Relational Pascal data base interface

S. Alagi¢ and A. Kulenovi¢

Faculty of Electrical Engineering, University of Sarajevo, Topli¢ka bb, 71113 Sarajevo,
Yugoslavia

The modification of Pascal proposed in the paper is based on the relation type which combines the
properties of the set type and the file type of Pascal and includes properly these two Pascal types.
The relation type is equipped with both high level (set oriented) relational operations and low level
primitives for operating on particular tuples of relations. Within the relational framework a novel
and unified treatment of images and base relations is given. This approach permits isolation of those
issues in optimisation and decomposition which can be treated independently of the details of the
procedural decomposition, clarifies and simplifies the decomposition problem. The proposed pro-
gramming language is smaller and simpler than Pascal and still very powerful in handling relational
data bases. Examples of nonprocedural and procedural decomposition are presented in order to
demonstrate the suitability of the proposed features and their implications on the architecture of the

supporting system.
(Received May 1979; revised February 1980)

1. The relation type
The form of the denotation of this type is

relation of (base type) (1.1

where the base type may be a simple type, an array of characters
(string) or a record type, whose fields have types which are
either simple or arrays of characters (strings). The value of a
variable of a relation type is a set of tuples. Since relations are
sets, the properties of relations are in many ways similar to the
properties of Pascal sets. The essential differences are:

1. The base type of a relation may be a record type or an array
of characters.

2. The size of relations is enormous in comparison with the
size of Pascal sets, and thus their mode of implementation
involves secondary storage.

3. In addition to the usual way of constructing sets in Pascal,
a relation constructor of a general form is available for
relations. This constructor includes, as particular cases, the
operations of projection, restriction and join of the rela-
tional algebra.

4. A special form of statement (foreach) is available for
relations; its form parallels the form of the relation con-
structor.

Base relations appear in a Pascal user program as external
objects (just like external files). They must be defined in the
program heading. Those fields in the base relations irrelevant
to the user program may be omitted, otherwise the names of
relations, field identifiers and their types must conform to
those of base relations.

As an example, we give declarations of relations describing the
data base of a department store. This example will be used in
subsequent sections.

type string = array [/ . . 20] of char;
deptype = (toy, shoe, furniture, appliances, food,
men, ladies, cosmetics, admin);
Jjobtype = (teller, accountant, assistant, manager);
emprec = record name: string;
dept: deptype;
mgr: string;
sal: integer;
Jjob: jobtype
end;
supplyrec = record supplier: string;
item: integer;,
vol: integer
end;

salesrec = record dept: deptype;
item: integer;
vol: integer

end;
locrec = record dept: deptype;
floor: 1..20
end;

var emp: relation of emprec;
sales: relation of salesrec;
supply: relation of supplyrec;
loc: relation of locrec; (1.2)

2. Relation constructor

Relational expressions are similar to set expressions in Pascal.
The empty relation is denoted as []. In order to denote a
relation which consists of elements r, ry, . . , r,, We write
[re,r2s .-, 70]. 1y 12y .., r, are expressions which, when
evaluated, yield the tuples of the constructed relation. The

‘most general form of the relation constructor is

[each (list of expressions)

for (list of control variables)

in (list of relation variables)

where (qualification expression)]. 2.1

The control variables correspond to the relation variables in
the list which follows in and this left to right correspondence
determines their type (range). The expressions in the list after
each determine how fields of the tuples of the constructed
relation are computed (selected). The length of this list deter-
mines the degree of the constructed relation. The boolean
expression after where is the restriction condition. Only tuples
satisfying this condition qualify for the selection operation.
This construct combines the operations of projection, restriction
and join of the relational algebra.

In the example below a new relation underpaid is constructed
consisting of names and salaries of assistants who earn less
than 10000.

var underpaid: relation of record name: string;
sal: integer
end;

begin underpaid .= [each x.name, x.sal

for x in emp

where (x. job = assistant)

and (x.sal < 10000)]
end 2.2)

In order to construct the relation whose tuples consist of names,
salaries and department names of assistants located on the first

CCC-0010-4620/81/0024-0112 $03.00

112 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

© Heyden & Son Ltd, 1981

202 udy 60 Uo 1s8n6 Aq 8808EE/Z L L/2/¥Z/31014e/|ufoo/Wwod"dno-oIepED.//:SARY W) PAPEo|umMoQ

floor, we write the expression:

[each x.name, x.sal, x.dept

for x, y in emp, loc

where (x. job = assistant)

and (x.dept = y.dept)

and (y.floor = 1)], 2.3)
which, in addition to the operations of projection and restric-
tion includes also the operation of joining the relation emp and
loc (x.dept = y.dept) over the field dept.

3. Set operators

All the set operators from Pascal are applicable to relations.
These operators are membership (in), subset operations (<,
<=, >=, >), equality and nonequality of sets (=, <>),
union (+), intersection (*) and difference (—).

In this section we give examples illustrating how some of
these operators may be used. In order to construct the relation
of all items sold by departments on the second floor we may
write:

[each x.item
for x in sales
where x.dept in [each y.dept
for yinloc
where y. floor = 2]] . 3.1
An alternative way, based on the explicit use of the join
operation, would be:

[each x.item

for x, y in sales, loc

where (x.dept = y.dept)

and (y.floor = 2)]. 3.2)

The use of the set union is illustrated by the following example,
in which a new tuple is inserted into the relation emp:

var newemp: emprec;

begin with newemp do

begin name := ‘anderson’;
dept := toy;
Jjob := assistant;
sal := 7000;
mgr := ‘jones’

end;

emp := emp + [newemp]

end . 3.3)

The final example in this section illustrates how the operation
of division of the relational algebra is expressed within this
framework. The value of the expression (3.4) is the set of
names of those suppliers who supply all items sold in the
cosmetics department:

[each x.supplier
for x in supply
where [each y.item
for y in supply
where y.supplier = x.supplier]
> =
[each x.item
for x in sales
where x.dept = cosmetics]]. 3.9

We use the example (3.4) to point out the advantages of block
structure which avoids the problems of block label notation
discussed in Astrahan et al. (1976) and Chamberlin et al.
(1976). In the above example we have three scopes, each of
which coincides with one relation constructor. The outer scope
has a local variable x. Two inner scopes, nested within the
outer scope, contain local variables y (first) and x (second).
Nesting of relation constructors amounts to nesting of pro-
cedures into which these constructors are decomposed in the

© Heyden & Son Ltd, 1981

manner to be described in later sections. This means that the
block structure just described is expressed in terms of the
block structure of Pascal.

4. Standard functions
The following standard functions over relations are available:
card, which gives the cardinality of a relation, sum, max, min
and avg which give the sum, the maximum, the minimum and
the average value respectively of the relation to which they are
applied. The functions sum, max, min and avg may be applied
only to relations of degree one whose tuples are either of type
real, integer or a subrange of integer.

The following relational expression constructs the relation of
those employees whose salary is greater than that of any
employee in the shoe department:

[each x.name
for xinemp
where x.sal > max ([each x.sal
for xinemp
where x.dept = shoe])). 4.1)

5. Foreach statement

foreach statement is used for specifying actions upon relations
Its form is chosen in such a way that it parallels the relation
constructor:

foreach (list of control variables)

in (list of relation variables)
where (qualification expression)
do (statement) . 5.1

Control variables in the list after foreach correspond, in the
left-to-right order, to the relation variables in the list after in,
and their types are the respective base types of these relations.
The scope of the control variables is the statement following
do. This statement specifies the action to be performed upon the
selected tuples. This action may change the values of control
variables. Only those tuples satisfying the qualification con-
dition (a boolean expression) are subject to this action. We
shall first show how to use this statement in order to perform
updating of selected tuples in a relation.

Give a 10 percent raise to Adams if he works on the first
floor:

foreach x, y in emp, loc

where (x.name = ‘adams’)

and (x.dept = y.dept)

and (y.floor = 1)

do x.sal = x.sal * 1.1 . 5.2
foreach statement is also used to delete selected tuples from a
relation. For example, in order to delete all employees who
work for departments on the first floor we may write:

foreach x, y in emp, loc
where (x.dept = y.dept)
and (y.floor = 1)
do emp := emp — [x]. (5.3)
It may also be used in a similar fashion to insert selected tuples
into a relation.

6. Images and high level decomposition
The features of extended Pascal described in the previous
sections are intended for (far) end users of the system. In the
subsequent sections we describe features whose use must be
much more restrictive, since they offer much more explicit
control over the base relations. In this section we focus to one
such feature, an image, and its consequences.

An image is a relation which determines logical ordering of
tuples of some other relation with respect to values in one or
more (sort) fields of the relation. The base type of an image

THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 113

202 udy 60 Uo 1s8n6 Aq 8808EE/Z L L/2/¥Z/31014e/|ufoo/Wwod"dno-oIepED.//:SARY W) PAPEo|umMoQ

consists of these sort fields and a pointer field. For a given
value of the sort fields, the value of the pointer field determines
the tuple of the base relation with the given value of the sort
fields. For example, suppose that we want to define an ordering
of the relation emp on the sort field name. An image which
determines this ordering would be defined as follows:

var namemp: relation of record name: string:
ref: 1emprec
end; 6.1)
and it is created by a call of the procedure createimage in
which the parameters specifying the identifier of the image and
of the relation over which it is defined must be supplied. The
pointer type is here the pointer type of Pascal adapted for the
specific purposes of secondary storage. It is as in Pascal, a
linearly ordered set of values (see Hoare and Wirth, 1973;
Jensen and Wirth, 1975) which point to values of the type to
which the pointer type is bound. The use of pointer fields in
images is subject to a very restrictive discipline which does not
allow the users to change them (they appear as read-only
variables). All the changes are performed by the system.

One or more images may be created over a relation. Among
them, at most one image may have the clustering property. A
clustering image is an image in which the physical placement of
tuples of the underlying relation corresponds to the logical
ordering determined by the image. If the values of the sort
fields of an image constitute a candidate key of the underlying
relation, the image is called unique.

The user who is aware of the existence of images over a
relation is in a position to specify much more efficient actions
upon the relation. This follows from the fact that an image is a
much smaller relation than the base relation over which it is
defined, and thus searching an image is much faster than
searching a relation. This simple argument based on cardinali-
ties has, of course, much more involved implementation
aspects, of which the user need not be aware at all (images are
implemented using dynamic multilevel index structures).
Furthermore, not only the presence of images, but also their
clustering property, greatly affects the efficiency of various
actions.

While the knowledgeable user may specify its actions in a
more specific form using images, the end user who is not aware
of them will use the features described in the previous sections,
and his programs are subject to a decomposition procedure
performed by the system in which the existence of images and
their properties are explored and exploited to obtain a more
specific and more efficient program specification. This pro-
cedure is called high level decomposition since its result is still
a program expressed in terms of high level, set (relation)
oriented primitives, as opposed to a subsequent decomposition
step whose result is a procedural form of the program expressed
in terms of tuple-at-a-time primitives. The high level decompo-
sition procedure will be illustrated by two examples.

Consider the statement:

result := [each x.name, y.floor
for x,yin emp, loc
where x.dept = y.dept] 6.2)

and suppose that there exist images empdept and locdept over
the relations emp and loc respectively. The sort field of these
images is the joining field dept. Given these assumptions, there
are two decompositions of the statement (6.2). One of them is
presented in (6.3), and in the other the roles of empdept and
locdept are interchanged.

type namefloor = record name: string,

floor: 1..20
end;
var result: relation of namefloor;

114 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

buff: namefloor,
empdept: relation of record dept: deptype;
ref: Temprec
end;
locdept: relation of record dept: deptype;
ref: tlocrec
end;
begin result := [];
foreach x in empdept
do foreach y in locdept do
begin buff.name := x.ref{.name;
buff. floor := y.ref?1.floor;
result 1= result + [buff]
end
end . (6.3)
The difference between the two decompositions is thus which
image controls the outer loop. In (6.3) it is empdept. The
optimiser must choose one of the two decompositions. (6.3) is
a clear choice if empdept is not a clustering image and empdept
is. In other cases (either both images are clustering or both are
not clustering) the optimiser must evaluate performance
formulas in order to make a choice.
The next example is more involved. Consider the statement:

result := [each x.name, y. floor
for x, y in emp, loc
where (x.job = assistant)
and (y.floor = 4)
and (x.dept = y.dept)] 6.9)
and suppose that there exist nonclustering images empjob and
empdept over the relation emp and locfloor and locdept over the
relation Joc. The sort fields of these images are specified in the
following declarations:
var empjob: relation of record job: jobtype;
ref: Temprec
end;
locfloor: relation of record floor: 1 .. 20;
ref: tlocrec
end;
empdept : relation of record dept: deptype;
ref: lemprec
end;
locdept : relation of record dept: deptype;
ref: Tlocrec
end; (6.5)

Under these assumptions, a possible decomposition of (6.4)
which is based on the TID algorithm of Astrahan et al. (1976)
is presented in (6.6). Whether this decomposition will be chosen
is decided by the optimiser evaluating performance formulae
for this and other possible decompositions of (6.4).

var rl: relation of Temprec;
r2: relation of flocrec;
r3: relation of record ref1: Temprec;
ref2: locrec

end;
buff': record name: string,
floor: 1..20
end;
begin rl := [each x.ref

for x in empjob
where x.job = assistant];
r2 := [each x.ref
for x in locfloor
where x. floor = 4];
r3 := [each x.ref, y.ref
for x, y in empdept, locdept
where x.dept = y.dept];

© Heyden & Son Ltd, 1981

202 udy 60 Uo 1s8n6 Aq 8808EE/Z L L/2/¥Z/31014e/|ufoo/Wwod"dno-oIepED.//:SARY W) PAPEo|umMoQ

result :=[17;
foreach x inr3
where (x.refl inrl)
and (x.ref2inr2)
do begin buff.name := x.ref11.name;
buff. floor := x.ref21.floor;
result := result + [buff]

end
end . (6.6)

7. Low level interface

The low level interface contains tuple-at-a-time primitives
upon relations, which are similar to the file primitives of
Pascal. In fact, the relation type, as it appears at this level,
includes properly the file type of Pascal.

In view of the fact that the low level interface is powerful in
terms of what it enables the user to do with the base relations
and images over them, granting these facilities must be care-
fully controlled.

The low level primitives upon relations and images are sum-

marised briefly and informally below. Examples of their use
will be given in the next section. In what follows f denotes a
relation which may be an image unless otherwise specified.
rewrite (f) The empty relation is assigned to f.
reset (f) Every relation has a cursor associated with it. The
cursor determines the current position within the
relation and thus the current tuple of the relation,
which equals the value of the variable /1 . reset (f)
sets the cursor to the first tuple of the relation f. If
fis an image, the first tuple is determined accord-
ing to the sort fields of the image.
Applicable only if the cursor of the relation f does
not point to the end of f (not eof (f) must hold) .
get (f) moves the cursor one position in the for-
ward direction. If f is an image, the forward
direction is determined by the sort fields of the
image.

k is a variable whose type is the base type of f. get
(f; k) positions the cursor of f to the first tuple of /
which equals k. If no such tuple exist in f, eof (f) is
set to true. If £ is an image, setting the pointer
field in k before calling get (f, k) has no effect.
Applicable only if the cursor of f points to the end
of f (eof (f) must hold) . put (f) appends f1 to f.
All images over f are updated . eof (f) remains
true. If fis an image possible setting of the pointer
field in f1 has no effect. This field will be set in the
appended tuple by the system.
tis a variable of the base type of f. If fis an image,
possible setting of the pointer field of 1 has no
effect . put (f, t) inserts ¢ into f according to the
implementator defined algorithm. If f'is an image,
this insertion preserves the linear ordering of the
image. If fis a base relation, all images over f are
updated to reflect the insertion of .

The object identified by p is deleted. If p is a
relation then p is deleted. If p is of the form f 1 then
the current tuple of the relation f (f1) is deleted.
If p is a pointer, then the tuple pointed to by p is
‘deleted. In the last two cases all the necessary up-
dating of images is performed.

This expression evaluates to true if the cursor of f
points to the end of f.

Evaluates to true when the end of a sequence of
tuples with the same value of the sort fields
(duplicates) is reached.
resets the cursor of f to the beginning of the cur-
rent sequence of duplicates.

get (f)

get (f, k)

put (f)

put (f, 1)

delete (p)

eof (f)
eod (f)

resetd (f)

© Heyden & Son Ltd, 1981

8. Low level decomposition

In this section we give examples of decomposition of high level

relational constructs into procedural form expressed in terms of

low level primitives. The purpose of the chosen examples is to

demonstrate the suitability of the low level interface.
Consider first the statement:

result := [each x.name, x.job
for x in emp] 8.1)

where result is a relation variable of the type relation of record
name: string; job: jobtype end . Suppose that there is a clustering
image over emp whose sort field is one of the selected fields in
the above query. Let that field be name. Then in order to
compute the value of result, the relation emp is processed
according to its clustering image. During this processing only
fields name and job are selected. Tuples constructed in such a
way are appended to the relation result in the order of supply.
For the above assumptions when removal of duplicates is not
necessary we obtain the following decomposition of (8.1):

var result: relation of record name: string; job: jobtype end;
nameimage: relation of record name: string;
ref: Temprec end;
begin rewrite (result);
reset (nameimage);
while not eof (nameimage) do
begin resultt.name := nameimaget.name;
result?.job := nameimagel.ref1.job;
put (result); get (nameimage)
end
end . 8.2)

The previous example shows how the operation of projection is
decomposed into a sequence of low level primitives. In the
following example we show how a relation constructor which
includes both projection and restriction, is decomposed.

result := [each x.name, x.dept
for x in emp
where (x. job = assistant)
and (x.sal < 10000)] . 8.3)

Suppose that there is an image over the relation emp with the
sort field job. Then in the procedure which evaluates result,
given in (8.4), the collection of tuples with the field job equal to
assistant are accessed, and those among them which satisfy the
condition sal < 10000 are selected. If the removal of duplicates
is necessary (in (8.4) we assumed it is not), it is performed in the
process of selecting the fields name and dept. The procedure
(8.4) is given for the general case when the image on Jjob is not
unique.

type element = record job: jobtype,
ref: Temprec
end;
var result: relation of record name: string;
dept: deptype
end;
Jjobimage: relation of element;
argument: element;
begin rewrite (result);
argument. job := assistant;
get (jobimage, argument);
if not eof (jobimage) then
repeat if jobimage?.ref1.sal < 10,000 then
begin result].name := jobimage?.reft.name;
resultt.dept := jobimage?.ref1.dept;
put (result)
end;
get (jobimage)
until eod (jobimage)
end . 8.4)

THE COMPUTER JOURNAL, VOL. 24, NO. 2. 1981 115

202 udy 60 Uo 1s8n6 Aq 8808EE/Z L L/2/¥Z/31014e/|ufoo/Wwod"dno-oIepED.//:SARY W) PAPEo|umMoQ

As the final example we present a procedural decomposition of
(6.3)-which was obtained as the result of high level decomposi-
tion. At the procedural level (8.5) amounts to tuplewise
sequential reading of the images empdept and locdept. For each
matching pair of sort fields of these images, the fields name and
floor are selected from the corresponding tuples in the relations
emp and loc respectively. In (8.5) we assumed that removal of
duplicates is not necessary.

var empdept: relation of record dept: deptype;
ref: temprec
end;
locdept: relation of record dept: deptype;
ref: 1locrec

end;
result: relation of record name: string;
floor: 1. .20

end;

begin reset (empdet); reset (locdept); rewrite (result);
while not (eof (empdept) or eof (locdept)) do
begin if empdept1.dept < locdept].dept then
get (empdept)
else if empdept1.dept > locdept?.dept then
get (locdept)
else begin repeat resetd (locdept);
repeat resultl.name :=
empdept].ref1. name;
result1. floor :=
locdept!.ref?. floor;
get (locdept)
until eod (locdept);
get (empdept)
until eod (empdept);
get (empdept); get (locdept)
end
end
end . (8.5)

Conclusions

Starting from a subset of Pascal which is essentially Pascal-S
(Wirth, 1975) we propose its extension to a complete program-
ming language based on the concepts and notation of Pascal.
This extension includes a relational data sublanguage. Our
aim was to obtain a simple and powerful programming
language based on Pascal which would be used in the area of
relational data bases.

The features which extend Pascal-S are structured into a
hierarchy of three levels which are reflected in the architecture
of the supporting system. Since the level of control over the
data base varies from level to level, granting features of lower
levels must be carefully controlled.

The highest level is purely set oriented and relational. The
relational type which extends Pascal-S appears at this level as a
modified set type of Pascal. Apart from the standard set
operations of the set type, the operations of projection,

References

ALAGIC, S. and ArBIB, M. A. (1978).

ALAGICG, S., Jovi¢, R. and RipiaNovi¢, DZ. (1977).
Congress AICA, Pisa.

restriction and join of the relational algebra are included as
special cases of the relation constructor. foreach statement is
added for concise specification of actions upon relations. In
comparison with Schmidt’s proposal (1977), we made some
significant changes of which we mention two: (a) Quantifiers
are excluded. The justification for this is the fact that the data
sublanguage is still relationally complete, as pointed out by
Chamberlin and Boyce (1974), and much simpler, (b) foreach
statement is generalised in that it may include a list of control
variables as in the relation constructor. This natural generali-
sation makes the two constructs completely parallel (one is an
expression, the other is a statement). These two changes taken
together simplify considerably the sublanguage and make it
more convenient and expressive.

The second level, although still completely relational and set
oriented, allows specification of orderings of relations which
are supported by access paths. These orderings are, following
Astrahan et al. (1976), called images. The novelty is a unified
treatment of images and base relations as objects of type
relation, and introduction of a modified (more restrictive)
pointer type of Pascal. We showed using examples that our
relational treatment of images allows isolation of those issues
in optimisation and decomposition which can be treated
independently of the details of the procedural decomposition.
In the process of this high level decomposition, the existence of
images upon relations is exploited to obtain a modified but still
set oriented program specification, which is now reduced to a
form whose translation into the procedural form is fairly
straightforward. Choosing one among several possible strat-
egies for high level decomposition is based on the performance
formulae to be presented elsewhere.

The lowest level consists of tuple-at-a-time primitives upon
relations which extend the file primitives of Pascal. At this
level, the relation type together with low level primitives
includes the file type of Pascal as a special case. This rounds up
our design in which all the types of Pascal are present with
suitable modifications where necessary.

Although we borrow many ideas from Chamberlin and Boyce
(1974) and Chamberlin et al. (1976), most significant differences
come from the properties of Pascal, its discipline of types and
very careful design of the language in general. The result of
adopting strictly the philosophy of Pascal in extending
Pascal-S with various features is much more precise and
consistent language than Chamberlin et al. (1976), which can be
axiomatised in the style of the axiomatic definition of Pascal
(Hoare and Wirth, 1973). This holds even for the lowest level,
and it would be very difficult to achieve in Chamberlin et a/
(1976). Some of the advantages mentioned in the paper come
from the block structure (nesting of relation constructors,
precise use of standard functions and relations, unified treat-
ment of relations and images as sets of tuples, etc.).

Acknowledgement
Research presented in the paper was supported by Republicka
zajednica za nau¢ni rad SR Bosne i Hercegovine.

The Design of Well-Structured and Correct Programs, Springer-Verlag.
A hierarchical host language system based on B-trees, Proceedings of IVth Annual

ASTRAHAN, M. M. er al. (1976). System-R: Relational approach to database management, ACM Transactions on Database Systems, Vol. 1

No. 2.
CHAMBERLIN, D. D. and Boyck, R. F. (1974).
Access and Control.
CHAMBERLIN, D. D. et al. (1976).
ment, Vol. 20 No. 6.
Copp, E. F. (1972).
Hall.
HoARE, C. A. R. and WIRrTH, N. (1973).

116 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

Sequel: A structured English query language, ACM-SIGFIDET Workshop on Data Description,
Sequel 2: A unified approach to data definition, access and control, IBM Journal of Research and Develop-
Relational Completeness of Data Base Sublanguages, in Data Base Systems, Courant Computer Sci Symp 6th, Prentice-

An axiomatic definition of the programming language Pascal, Acta Informatica, Vol. 2.

© Heyden & Son Ltd, 1981

202 udy 60 Uo 1s8n6 Aq 8808EE/Z L L/2/¥Z/31014e/|ufoo/Wwod"dno-oIepED.//:SARY W) PAPEo|umMoQ

Jensen, K. and WIRTH, N. (1975). Pascal User Manual and Report, Springer-Verlag.
ScHMIDT, J. W. (1977). Some high-level language constructs for data of type relation, ACM Transactions on Database Systems, Vol. 2

No. 3.

SMITH, J. M. and CHANG, P. Y. T. (1975). Optimizing the performance of a relational algebra database interface, CACM, Vol. 18 No. 10.
STONEBRAKER, M., WONG, E., Kreps, P. and HELD, G. (1976). The design and implementation of INGRES, ACM Transactions of Database

Systems, Vol. 1 No. 3.

WEDEKIND, H. (1974). On the selection of access paths in database systems, in Data Base Management North-Holland.
WiIrTH N. (1975). Pascal-S: A subset and its implementation, ETH, Zurich.

Book reviews

Software Psychology—Human Factors in Computer and Information
Systems, by Ben Schneiderman, 1980; 320 pages. (Prentice-Hall,
£16-20)

As the range of subject matter covered may not be entirely clear from
the title, I will start with a list of chapter headings. These are: 1.
Motivation for a psychological approach; 2. Research methods; 3.
Programming as human performance; 4. Programming style; 5.
Software quality evaluation; 6. Team organisations and group
processes; 7. Database systems and data models; 8. Database query
and manipulation languages; 9. Natural language; 10. Interactive
interface issues; 11. Designing interactive systems; 12. Computer
power to, of and by the people.

1 found the book both readable and interesting. It is mostly devoted
to discussions and comparisons of different approaches and methods
in the areas covered by the chapter headings, supported by extensive
references to published work. The book has a 20 page bibliography.
Two examples of topics covered in some detail are the value of flow-
charting in program development and comprehension, and different
approaches to software quality evaluation. A satisfactory feature is
that, where appropriate, the statistical significance of results is
quoted and the author usually attempts to reach a view on what the
(sometimes conflicting) evidence means. Although—perhaps inevit-
ably—firm conclusions are rare, the summaries of research evidence
on a range of software topics could be of interest to quite a wide
spectrum of readers. At the end of each chapter is a useful ‘prac-
titoner’s summary’ followed by a ‘researcher’s agenda’ indicating
where further work is needed.

There are, however, some gaps, and it is not entirely clear how the
main areas covered in the book have been selected. For example, the
direct interaction between human beings and computers via various
types of language is given extensive treatment. On the other hand the
problem of establishing, defining and specifying requirements for
software, which is at least as difficult and which has considerable
psychological content, is hardly covered at all. Perhaps this is
because there has been little psychological research in this area due
to a number of factors but one would have expected it to be dis-
cussed and listed as an important field for future work.

Software Psychology is a valuable book for anyone seriously
concerned with the practice of programming and particularly those
involved in research into human factors aspects. Those with a more
general interest in computing and software will find much that is
useful, although for such readers the book, at £16:20, will probably
be one to borrow rather than buy. It is well produced with clear
printing and I did not spot one typographical error.

J. N. G. BrITTAN (Chertsey)

Programming Standard Pascal, by R. C. Holt and J. N. P. Hume,
1980; 381 pages. (Prentice-Hall £7-75)

This book, like most elementary programming texts, is good in
parts. Its aim is to teach basic programming in Pascal by using series
of subsets of the language that include one another like a set of
Russian dolls. The technique was developed for PL/I by R. Holt and
D. Wortman. (The Venn diagram used to illustrate the subset idea is
labelled wrongly, since the largest, all enclosing, set is labelled PS/1,
the name of the smallest subset that the authors define.)

The first two chapters are devoted to an introduction to computers
and programming and a justification of the subset approach. This
seems overlong; especially when trying to explain structured pro-
gramming to readers who cannot program. Each of the following
three chapters introduces a new subset of the language. The first

© Heyden & Son Ltd, 1981

contains only arithmetic expressions and printing of values; it seems
rather small, and could profitably have been combined with the
second subset which introduces variables and declaratives as well.
The third of these subsets is far too large—entitled ‘Control flow’.
The chapter includes while, repeat and for loops, if and case state-
ments, Boolean variables and expressions—all within 20 pages. I
would introduce this wide selection of topics much more slowly—
probably leaving the case statement until enumerated types had been
introduced and develop the for statement with arrays.

After the introduction of arrays and the various sorts of type (sub-
range, named, enumerated), the presentation improves a great deal.
A chapter is devoted to top-down development of solutions and
choice of data structures. Procedures and functions are introduced
competently.

An excellent section now follows with chapters devoted to
Modular programming, Searching + sorting, Making sure the
program works and Data structures. Records and pointers are
painlessly introduced here. The chapter on data structures intro-
duces stacks, queues and trees. Unfortunately, recursive procedures
are introduced, and explained in terms of using a stack to print a list
in reverse order. This is a most un-natural use for them—even worse
than the usual function to calculate n!. The example implementations
given for stacks and queues using arrays contain no check on over-
flow or underflow. This is most serious in the case of the queue
implementation since modular arithmetic is used to keep the indices
within the array bounds.

The remaining chapters of the book are again of limited usefulness.
Scientific calculations gives a procedure for plotting approximate
curves on the line printer, but is otherwise little more than a super-
ficial overview of the problems attacked by numerical analysis.
Similarly the chapter Numerical methods only presents an arm’s
length picture of the problems involved.

A short chapter gives examples of programs in other languages, and
the two final chapters are devoted to a discussion of machine
language and assemblers and the development of a compiler for a
(very) restricted subset of Pascal.

Each chapter concludes with a short summary and a set of exercises.
There were few typographical errors and the only factual error 1
noted was the statement ‘In division the relative error of the quotient
is the difference between the relative errors of the divisor and the
dividend’. (It is, in fact, the sum).

P. KinG (Newcastle)

Architecture and the Microprocessor, by John Paterson, 1980; 229
pages. (John Wiley, £13-80)

Despite its title this book is not concerned too much with architecture
or the microprocessor—and most certainly not about microprocessor
architecture. It is in fact a middlebrow Sunday supplement social
history which looks at how cheap computing power might affect the
practice of architecture. To do this the author traces the develop-
ment of the art of architecture showing how changes in society have
affected the architect and goes on to discuss how current changes in
our society, and the microprocessor revolution in particular, might
shape our future environment. The book may be an interesting
diversion for the computer professional in two ways. Firstly, it is a
good example of the impact of computers on society generally.
Secondly, because the design of buildings is, in many ways, analogous
to the design of computer software, this book may give an insight
into the type of problem which may soon be confronting computer
scientists.

ALAN H. BriDGEs (Glasgow)

THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 117

202 udy 60 Uo 1s8n6 Aq 8808EE/Z L L/2/¥Z/31014e/|ufoo/Wwod"dno-oIepED.//:SARY W) PAPEo|umMoQ

