that port names are used instead of process
names. The input command thus has the form:

{port-name) ?{target variables)
while the output command has the form:
{port-name) !{expression)

© Heyden & Son Ltd, 1981

9 Q ') ' e ueers

A port

P owner

Fig. 1

There are two main semantic differences between Hoare’s
proposal and ours. First, in Hoare’s proposal communication
occurs when one process names another as destination for
output and the second process names the first as source for
input. In our proposal communicqtion occurs only when:

(a) two processes name the same port in their I/O commands

(b) one of these processes performs an input while the other
output

(c) one of these processes is the owner of the port.

In both Hoare’s and our proposal we require that target
variables of the input command should match the value
denoted by the expression of the output command.

The second semantic difference is that in Hoare’s proposal an
I/O command specifies exactly one communicating partner
while in our proposal, an I/O command may involve several
processes; however, only one of them will be selected for
communication. More precisely, suppose that processes Q,,
Qs and Q, of Fig. 1 are ready to do I/O (e.g. they have each
invoked an I/O command involving port A). Further suppose
that process P (the owner of port A) has also invoked an I/O
command which matches the ones of Q, and Q,. In this case
communication occurs between either the pair (P, Q,) or the
pair (P, Q,) but not both. The choice as to which pair will be
selected is not known. This is another means by which non-
determinism is introduced in our proposal (the other one being
Dijkstra’s guarded command (Dijkstra, 1975) to be discussed
below).

In contrast to Hoare’s proposal we allow both input and out-
put commands to appear in guards. This however is restricted
to the case where a process may have I/O commands in guards,
but these commands may involve only those ports that it owns.
The reason for this restriction is that it allows one to obtain a
uniform efficient implementation of the I/O commands (see
Section 5). We note however, that our proposal is as powerful
as the one presented by Hoare, since for each pair of com-
municating processes, say P, and P,, one can declare ports A,
and A, such that P, is the owner of A, and P, is the owner of
A,.Communication between P; and P, can thus be handled
through either A, or A,. We feel however that our scheme
allows a more structured approach to the problem of writing
concurrent programs because it allows the simplification of a
large class of algorithms and reduces the number of I/O com-
mands that are needed in the implementation of these algo-
rithms (see Section 3).

We note that the concepts of port directed communication and
of ownership of ports allow us to relax the requirement of
explicit naming and permit one to include output commands in
guards. Thus we have succeeded in presenting solutions to
issues (a) and (b) posed in the introduction. In Section 5, we

THE COMPUTER JOURNAL, VOL. 24, NO. 1, 1981 79

202 udy 60 U0 1s9n6 Aq £2619€/8./1/¥2/101E/UlWOd/ W00 dNo"dlWspeoe)/:SAjY Wolj paPEojuMOq

user processes

Sub port

subroutine process

Fig. 2

examine the question of efficient implementation of the I/O
command structures (i.e. issue (c) posed in the introduction).
This is done by presenting a uniform abstract implementation
of our constructs.

3. Illustrative examples

In this section we demonstrate the usefulness of our concepts by
providing different solutions to some of the programming
exercises presented by Hoare (1978). We only discuss those
algorithms in which our solutions differ widely from those of
Hoare’s.

3.1 Conventional subroutines

A subroutine in CSP can be implemented as a process that is
operating concurrently with its user processes. Parameter
passing is done by value/result. Hoare’s scheme requires that
the subroutine process lists all of its user processes. With our
scheme the subroutine process needs only to declare a local
port, say Sub. The user processes import (e.g. declare wuse
(Sub)) this port and use it in order to pass parameters to and
from the subroutine. Thus, the general port graph correspond-
ing to such a scheme is shown in Fig. 2. Note that with such a
scheme one can write subroutines without the prior knowledge
as to which processes will invoke it. This corresponds to the
standard way subroutines are handled.

Central to the subroutine process is the repetitive command
*[Sub 2(value-parameters) . . . Sub!(result-parameters)]
where . . . computes the results from the value parameters. The

user processes invoke the subroutine via:

Sub!(arguments) . . . Sub ?(results);

Note that this scheme works only if a user process invokes the
subroutine in the above specified sequence. This is because only
one port is used for communication, and we have implicitly
assumed when designing this algorithm that only one user
process at a time is executing Sub (results). More specifically,
all users except one are delayed at Sub!(arguments) and hence
at most one process may be delayed at Sub ?(results). Thus
when Sub!(result-parameters) is executed it matches exactly the
one process that successfully executed Sub!(arguments).

It is worthwhile pointing out that with our scheme the
decision as to which user process will be served next (e.g. the
nondeterminism) is handled by the port mechanism, while in
Hoare’s scheme this is done via the guarded command
mechanism.

3.2 Restricted subroutines

There are cases where subroutines are called by result only.
However, with Hoare’s scheme this could not be effectively
handled because Hoare forbids output commands to appear in

80 THE/COMPUTER JOURNAL, VOL. 24, NO. 1, 1981

guards. To illustrate this, consider a subroutine process S with
processes U; and U, its users. Central to S is the repetitive
guarded command

UL) - ... U I()

DU)—...0)]
for handling subroutine calls, where U, !() and U,!() are
optional depending on whether a result value is expected.

The user processes (e.g. U, and U,) simulate subroutine calls
to S by the sequence;

S)...S%)

The problem is that this sequence must be observed even when
no output is required from the user process to the simulated
subroutine S. In this case S!() is nothing more than a pure
signal to avoid loss of efficiency (as an example consider the
bounded buffer solution of Hoare’s). This problem could be
remedied if output commands were allowed in guards. With
our scheme this is possible.

Central to the subroutine process S is the repetitive command :

*[Sub!(value-result) — . . .]
central to U, and U, is the command:
Sub ?(results)

As an example of this is a subroutine that returns to the calling
process some unique value. This value might be a unique
number for identification purpose (something that is frequently
used in operating systems), or value from a random number
generator, current-time value (time stamp (Lamport 1978)), etc.

3.3 Multiple-entry/exit subroutines

Multiple-entry/exit subroutines (Hoare, 1972) are handled in
our scheme in a manner similar to the one of Hoare’s. The
main difference is that we use port names rather than process
names in the I/O commands. Thus we also achieve here the
same advantages as we have obtained with conventional sub-
routines (as discussed above). As an example, consider a sub-
routine process S with two entry points:

*[Sub ?entry,(value-params) — . . .
[] Sub?entry,(value-params) — . . .]

Where again Sub is a port name declared locally to process S.
Note, that in contrast to single entry subroutines nondeter-
minism here is handled by the port mechanism as well as the
guarded command mechanism.

3.4 Bounded buffer
A pair of processes Producer and Consumer wish to com-
municate via a buffering process X, that contains up to ten
portions. The Producer process outputs to X, while the
Consumer inputs from X.
The process X could be implemented as follows:
X::

Bound: port;

Buffer: (0. . 9) portion;

In, Out: integer;

In := 0;

Out := 0;

*[In < Out + 10; Bound ?Buffer (In mod 10) — In :=
In + 1;

[] [Out < In; Bound!Buffer (Out mod 10) - Out :=
Out +1;

]

In this example, X is the owner of the port Bound. Therefore,
X can have both input and output commands in guards invol-
ving that port. In contrast, since Hoare does not allow output
commands to appear in guards, he had to introduce the
command X!more to be executed by the Consumer process to

© Heyden & Son Ltd, 1981

202 udy 60 U0 1s9n6 Aq £2619€/8./1/¥2/101E/UlWOd/ W00 dNo"dlWspeoe)/:SAjY Wolj paPEojuMOq

signal the fact that it is ready to execute X ?p.

It is interesting to note that our solution to the bounded
buffer problem is quite analogous to the solution using conven-
tional monitors. This is precisely what Hoare commented on in
Section 7.8 of his paper.

3.5 Integer semaphore
A general semaphore is to be implemented as a CSP process S.
The process S is to be shared among N user processes.

S::
Sem: port
Val: integer;
Val := 0;
*[Sem?V() - Val := Val + 1;
[Val > 0; Sem?P() — Val := Val — |
]

Each user process increments the semaphore by executing
Sem!V() or decrements it by executing Sem!P().

In contrast to Hoare’s solution we do not use an array of
processes to represent the user processes. In addition, process S
need not indicate which process can communicate with it.
This corresponds to the general way subroutines/monitors are
used.

4. Further development
In this section we discuss several more issues concerning
Hoare’s proposal and ours.

4.1 Port restrictions

There is one more issue concerning ports that is worth
discussing here. It concerns the question of providing additional
declarative mechanisms to allow the owner of a port to state
restrictions on the way the port is used. Such restrictions might
be:

(a) limit the number of processes that can use the port
(b) list the processes that are allowed to use the port

(c) restrict the user of the port to either input or output via the
port but not both

(d) restrict the type of messages that can be handled through the
port.

Such restriction can be verified to hold at compile time, and
thus reduce some runtime overhead. We shall elaborate only on
the last of these in this paper.

In many cases one would like to restrict the type of message
that can be transferred through a particular port, to a single
unique type. This could be accomplished by allowing the owner
of a port to declare the message type that can be associated
(transferred) through the port. This will eliminate the need for
run time checking that the target variables of the input com-
mand match the value denoted by the expression of the output
command. Instead, the compiler can verify that this restriction
is indeed observed. For example, consider the Bounded Buffer
problem (Section 3.4). One could declare:

Bound: port of portion;

The compiler then can verify that via port Bound one can only
input and output variables of type portion.

4.2 Arrays of Ports

In some applications the concept of an array of ports seems
appropriate. For example, the handling of recursive sub-
routines and the scheduling of identical server processes among
user processes. The problem is that in order to handle these
cases effectively one needs to distribute such an array over
several owners. In order to achieve this we will allow the
declaration of an array of ports to be distributed over several

© Heyden & Son Ltd, 1981

processes. We only require that the same element of such an
array will have a unique owner. This can be easily verified by
the compiler. Let us illustrate this concept by an example.
Suppose that we have 50 identical server processes that are to
be allocated to user processes upon demand.
Server (i: 1. . 50)::
Ali] : port;

In this case we have declared 50 processes each of which owns
one element out of the array of ports A.

User processes may require a service to be performed by one
of the server processes. Since all of them are identical any one
of them will suffice as long as it is not busy performing the
service for another user process. To achieve this, one can
provide a Scheduler process that distributes to the users
indices to the array A. Thus a user first acquires an index say i,
from the Scheduler process; it then uses it by communicating
with the Server process it has been allocated via the port A(i);
finally it releases the Server process by calling upon the
Scheduler process and returning (outputting) the index i.
Note that this scheme is quite similar to the conventional
resource scheduling scheme with monitors.

5. Implementation notes

In this section we outline a general method for implementing
the input and output commands. This will be done by present-
ing an abstract implementation of these constructs. Our
approach here is similar to the one taken in Silberschatz (1979).
We restrict our attention here to a simplified version of
Hoare’s constructs, namely, that processes can exchange only
fixed size messages. We also do not discuss here the question as
to how information is transferred from one process to another.

When processes wish to communicate, some information
about the state of each process must be exchanged in the course
of executing an I/O command, in order to determine when and
whether communication can take place. A state information
exchange may be viewed as a signal which carries no infor-
mation relevant to a particular program, but is needed for
synchronisation purposes. When looking for an efficient
implementation of the I/O commands one seeks an algorithm
that will reduce the number of such synchronisation signals.
Moreover, the signals should not result in deadlocks which
could not otherwise occur.

In the following we present one such algorithm for our proposed
I/O constructs. The approach we take in presenting the
abstract implementation will be to discuss these issues in terms
of owner and users of a single port, say A. We adopt the rule
that a user of a port initiates an I/O command by sending a
message (or signal) to the owner of the port requesting the I/O
service.

In order to handle communication it is necessary to define
certain data structures. These may be implemented as memory
locations, hardware registers, hardware buffers, etc. In this
paper we describe these structures in terms of Pascal notations
(Wirth, 1971). For each locally declared port A, the following
data structures are needed so that users of A can notify their
intention for communication.

var UserA = ((list of all users of port A));

ReadA: array [UserA] of Boolean;
WriteA: array [UserA] of Boolean;
These are declared locally to the process that owns port A.

In addition to these data structures which are declared for each
individual port, additional structures are needed for each

THE COMPUTER JOURNAL, VOL. 24, NO. 1, 1981 81

202 udy 60 U0 1s9n6 Aq £2619€/8./1/¥2/101E/UlWOd/ W00 dNo"dlWspeoe)/:SAjY Wolj paPEojuMOq

individual process, to allow internal buffering and the handling
of transfer of messages from one process to another. The
following structures are declared locally to each process:

var Buffer: Message;
Flag: Boolean;
Pname: Process-name;

These data structures are intended for the following use:

(a) ReadA ({source)) is set to the value True by the process
{source) whenever that process is ready to output a mes-
sage to the process that owns port A

(b) WriteA ({destination}) is set to the value True by the pro-
cess (destination) whenever that process is ready to input a
message from the owner of port A

(c) Buffer is a variable of type Message that is used by process P
for internal buffering, so that communication can take
place between it and its communicating processes

(d) The variable Flag of process Q is used as follows. Let Q be
the user of port A, owned by process P. Flag is set to the
value True by process P, to indicate that P has completed an
I/O service requested by Q

(e) Pname is used in process P to record the name of the process
whose I/O request is currently being fulfilled by process P.

These data structures will be used in the implementation of the
input and output commands.

The system provides the following primitives for handling the
transfer of data:

(a) Put (Q, M) = transfer message M to the Buffer of pro-
cess Q

(b) Get (Q, M) = transfer content of Buffer of process Q to
M

(c) Signal (Q, F) = set the Boolean variable F of process Q to
the value True (where F is either the
variables Read, Write, or Flag)

(d) Wait (F) = wait until value of F is True. The waiting
can be carried out by either busy waiting
(if the process runs on a dedicated pro-
cessor), or by process suspension (in case
the processor is multiplexed)

(e) Select = A is either the array Read or the array
(A, Pname) Write. Select is a function procedure that
returns the value True if there exists a
process-name Q such that A(Q) = True.
If this is the case, then in addition
Pname = Q. If there are several such Q’s
then an arbitrary Q is selected to be
assigned to Pname.

References
BaLzer, R. M. (1971).
BRrINCH HANSEN, P. (1978).
DuksTRA, E. W. (1975).
457.
HoARE, C. A. R. (1972).
Hoarkg, C. A. R. (1978).
LAMPORT, L. (1978).

We emphasise again that for the purpose of this paper we
ignore the problem as to how these primitives are handled.

We are in a position now to describe how the input and output
commands are handled. We will do so by describing their
implementation in terms of an owner and user of a common
port A. Let P and Q be a pair of communicating processes such
that P is the owner of A, and Q the user of A. The translation
of the input and output commands (which do not appear in
guards) in P and Q is presented below:

P (owner of port A) Q (user of port A)

Ala A%
Wait (Select (WriteA, Pname)) Signal (P, WriteA(Q))
Put (Pname, a) Wait (Flag)
WriteA(Pname) : = false b := Buffer
Signal (Pname, Flag) Flag := false

A% A'b
Wait (Select (ReadA, Pname)) Buffer := b
Get (Pname, a) Signal (P, ReadA(Q))
ReadA(Pname) : = false Wait (Flag)
Signal (Pname, Flag) Flag : = false

Note that the owner always waits for the user to initiate I/O.

How are 1/O commands handled in guards? Recall that we
require that a process can have 1/O commands in guards, but
these commands may involve only those ports that it owns.
This implies that a process executing a guard is always waiting
for the initiation of I/O requests in some other process. Thus
one can easily extend the translation algorithm described above
to the case where I/O commands appear in guards. We do not
elaborate on this issue any further here.

We note that our implementation did not take into account
the fact that processes may terminate. This can be easily
handled by adding another data structure in each process. This
data structure will be used by the process to record and remem-
ber which of its communicating partners have terminated.

6. Conclusion

We have presented an alternative to Hoare’s scheme that
required that every input and output command must name its
source and destination explicitly. Instead, we suggested the use
of port names through which communication is to take place.
We have defined the notion of ownership of a port and have
shown that with this notion one can obtain uniform efficient
implementation of the communication and synchronisation
constructs. Moreover, it provided the means for allowing both
input and output commands to appear in guards. We have
demonstrated the usefulness of our concepts by providing
solutions to a variety of familiar programming exercise.

Ports—a Method for Dynamic Interprogram Communication and Job Control, AFIPS Conference.
Distributed Processes: A Concurrent Programming Concept, CACM, Vol. 21 No. 11, pp.934-941.
Guarded Commands, Non-determinancy and Formal Derivation of Programs, CACM, Vol. 18 No. 8, pp. 453-

Proof of Correctness of Data Representation, Acta Informatica, Vol. 1 No. 4, pp. 271-281.
Communicating Sequential Processes, CACM, Vol. 21 No. 8, pp. 666-677.
Time, Clocks, and the Ordering of Events in a Distributed System, CACM, Vol. 21 No. 7, pp. 558-565.

Preliminary ADA Reference Manual, SIGPLAN Notices, Vol. 14 No. 6.

SILBERSCHATZ, A. (1979).
pp. 542-547.

US DEPARTMENT OF DEFENSE (1977).
Notices, Vol. 12 No. 12, pp. 39-54.

WALDEN, D. C. (1972).
221-230.

Communication and Synchronization in Distributed Systems, IEEE Trans. on Software Engineering, Vol. 5 No. 6,
Department of Defense Requirement for High Order Computer Programming Languages, SIGPLAN

A System for Interprocess Communication in a Resource Sharing Computer Network, CACM, Vol. 15 No. 4, pp.

WIRTH, N. (1971). The Programming Language PASCAL, Acta Informatica, Vol. 1 No. 1, pp. 35-63.

82 THE COMPUTER JOURNAL, VOL. 24, NO. 1, 1981

© Heyden & Son Ltd, 1981

202 11dY 60 UO 159N AQ 426198/84/L/+Z/0I0IME/UfW00/W00"dN0"0ILISPESE/:SARY WOl POPEOJUMOQ

