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The workload processed by a computer system can have a dramatic impact on the system’s mea-
sured performance. A computer performance evaluation study conducted using empirical techniques
requires an executable test workload. A test workload composed of synthetic jobs appears the most
promising. Such a synthetic mix requires development of predictor equations which allow the setting
of the parameters to produce the desired resource demand patterns.

A statistical methodology composed of experimental design techniques and regression analysis is
proposed to aid in the development of prediction equations relating the resource descriptor variables
and the synthetic job parameters. Two synthetic jobs are posed and the experimental design pro-
cedure is demonstrated with workload data from the Amdahl 470/V6 at Texas A&M University.
Some factors related to validation of test workloads are presented.

(Received July 1979; revised February 1980)

1. Introduction

Computer Performance Measurement and Evaluation (CPME)
studies have been classified by Lucas (1971) according to the
reasons for which they are conducted. These reasons include
selection of new systems (selection studies), projection of the
effect of proposed hardware/software modifications (projection
studies) and improvement of the level of performance of a
current system (performance monitoring). Such evaluation
studies can be further characterised according to the evaluation
techniques employed. Three general techniques have emerged
for the evaluation of computer systems: analytical, simulation,
and empirical (Grenander and Tsao, 1972).

Central to any evaluation study is the test workload which is
being processed by the system under consideration. If analytical
techniques are employed, the test workload will normally be
represented in the form of interarrival and service distributions
(Coffman and Denning, 1972). A simulation study requires an
abbreviated job description in a form compatible with the
simulator. An empirical study, on the other hand, requires an
executable workload.

A number of different types of executable test workloads have
been proposed (Ferrari, 1978). These include benchmarks,
instruction mixes, standard jobs and synthetic jobs. Synthetic
jobs offer advantages in the area of flexibility and portability
over instruction mixes and standard jobs. They also avoid the
security and privacy problems associated with using real jobs
(benchmarks). A test workload composed of synthetic jobs,
then, is likely to be the most useful form of an executable test
workload.

One of the primary criteria applied in assessing the usefulness
of a test workload is how accurately it reflects the resource
demands of the real workload which spawned it. A test work-
load which accurately reflects the characteristics of the real
workload is said to be representative. Constructing a repre-
sentative test workload using synthetic jobs requires careful
design of the jobs making up the mix. Some of the techniques
and procedures useful in designing synthetic jobs will be
surveyed in this paper. Most of the techniques surveyed are
oriented toward test workloads constructed for a batch
processing installation. Similar considerations apply to trans-
actions in a time sharing environment; however the general
form of the model is different. The actions which must be
emulated in an interactive session include user log-on, program
creation, editing, program compilation, program execution and
user log-off. A model embodying such actions can more
realistically be referred to as an interactive script (Ferrari,
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1978) than a synthetic job.

Although considerable work has been done with synthetic
jobs (Buchholz, 1969; Sreenivasan and Kleinman, 1974), much
remains to be done. One major problem is determining the
settings of the various parameters to produce a desired resource
demand pattern. The primary purpose of this paper is to
propose a systematic design of experiments to calibrate
synthetic jobs. Existing statistical experimental design techni-
ques appear applicable in this regard.

2. General considerations in the design of synthetic jobs

A synthetic job is a parametric program in which the demands
placed upon the various system resources are controlled by the
values assumed by various input variables (parameters)
(Ferrari, 1978). This relationship to the actual resource
utilisation requires the programmer to approach the design of
synthetic jobs from a different viewpoint to normal program-
ming problems. Normal programming projects are usually
undertaken for a particular reason. That is, the user wants the
computer to perform a particular task. The task to be performed
is the over-riding consideration in program development. There
may be an attempt to minimise the resources used in an effort
to hold down the cost of the project, but this is generally a
secondary consideration. Synthetic jobs, on the other hand, are
independent of the task which is performed. They are also
independent of any input data or data files accessed by the real
programs they are designed to emulate. The sole consideration
in their design is that they use the same amount and types of
resources that their real counterparts use. Thus, a somewhat
arbitrary ‘compute loop’ can be used to force the synthetic job
to consume a particular amount of CPU time. I/O activity by
real jobs can be emulated by having the synthetic job access
arbitrary files of the required type (e.g. tape, disc or card).
These files can be ‘garbage files’ expressly constructed for this
purpose, or any other file to which the analyst has access.
Thus, there is no unique synthetic job for each situation. A
multitude of logically different programs can be forced to
exhibit the same resource demand patterns with the proper
choice and setting of parameters.

The degree of complexity of a synthetic job is generally deter-
mined by the level of detail used in characterising the real
workload. If a limited resource descriptor set is used, a relatively
simple synthetic job will normally suffice. If, on the other hand,
an expanded resource descriptor set is used which reflects more
minute aspects of the real job’s resource utilisation, a more
complex synthetic job will generally be required. Ferrari (1978)
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illustrated this point with two examples: this first example
concerns construction of a test workload for a batch processing
installation. Jobs in the workload were characterised by the
descriptor pair (f.,,, 7;,). The first descriptor gives the CPU
time required by the job while the second gives the number of
I/O operations initiated by the job. Since the type of I/O is not
specified, it can be assumed to be simple ‘reads’ from cards and
‘writes’ to a printer (or any other mode for that matter) in an
arbitrary proportion. This is not to say that it is not important
or ncecessary to distinguish between various types of I/O.
Rather, it indicates that various types of I/O and the relative
proportion of each type performed by a job are not distin-
guishable using this limited description set. An expanded
descriptor set would normally be necessary to reflect the I/O
activity of a given job accurately. A synthetic job designed to
emulate jobs for which such a limited descriptor set is adequate
(if any exist) can be composed of a simple loop. I/O is per-
formed a certain proportion of the iterations through the loop,
and some arbitrary computation performed some other (or
perhaps the same) proportion of the times through the loop.
The loop is executed until the required number of 1/O opera-
tions are performed and the proper amount of CPU times is
accrued. An example of such a synthetic job and a situation in
which this low level of detail is sufficient is given in the case
study.

More complex synthetic jobs are typefied by the one de-
veloped and tested by Buchholz (1969). This job is designed to
emulate a file processing action. There are three parameters
used, which specify the number of master records read in, the
number of detail (transaction) records processed and the
number of times the ‘compute’ loop is executed. This job can be
used to emulate the resource demands of jobs whose resource
descriptor set is somewhat expanded over the earlier one
described. An example of the use of such a synthetic job is also
given in the case study.

2.1 Parameters of synthetic jobs

The parameters of a synthetic job allows the individual system
resource demands to be easily modified. In general, greater
flexibility requires more parameters, while simplicity and
economy dictate that the number of such parameters be kept to
a minimum. In the final analysis, it is the level of detail used in
characterising the real workload which determines the number
of parameters to use. This required level of detail is in turn
determined by the resolution necessary in the evaluation study.
For example, consider a test workload composed of synthetic
jobs where each synthetic job has parameters to specify memory
size and total CPU processing time. This workload might be
sufficient if the aim of the evaluation study is to determine the
effects of altering main memory on CPU utilisation. It would
not provide the required resolution if the aim of the study is to
determine the effects of differing amounts of I/O processing on
CPU and I/O overlap. In fact this latter study would require at
least one parameter to allow the ratio of CPU processing to
I/O processing to be altered. It may also be necessary to
include resource descriptor variables which specify the duration
and relative timing of I/O requests. Thus, there is a three-way
dependence among the performance measures observed in the
study, the descriptor variables used to characterise jobs in the
workload and the synthetic job parameters used to control the
demands placed on various system resources.

More formally, suppose that a test workload W, is constructed
for use in an evaluation study in which the / performance
variables V,, V,, ..., V, are to be observed. Suppose further
that these performance variables are functions of m system
resources described by the descriptor variables ry, 7y, . . ., 7,
and that the values assumed by these descriptor variables are
determined by » user parameters p,, p,, . . . , P,. The relations
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existing among the variables can be expressed as

Vi=Viryyeoostm) = Vilri@os - - s Pn)s -« o s TPis -+« » P)]
= V;(P'n---,p,,)
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The relations can be summarised in more compact vector

notation as ¥ = ¥(r) = V[r(p)] = V(p). Now, recognising that
the values assumed by the parameters p,, . . . , p, completely
determine W,, the composite relation V; = V{(W),i=1,...,

I, (or V = V(W,)) results, where W, = W(p,, ..., D)

One problem which must be solved in constructing W, is
determining the relationship which exists between the resource
descriptor variables r,, . . . , r, and the synthetic job para-
meters p,, . . . , p,. The parameters p,, . . ., p, can be assumed
to be independent of one another, and in some cases they may
bear a simple linear relationship to the r;’s. This relationship
can be established by observing the r;’s for a few runs of the
synthetic job with varying p;s, and applying regression
analysis (Draper and Smith, 1966). The linear form of the
relationships r; = r(py, . . ., Pn)s i = 1,2,. .., m, allows
inversion to give relationships of the form p; = p;(ry, ..., r,),
Jj =1,...,n This assumes n > m and that the original system
is nonsingular. These latter relations can be used to determine
the appropriate parameter settings to produce a given resource
demand pattern.

Examples of the use of linear regression in establishing the
relationships which exist between the resource descriptor
variables r,, r,, . . ., r,, and the synthetic job parameters p,, p,,

., D, are given in the case study. It should be noted that the
simple form of these relations does not suggest that similar
simple relationships exist between the performance variables
Vi, Vi, . . ., ¥V, and the resource descriptor variables r,, r,,

., r'n. Establishing this relationship must be accomplished
during the evaluation study itself.

2.2 Controlling the demand for system resources

A procedure for establishing the relationship between the
resource descriptor variables ry, r,, . . . , r, and the synthetic
job parameters p,, p,, . . . , P, Was suggested in the previous
section. This procedure assumes that parameters which are
likely to affect the job’s demand for a given resource have been
established and incorporated into the design of the synthetic
job. Some of the ways in which the demands placed upon
system resources can be controlled are surveyed in this section.
It should be noted that some of these techniques are system
dependent and their use severely limits the usefulness of the
program in other than performance monitoring studies.

One of the major system resources is main memory. The
amount of main memory used by a given job is obviously
related to the size of the program as well as the space needed for
system routines supporting the job’s execution. A job’s main
memory requirements can thus be altered by modifying the size
of arrays or by including routines which may never be called.
A number of systems (i.e. IBM) enforce a policy known as
‘preallocation of resources’ to preclude deadlock problems
(Coffman and Denning, 1973). The maximum amount of main
memory likely to be used by the job must be requested in
advance of its initiation. If this requested amount is not
sufficient to allow program execution, the job is terminated.
The size of the region in main memory allocated to a particular
program, if such a strategy is employed, can be either increased
or decreased by altering the region request field in the job
control statements.
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Control of the amount of CPU processing time used by a
program is possible by including a ‘compute-loop’ control
parameter. An arbitrary sequence of computations is performed
iteratively until the desired CPU time is accrued. The required
number of iterations through the loop can be controlled
precisely through access to system timers (Ferrari, 1978). It can
alternately be established in advance through calibration
experiments. The amount of processing time accrued by a
particular job is related to factors other than simply the
number of computations performed. The number of I/O
activities initiated, for example, can have a significant impact
on CPU time used.

Control of the I/O processing requirements of a job is more
complicated than the control of either main memory or CPU
time because of the multitude of different types of 1/O. It may
be necessary to control each of them, depending upon the
resolution needed in the study. Unit record I/O (i.e. cards
read, lines printed and cards punched) is the easiest to control.
The number of cards read is obviously a direct function of the
size of the program. It can be varied, within certain limits, by
including or excluding comment and data cards. The number of
lines printed (or cards punched) can be controlled through
inclusion of a ‘print’ (or ‘punch’) loop. This loop is executed a
sufficient number of times to produce the desired output. Tape
and disc (or drum) I/O is controlled by creating files which are
accessed using the proper mode. Records can be read, modified
and written under the control of a file processing loop. There is
a potential problem in accurately reflecting the real workload’s
processing behaviour. This results from the fact that in
addition to controlling the number of I/O activities initiated,
the size of the data block transferred each time must also be
specified. Data on the real workload’s resource demands is
generally not available at the required level of detail from
system accounting logs. It can be obtained by using a monitor.

Another type of I/O activity which must be controlled in
virtual memory systems is paging I/O. In a demand paging
environment, blocks of data are transferred from auxiliary
storage into main memory as required. If main memory is full,
some ‘pages’ may have to be recopied back to auxiliary storage
to make room for the next ‘page’ copied into main memory.
Paging I/O is not an activity which can be controlled directly in
the same fashion as other resource demands. Paging activity
of a given job is dependent not only on the internal structure of
the program, but also on the environment which exists at the
time. Some work has been done on influencing paging activity
in the development stage of a program. Techniques useful in
improving the locality of a program and thus decreasing its
expected page fault rate are discussed by Spirn (1977). How-
ever, due to the environmental dependence, any significant
control over paging activity will probably have to be exerted
during the calibration/validation phase when the entire test
workload is available.

Direct control can be exerted over many of the system
resources through inclusion of loop control parameters and
proper job control statements. An example of the use of para-
meters to control the various system resources is included in
the case study.

3. The design of calibration experiments

It is necessary, once a synthetic job has been designed, to
establish the relationship between the parameters of the
synthetic job and the resource descriptor variables used to
characterise jobs in the real workload. Such a process can be
termed ‘calibrating’ the synthetic job. The procedure proposed
in an earlier section requires that the synthetic job is executed
on the system for various parameter settings. The correspond-
ing values of the descriptor variables are recorded for each run,
and regression analysis is used to establish the desired relation-
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ship. There are a number of unanswered questions associated
with this procedure. These include ‘how many runs of the
synthetic program are necessary to establish an accurate
relationship?’, ‘what parameter settings should be used for
each run?, and ‘how to account for the acknowledged environ-
mental variations in the resource demands from one run to the
next’. The use of statistical experimental design techniques is
proposed in this section to assist in answering these questions.

The magnitude of the demands placed on system resources by
a given job can vary from one run to the next. Some of the
demands most susceptible to these environmental differences
are CPU processing time, I/O processing time and data transfer
over the channels handling paging activity. This variation in
resource demands can have a significant effect on relationships
established through regression analysis. Indiscriminate running
of the synthetic job will yield data in which it is impossible to
separate the effect on the response variable due to this ‘chance’
variation from that caused by the setting of various parameter
levels.

Most of the parameters used in controlling the magnitude of
the demands placed upon various system resources by a
synthetic job can assume a wide range of values. For example,
the number of times a ‘compute’ loop is executed is constrained
only to be a non-negative integer representable in the counter
register of the machine. Similar restrictions (or lack thereof)
apply to other parameters. Failure to use a wide enough range
of values for these parameters will yield a predictor equation
which cannot be used in some cases. This is because it is almost
never feasible to extrapolate using a regression equation
(Draper and Smith, 1966).

Related to the setting of the parameter levels for each run of
the synthetic job is the required number of runs. The synthetic
job could be run a large number of times (say 100) with the
parameters set at the same values. This obviously would yield a
highly reliable relationship for that particular combination of
settings. The validity of the relationship for some other
combination of parameter settings would be highly suspect,
however.

Problems similar to those outlined above are commonly
encountered in other data analysis situations. A branch of
statistics known as experimental design (Hicks, 1973) has
evolved to aid in the resolution of these problems. The metho-
dology outlined for designing factorial experiments appears
applicable to this problem.

A factorial experiment is one in which all levels of a given
factor are combined with all levels of every other factor of the
experiment (Hicks, 1973). Each of the synthetic job parameters
to be varied can be considered as a factor in the calibration
experiment. Levels for each factor can be established which are
likely to cover the required range of resource demands. Each
unique combination of factor levels can be thought of as a
‘treatment’ to be applied. Treatments are assigned at random
to each run of the job.

The use of statistical design techniques provides a number of
advantages in calibration experiments. They include:

(@) the randomisation of the treatment to run assignment
minimises the effect of chance environmental variations
in resource demands

(b) for a given number of factors and levels per factor, one can
precisely calculate the number of runs necessary for a
complete replication of the experiment. For example, if five
factors are present, and each can assume two levels,
25 = 32 runs are required. The analyst can reduce the
number of runs by using fractional replications. This
involves confounding some effects

(c) the significance of the effects on the resource demands by
the various parameters can be tested through an analysis of
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variance. Interaction effects can also be tested, although in
some cases it is difficult to interpret such effects

(d) confidence limits can be established for the obtained
regression coefficients.

It costs no more in most cases to conduct a carefully designed
experiment than it does a poorly designed one. The use of
statistical experimental design techniques can have a significant
impact in the calibration phase.

3.1 Validating the test workload

The calibration experiments discussed in the previous section
can be used to establish predictor equations relating the
synthetic job parameters to the resource descriptor variables.
A synthetic job mix can then be constructed by including
sufficient copies of each of the synthetic jobs with the appro-
priate parameter settings. It is necessary to execute this
synthetic mix on the system being studied and to determine
what degree of representativeness has been achieved. This
process can be termed validation.

A number of authors (Agrawala, Mohr and Bryant, 1976;
Ferrari, 1978; Johnson, 1977; Screenivasan and Kleinman,
1974) have emphasised the importance of validating test work-
loads. The general consensus seems to be that a test workload
which has not been validated should not be used. The par-
ticular subset of the real workload which is used as a model in
the design of a test workload is selected because it exhibits some
characteristics pertinent to the evaluation study (i.e. heavy
loading, high paging rate, etc.). If the test workload does not
exhibit the same characteristics, the evaluation study can be
severely hampered.

If the test workload does not accurately reflect the resource
demands of the real workload subset, it is probably due to

(a) errors in recording the resource demands, either because the
recording process was not accurate or because the resource
demand pattern was distorted (perhaps due to artifacts
introduced by the monitoring process itself)

(b) errors introduced when the actual workload demands are
reduced to probability distributions or clusters, or

(c) errors in computing the synthetic job parameters.

Errors of the first and second type are common to nearly all
methods of generating test workloads. They can be precluded
only by exercising extreme care in those stages of the con-
struction process. Errors of the third type are unique to test
workloads generated using synthetic jobs. Careful design of the
calibration experiments should minimise the possibility of an
error of this type occurring.

An obvious means of verifying the accuracy of the synthetic
job parameters is to execute the test workload, record the
demands placed upon the system resources, and then compare
the resulting probability distributions of demand clusters with
those produced by the real workload. A number of statistical
tests (i.e. Chi-Square, Kolmogorov-Smirnov) are available for
testing ‘goodness of fit’. Errors of the first and second type
mentioned above, however, could go undetected using this
process. The monitoring process will be likely to introduce the
same bias when the test workload is executed as it did during
processing of the actual workload subset. The same analysis
package is likely to be used to summarise both the resource
demands of the actual workload and those of the test workload.
Thus, the same errors are apt to occur in both analyses.

The validation phase of test workload construction is prob-
ably the least understood phase. There are a number of reasons
for this. Many studies never progress this far, since it is the last
phase of the process (although the calibration phase may be re-
entered if a nonrepresentative test workload is produced).
Secondly, to avoid distorting the demand characteristics of the
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workload, it must be executed in isolation from other jobs on
the system. This requires a dedicated system during that
period of time, which is sometimes inconvenient and expensive.

4. Case study

Statistical experimental design techniques appear to offer
significant advantages in the design of calibration experiments.
To illustrate the utility of these procedures, two separate
synthetic jobs were designed. It should be noted that these jobs
are used merely to illustrate the procedure. Thus some of the
relationships between the parameter settings and resource
descriptor variables may appear self-evident from the design of
the programs. The first, a very simple job, was designed to
emulate the resource demands of student jobs using the incore
compilers (i.e. WATFIV, WATBOL, PLC). These jobs are
hereafter referred to as Autobatch jobs. The second synthetic
job was designed to emulate the resource demands of jobs
using the standard OS translators. These jobs are referred to as
Batch jobs.

The different types of jobs were analysed separately due to the
severe restrictions placed upon the resource demands of Auto-
batch jobs. As an example, access to external files by such jobs
is prohibited; a maximum of 6,000 lines of output can be
produced. Thus, a limited resource descriptor set is adequate
to distinguish between two such jobs. The descriptors used in
this study included X; = number of cards read, X, = number
of lines printed, and X; = CPU time used (0-01 sec).

The Batch jobs, on the other hand are not as restricted in the
quantity and type of resources they can use. An expanded
descriptor set is required for such jobs. Those descriptors used
included X; = number of job steps executed, X, = total
number of devices used by the job, X; = region size requested
(kilobytes), X, = number of cards read, X5 = number of lines
printed, X3 = number of cards punched, X; = number of
pages read in, X, = number of pages read out, X, = CPU
time (0-01 sec), X,;, = 1/O time (0-01 sec), X;, = EXCP count
to tape devices, and X;, = EXCP count to disc devices
(excluding HASP pseudo devices). The EXCP count is the
number of ‘execute channel program’ commands issued, and
roughly corresponds to the number of blocks transferred.

Synthetic jobs designed to represent the Autobatch jobs can
be very simple due to the limited resource descriptor set. The
number of cards read is exactly determined by the number of
source/comment statements in the program and the number of
limits for a given synthetic job by either including or excluding
data/comment cards. The number of lines printed can also be
exactly controlled by including a print loop which is executed
the desired number of times. The amount of CPU time is also
related to the number of lines printed, hence this dependence
must be accounted for. The synthetic job designed for the
Autobatch jobs is described in Appendix 1.

The synthetic job designed for Autobatch has two parameters
which may be varied to induce various resource demand
patterns. These parameters are NRLIN = the number of lines
to be printed and NITER = the number of times the compute
loop is to be executed. The size of the program (number of
cards read) was held constant throughout. These two para-
meters were used as ‘treatments’ in the experimental design
used. Three ‘levels’ for each ‘treatment’ were established to
cover the range of resource demands exhibited by the members
of the Autobatch cluster. This results in nine unique treatment/
level combinations. A completely randomised factorial design
(3%) was used to establish the parameter settings for the nine
required runs of the job. The parameter settings for each run
are shown in Table 1. The nine programs were run on the
system and data collected which reflected the resource demands
of each program. This data is summarised in Table 2.

The significance of the effect of varying NITER and NRLIN
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Table 1 Parameter settings—Autobatch

Run
1 2 3 4 5 6 7 8 9
NRLIN 50 50 50 150 150 0 0 150 0
NITER 50 5,000 2,500 50 2,500 5,000 50 5,000 2,500
Table 2 Resource demands—synthetic Autobatch job
Run
1 2 3 4 5 6 7 8 9
X, 33 33 33 33 33 33 33 33 33
X, 88 88 88 188 188 38 39 188 38
X, 5 77 41 9 43 74 3 80 38
Table 3 Parameter settings—Batch
Run
1 2 3 4 5 6 7 8
NITER 1,000 0 1,000 0 0 0 1,000 1,000
NOUT 0 0 1,000 0 1,000 1,000 0 1,000
NTAP 0 1,000 1,000 0 0 1,000 1,000 0
NDIS 0 0 0 1,000 0 1,000 1,000 1,000
Table 4 Resource demands—synthetic Batch job
Run
1 2 3 4 5 6 7 8
X, 1 1 1 1 1 1 1 1
X, 14 14 14 14 14 14 14 14
X, 128 128 128 128 128 128 128 128
X, 240 240 240 240 240 240 240 240
X5 354 351 1,349 351 1,349 1,349 351 1,349
X 0 0 0 0 0 0 0 0
X, 0 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0 0
X, 242 109 332 111 191 201 247 329
X0 188 213 212 233 187 256 257 232
X, 1 10 10 1 1 1 10 1
X, 132 132 132 217 132 217 217 217

on X, was then tested. Both ‘treatments’ were found to be
highly significant (x = 0-0001). The model used assumed no
interaction between the parameters. The amount of CPU time
used (X,) was regressed on NITER and NRLIN, while the
number of lines printed (X,) was regressed on NRLIN. The
following predictor equations were obtained through this
regression

X, = 38:238 + 0-998 NRLIN
X; = 2399 + 0-037 NRLIN + 0-014 NITER .

The fit achieved by both regression equations was extremely
good. The value of the multiple correlation coefficient (pro-
portion of the variability accounted for) was 0-999978 for the
equation relating X, to NRLIN, and 0-999679 for the equation
relating X; to NRLIN and NITER.

Synthetic jobs designed to represent Batch jobs must be
considerably more complex than those for Autobatch jobs due
to the expanded resource descriptor set. A number of the 12
descriptor variables can be exactly controlled through Job
Control Language (JCL) statements or the inclusion/exclusion
of data/comment cards. Others must be controlled through
parameters.

The synthetic job designed for Batch jobs (described in
Appendix 1) has four parameters which can be varied to induce
different resource demand patterns. They are NITER = the
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number of times the compute loop is executed, NOUT = the
number of output lines produced, NTAP = the number of
records read from a tape file, and NDIS = the number of
records read from a disc file. Those resource demands which
are not affected by varying these parameters were held constant
throughout the experiment. In practice, these demands should
be set to correspond with the real workload.

Two levels for each parameter were selected. A completely
randomised factorial design (2*) was used to establish the
parameter settings for the various runs of the program. This
design requires 16 runs to form one replication of the experi-
ment. This was considered excessive due to the cost associated
with each run. It was decided to use a fractional replication for
this reason. A one half fractional replication requires only eight
runs, but still allows testing of the main treatment effects. The
effect of interaction among parameters was assumed negligible
just as with the Autobatch experiment. Using the method
illustrated by Hicks (1973), the ‘treatment’ combinations were
divided into two blocks, with the four-way interaction effect
confounded with the block effect. A coin flip was used to decide
which of the blocks to use in the experiment. The parameter
settings for the eight required runs of the job are listed in Table
3

The synthetic jobs were run on the system and data collected
reflecting the resource demands. This data is shown in Table 4.
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The values for all 12 resource descriptors are shown; those
which are not affected by the four parameters appear as
constants. No attempt was made to control paging behaviour
as this is largely environment dependent.

Table 4 shows that five of the 12 resource descriptors are
affected by varying the four parameters. These are X5 (number
of lines printed), X, (CPU time used in 0-01 sec increments),

X, (I/O time used in 0-01 sec increments), X, (EXCP count
to tape devices), and X,, (EXCP count to disc devices). The
significance of the effect of the parameters on the descriptor
variables was tested. Using a level of significance « =0-05,the
effect on X, was significant for NITER and NOUT; the effect
on X,, was significant for NOUT, NTAP and NDIS; the effect
on X, was significant for NOUT; the effect on X, was signifi-
cant for NTAP; and the effect on X, was significant for NDIS.

< SIATAETIC JOD TO STRULATE ADTOBAfCH The descriptor variables were then regressed on those para-
NBRLIN-0 meters which were identified as having a statistically significant

effect. The resulting regression equations with the value of the
multiple correlation coefficient indicated in parentheses are

Xs = 35175 + 0-99725NOUT (R? = 0-999997),

= 110-00 + 0-1345NITER + 0-0860NOUT
(R? = 0-998648) ,

LINIT=NRLIN
IP(NITER.GT.LINIT)LIAIT=NITER
DO 10 I=1,LINIT
CALL URANDX (ISBED, IRAND, URAND)
IP(I.GT.NRLIN)GD TO 20
WRITE(6,600) URAND, I
rox\;T(1x,~ruz RANDOM NUMBER IS',1X,P7.5,1X,'ON ITERATION NR®, X,
*1X,15)
22 CALL USANDX (ISEED, IRAND,URAND)

ISEED=TRAND

600

URAND=URAND#COS (URAND) *SIN (URAND) X,; = 18825 — 0-00INOUT + 0-025NTAP + 0-0445NDIS
1 CONTINUE 2
sTop (R?* = 0-999903) ,
SUBROUTINE URANDY (JSEED, TRAND,JRAND) X, = 100 + 0-009NTAP (R% = 1-000000) , and
E THIS ROUTINE GENPRATES A :SEUDD'IINDOH STANDARD UNIFORN 2
: X‘ﬁé:'igiﬁ‘iﬁggﬁ AN STANDAGD ONZPOBA TARIATE URAMD. X2 = 13200 + 0-085NDIS (R* = 1-000000) .
I D= * 9 . . . . .
H ML The problem with inverting the above equations to yield
3 IRANDeIRANDe210748364701 predictor equations for the parameter setting is that there is one
URAND=UBANDS. 46566139 equation too many (i.e. five equations in four unknowns). The
END equation for X;, however is seen to be redundant, since I/O
Fig. 1 time is uniquely determined by the quantity and type of 1/O

SYNTH:PROCEDURE OPTIONS (MAIN);
/STHIS SYNTRETIC PROGRAM IS DESIGNED
TO EMULATE THE RESOURCE DENAND
CHARACTERISTICS OF BATCH JOBS WHICH
PERFORM TAPE, DISK, AND UNIT RECORD
L/0. INPUT PARANSTERS ARE
NITER - THE NOUMBER OF TINES THE
CONPUTE LOOP IS TO BEZ EXECUTED,
NOUT - THE DESIRED NUMBFR OF
OUTPUT LINES,
NTAP - THE DESIRED NUMBER OF
TAPE EXCPS TO BE ISSUED,
NDIS - THE DESIRED NUMBER OP
DISK BXCPS IO BF ISSUED,
JSEED - AN INTEGER SEED USED TO
BEGIN THE FIRST RANDON
NUMRER STREAN,
ISEZED - AN INTEGER SEED USED TO
BEGIN THE SECOND RANDOH
NUNBER STREAN. $/
ON PIXEDOVERFLOW ;
ON ENDPILE (TAPIN) NTAP=0;
ON ENDPILE (DISIN) NDIS=0;
/$DECLARE VARIABLES $/
DECLARE SYSIN FILE STREAN INPUT,
SYSPRINT PILE STREAM OUTPUT,

IP I < NTAP THEN
READ PILE (TAPIN) INTO (COMMON);
/$ CHECK TO SEE IF READ DISK $/
IF T < NDIS THEN
READ PILE (DISIN) INTO (CONMON);
/$ CHECK TO SFE IF EXSCUTE INNER LOOP $/
IF NITER < I THZN GO TO PASS_IT;
/$ INNER COMPUTE LOOP $/
/$ THIS LOOP FTILLS TWO 5X5 MATRICES
A AND B WITH STANDARD UNIFORM
RANDOM NUMBERS AND THEN INVOKES A
ROUTINE TO MULTIPLY THE TWO MATRICES,
RETUINING THE PRODUCT IN MATRIX C. $/
INLOOP:DJ J=1 TO S;
DO K=1 TO S;
CALL RAND(ISEED,IRAND,URAND) ;
ISEED=IRAND;
A (J,K) =URAND;
CALL RAND (ISEED,IRAND,URAND);
ISEED=IRAND;
B(J,K) =URAND;
END;
END INLOOP;
PASS_IT:;
END MAINLOOP;
MATSUL:PROCEDURE(A,B,C);

DECLARE (A (5,5) +B(5,5),C(5,5)) FLOAT DEC(6):

TAPIN FPILE RECORD INPUT,

DISIN PILE RECORD INPUT, DECLARE (X,Y,2) PIXED BINARY(31);
CONNON BIT-(10000) VARYING, /$ THIS ROUTINE NOULTIPLI®S TWO 5X5
JSEED  FIXED DEC(9), 4ATRICES A AND B AND PRODUC®S THE PRODICT
ISEED PIXED DEC(9), MATRIX C. $/ '

URAND  PLOAT DEC(6), LOOP1:DO X=1 TO 5;

IRAND PIXED DEC(9), DO Y=1 TO 5;

LIAIT FIXED DEC(9), C(X,Y)=0.0;

NITER  PIXED DEC(9), END;

NOUT  PIXED DEC(9), END LOOP1:

NTAP  FIXFD DEC(9), LOOP2:DO X=1 TO S;

NDIS  FIXRD DEC(9), DO Y=1 TO S;

(I,J,K) P°PIXED BINARY(31), DO z=1 TO 5;

(A(5,5) ,B(5,5),C(5,5))
/3% PREPARE PILES POR PROCESSING 3§/

PLOAT DEC(6):

C(X,Z)=A(X,Y) *B(Y,2) +C(X,2) ;
END;

OPEN FPILE (TAPIN) INPUT: END;
OPEN FILE (DISIN) INPUT; END LOOP2;
OPEN FILZ (SYSIN) INPUT; RETURNS

OPEN FILE (SYSPRINT) OUTPUT;
/% READ INPUT PARAMETZRS 8/
/$ COMPUTE CONTPOL PARAMRTERS 8/
0;

=03
JSEBED=51121;
ISZED=21151;
LINIT=NITER;
IF NOUT>LIMIT THEN LINIT=NOUT:
,IF NTAPDLIMIT THEN LIMIT=NTAP;
IF NDIS>LINIT THEN LIMIT=NDIS;
/$ COMPUTE LOOP S/
MAINLOOP:DD I=1 TO LINIT;
CALL RAND(JSEED, IRAND,URAND) ;
JSSED=IRAND;
/$ CHECK TO SEE IP DUTPUT LINZ $/
IF I < NOUT THEN
PUT SKIP LIST ('RANDOM NUNBER IS*,
URAND,'ON ITERATION NR',I);
/$ CHECK TO SFEE IF READ TAPE $/

Fig. 2

END MATNOUL;
RAND:PROCEDURE (JSEED, IRAND, URAND) §
DECLARE  (JSEED,IRAND)  PIXED DEC(9),
URAND PLOAT DEC(6);
THIS ROOTINE GENERATES A PSEUDO-RANDOM
STANDARD UNIPORM VARIATE URAND. THE STARTING
SEED IS SUPPLTED THROUGH PARAMETER JSBED. A
NEW SEED FOR THE NEXT PASS THROUGH THE
PROCEDORE IS RETURNED THROUGH PARAMETER IRAND §$/
IRAND=JSEED*65539;
IP IRAND < O THEN IRAND = IRAND+2147483647¢1;
URAND=IRAND;
URAND=URAND*0.4656612-9;
RETURN;
END RAND;
END SYNTH;
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performed. Inverting the remaining relations yields the
following predictor equations

NOUT = 1-00276Xs — 35272,
NITER = 7-4349X, — 0-6411X5 — 592:27,
NTAP = 111-1111X,, — 111-11, and
NDIS 11-7647X,, — 155295 .
5. Summary

The use of statistical experimental design methodology in
calibration experiments involving synthetic jobs can be quite
beneficial. It costs no more in most cases to conduct a carefully
designed experiment than it does a poorly designed one. The
results obtained, however, are worth any added cost in time or
effort.

Appendix 1

This appendix describes the two synthetic jobs designed as part
of this study. The first job was developed to emulate the resource
demands of Autobatch jobs. The resource descriptor set used to
characterise the demands of Autobatch jobs contained only
three elements, and hence the synthetic job is quite simple. The
second job was designed to emulate the resource demands of
Batch jobs. The expanded resource descriptor set used to
characterise the Batch jobs necessitates a more complex
synthetic job. Both programs contain features that make them
somewhat system-dependent. For example, the random num-
ber generator depends on overflow in a 32-bit integer, while the
Autobatch job is critically sensitive to the efficiency of imple-
mentation of the Sin and Cos Routines.

The synthetic job designed for Autobatch jobs is designed to
allow the user to specify indirectly the number of lines printed
and the total CPU time used by setting two parameters:
NRLIN and NITER. The appropriate settings for these para-
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