A new graph colouring algorithm

R. D. Dutton* and R. C. Brighamt

Many heuristic polynomial time algorithms exist to colour the vertices of connected undirected
graphs having no loops or multiple edges. Associated with each such algorithm are graphs for
which the number of colours required in the colouring produced by the algorithm is significantly
greater than the minimum that are necessary. Thus it is desirable to have available a range of such
algorithms. One, based on a theorem of Zykov, is described here. It has performed well on most
graphs to which it has been applied, including some on which other algorithms fail. However, it
has its own ‘bad’ graphs, and one such family is listed.

(Received June 1979)

We restrict ourselves to connected undirected graphs G which
have no loops or multiple edges. A k-colouring of G is an
assignment of one of k colours to each node of G so that con-
nected nodes are assigned different colours. The chromatic
number of G, x(G), is the smallest k for which G is k-colourable.
Graph colouring algorithms may be classified into (@) those
which find a x(G)-colouring for any graph and (b) those which
only guarantee a legitimate k-colouring for some k in the range
x(G) < k < n, where n is the number of nodes of G. All known
algorithms in the first class have execution times which are
proportional to an exponential function of the number of nodes
of G. There are, in fact, strong reasons for -believing no
polynomial time algorithm exists for obtaining a x(G)-colouring
for arbitrary graphs (Gary and Johnson, 1976). Exponential
algorithms are often impractical for even moderately sized
graphs and, consequently, considerable effort has been devoted
towards developing polynomial algorithms in the second class.
There is a limit to the effectiveness of such algorithms. It has
been shown that if there is no polynomial algorithm for the
first class, then for every polynomial algorithm in the second
class there exist graphs G for which the colouring obtained by
the algorithm will be at least twice x(G) (Gary and Johnson,
1976). In other words, if A(G) is the number of colours which a
polynomial algorithm A predicts is needed when applied to G,
then there are graphs for which A(G)/x(G) > 2.

From this we conclude there probably is no universally ‘good’
polynomial time algorithm. It would therefore seem beneficial
to have at our disposal several different algorithms along with
some knowledge of the graphs for which each has problems.
Among the simplest algorithms are the sequential colouring
schemes and their various modifications (Matula, Marble and
Isaacson, 1972). A more sophisticated approach is taken by
Wood’s algorithm (1969). Johnson (1974) and Mitchem (1976)
have analysed these and designed classes of graphs for which
each performs rather poorly. We present here yet another
polynomial time colouring algorithm. We also construct a class
of graphs for which 4(G)/x(G) becomes arbitrarily large.

Background

Basically the algorithm is a modification of an exponential time
algorithm in Brualdi (1977) which was, in turn, suggested by a
theorem due to Zykov. We first need the following definitions
for arbitrary nonadjacent nodes x and y of a graph G.

Definition:
G/xy is the graph obtained from G by including the edge (x, y).

Definition:
G:xy is the graph obtained from G by replacing x and y by a
single node connected to all nodes adjacent to either x or y or
both.

The latter operation is often called a merge, contraction, or
identification of x and y. Zykov’s result is the

Theorem
For arbitrary nonadjacent nodes x and y

2(G) = min{y(G/xy), x(G:xp)}.
As a direct consequence of this theorem we have the

Lemma
For any graph G there exists at least one set of n — x(G) pairs of
nonadjacent nodes to which the merge operation may be
successively applied to create a complete graph with y(G) nodes.

The proof of this lemma is straightforward and will not be
presented here. We offer as an example the 3-colourable graph
in Fig. 1(a). Fig. 1(b) and 1(c) show the result of merging nodes
1 and 4 followed by 2 and 6. Fig. 1(d), 1(e) and 1(f) show a
quite different result when merging is applied to the node pairs
(3, 4), (2, 6) and (1, 5).

Intuitively, a good algorithm should select pairs of nodes for
merging which will forestall the formation of a complete graph
for as long as possible. This suggests, since every merge reduces

1
2 3
4 6
(1,4 (a) (1,4)
2% (2,6)
5 6
(b) 1 (c) (14 5)
2@3'4) (2’6)@3'4) (2,6A3,4)
° 5
(@) (e) (£)

Fig. 1

*Department of Computer Science, University of Central Florida, Orlando, Florida 32816, USA.
tDepartment of Mathematics and Statistics, University of Central Florida, Orlando.

CCC-0010-4620/81/0024-0085 $01.00

© Heyden & Son Ltd, 1981

THE COMPUTER JOURNAL, VOL. 24, NO. 1, 1981 85

202 udy 60 U0 1s9n6 AQ 861 9€/58/1/Z/a01E/UlWOD/W0d dNo"dlWspeoe)/:SAY WoIj POPEOUMOQ

Fig. 2

the number of nodes by one, that we should select the pair
which leaves as few edges as possible, i.e. removes as many
edges as possible. This will tend to maximise the options
available for the next merge. In a local sense this can be
accomplished by merging the pair with the maximum number
of common adjacent nodes.

The algorithm

The algorithm below assumes a graph G with an initial node set
{vy, v5, . . ., v,}. Each iteration reduces the size of G by one
node and at any point in time ‘node’ v; represents not only the
original node v; but also all nodes which have been merged
‘into’ v;, directly or indirectly, by previous iterations.

Step 1
For all nonadjacent nodes v; and v; compute c;
common adjacent nodes.

;» the number of

Step 2

If no nonadjacent nodes remain, stop. Else determine the non-
adjacent pair v; and v; for which ¢;; > ¢, for every other non-
adjacent pair v, and v,.

Step 3
Merge v; and v;. Adjust the c,; values for all affected non-
adjacent pairs. Set n « n — 1 and repeat from Step 2.

References

BruaLDl, R. A. (1977).

CHRISTOFIDES, N. (1975).

GARY, M. R. and JonnsoN, D. S. (1976).

JoHNsoN, D. S. (1974).

MATULA, D. W., MARBLE, G. and IsaAcsoN, J. (1972).
Press, New York, pp. 109-122.

MiTcHEM, J. (1976).
182-183.

Woop, D. C. (1969).
pp. 317-319.

86 THE COMPUTER JOURNAL, VOL. 24, NO. 1, 1981

When the algorithm stops in Step 2 the current value of n is the
estimate of the chromatic number of the graph and for
1 < i < n all nodes which were merged into node v; may be
assigned the i th colour. The time and space complexities are of
order n® and n?, respectively.

Several of the graphs found in Christofides (1975) were tested
and produced minimal colourings. One of these, shown in
Fig. 2, was stated to have a chromatic number 5.

Our algorithm identified the following four-colouring:
{1,2,3,4,5}, {6, 11, 16}, {9, 13, 15}, {7, 8, 10, 12, 14}. Graphs
which were specifically designed to thwart certain other
colouring algorithms (Johnson, 1974) were also correctly
coloured, e.g.

(1) G,y = (V E) where V,, = {a;, b; for i =
E = {(a;, b)) for all i # j} and

(2) G, 5 where V,, = {a;, b;, c;, fori = 1,...,m} and
E = {(aia bj)a (aiv Cj)s (bh cj) fOI‘ all i #]}

That the algorithm successfully coloured G, , is not sur-
prising since we can show it will perform correctly on any con-
nected two-colourable (bipartite) graph. Informally, any
connected bipartite graph with n > 3 has at least two non-
adjacent nodes with one or more other nodes adjacent to both.
The algorithm will select two such nodes, which will have the
same colour in every two colouring of the graph, and merge
them. Since they had the same colour in the original graph, the
resulting graph will also be two-colourable, but with one less
node. The algorithm will iterate until n = 2.

As expected, there are graphs for which the algorithm performs
badly. Let G,, = (V, E) have

1,..m} and

={a, b x,y,z;jfori=1,...mandj=1,...,m +1}
and
E = {(a’ b)} Y {(a’ xi)» (b,y,) fOl‘i =]»- . -am} v {(xiayj)
fori # j} v {(xi, z;j), (¥, z;)) fori = 1,... ,mand
j=1...m+ 1}.

For m > 2 such graphs have x(G,) = 3, but our algorithm
estimates the chromatic number to be m + 2. These graphs
also cause Wood’s algorithm to perform badly, but are con-
siderably less complex than those constructed by Mitchem and
Johnson.

Conclusion

We have presented a colouring algorithm which can be
included in the growing arsenal of such schemes. It performs
well on a wide variety of graphs as well as minimally colouring
any bipartite graph. We make no claims of superiority over
any other colouring algorithm.

Acknowledgement
We wish to thank Mike Dotts for encoding and testing the
algorithm.

Introductory Combinatorics, Elsevier North-Holland Inc., New York.
Graph Theory An Algorithmic Approach, Academic Press, London.
The complexity of near-optimal graph coloring, JACM, Vol. 23 No. 1, pp. 43-49.
Approximation algorithms for combinatorial problems, J. Comptr. Syst. Sc., Vol. 9, pp. 256-278.
Graph coloring algorithms, Graph Theory and Computing (R. Read, Ed.), Academic

On various algorithms for estimating the chromatic number of a graph, The Computer Journal, Vol. 19 No. 2, pp.

A technique for coloring a graph applicable to large scale timetabling problems, The Computer Journal, Vol. 12 No. 4,

© Heyden & Son Ltd, 1981

202 udy 60 U0 1s9n6 AQ 861 9€/58/1/Z/a01E/UlWOD/W0d dNo"dlWspeoe)/:SAY WoIj POPEOUMOQ

