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Microprograms are increasingly being used to replace software controlled hardware in digital
systems. Microprograms are at the heart of digital systems which use them. Consequently it has
become necessary to guarantee that these microprograms are correct, i.e. (i) they are free of pro-
gramming errors, and (ii) they satisfy the given specifications. Verification of microprogram correct-
ness uses formal mathematical methods to provide rigorous proofs of their correctness. Validation of
microprograms, on the other hand, aims to increase our confidence in their correctness by means of
extensive simulation and testing. This paper provides a survey of verification and validation methods
of microprograms along with a discussion of the differences in this respect between microprograms

and software.
(Received July 1979)

Introduction

The technique of microprogramming has experienced a long
delay from the time of its conception to the time of widespread
use, due to the unavailability of technology to make such use
efficient and economic. However, microprogramming is cur-
rently being used in diverse areas such as emulation, program
enhancement, direct execution of high level languages,
operating systems support, signal processing, computer
graphics, fault diagnosis etc. (Agrawala and Rauscher, 1976).
Such widespread application has naturally raised the question
of correctness of these microprograms being used to replace
software controlled hardware. It can be argued that the current
concern with the correctness of microprograms is simply a
reflection of a similar concern in the realm of software. How-
ever it should be noted that microprograms are at the heart of
the digital systems that use them; correct software will
not execute correctly when interpreted by erroneous
microprograms.

A survey of various techniques for the verification of
correctness of microprograms is presented in this paper. Two
basically distinct approaches to this problem are identified;
these are (i) formal methods of proving microprograms correct
and (ii) empirical methods based on simulation and testing to
ascertain the reliability of microprograms. The paper does not
make an exhaustive survey of all the possible techniques that
have been published but rather concentrates on a few repre-
sentative ones in each of the two approaches to the problem.

The next section contains a discussion of two automated
techniques of microprogram verification. This is followed by a
section on simulation and testing and a discussion of the
various aspects of microprogram verification. The reader may
refer to Carter et al. (1978) as an additional source of infor-
mation on the subject.

Formal verification techniques

As with software, the formal verification procedures for
microprograms start with a specification of the algorithm to be
microprogrammed or the architectures of the host machine and
the target machine to be emulated. Various specification
schemes can be found in the literature; a combination of the
Vienna definition language and APL is used in Joyner et al.
(1976b) to specify the macro and micro level machines;
a Pascal-like language called STRUM (structured micro-
programming language) is used in Patterson (1976) as a high
level language for specifying microprograms.

A lucid discussion of the requirements of such specification
languages for microprograms can be found in Bouricius (1974).
The notation for such a specification language should be easy to
learn, easy to use and easy to manipulate. An implication of
this requirement is that mathematical symbols with their
conventional meanings should be used as far as possible. The
notation should be concise for ease of manipulation and a rich
enough character set for operations should be available. A
straightforward syntax for formulae and equations, simple,
consistent and easy to use, is also desirable. The data structure
should be flexible enough to specify the different data objects
used in microprogramming. Bouricius (1974) advocates the
use of array theory developed in More (1973) as the basis of
such a specification language. The principal objects used in this
theory are called arrays which are suitable for representing data
structures used in microprogramming as well as in software.
Items in arrays can be arrays and operations are mappings
from the domain of all arrays to the codomain of all arrays.
Operators are defined as transformations that change their
mappings; most primitive operators are monadic and the
system is closed under these operations. Bouricius (1974) notes
that many useful identities, theorems and corollaries are readily
available in array theory. He points out that many of the
commonly used specification languages such as VDL, LISP,
APL etc. are inadequate for the job because they do not have
an axiomatic basis, they are many-sorted and not closed under
operations defined in the language.

A vpartially automated system, called the microprogram
certification system (MCS), for detecting errors in microcode
has been reported in the literature (Joyner et al., 1976b), and its
various stages of development can be found in a series of papers
(Leeman er al., 1977; Carter et al., 1977; Joyner et al., 1976a;
Birman and Joyner, 1974; Leeman et al., 1974). In this system,
the specifications for the correct implementation of an archi-
tecture are described by an abstract machine with a tree control
structure. The elements of the control structure are created by a
library of macroroutines. The state of the machine is given by a
state vector whose components are the components of the
machine such as registers, storage, switches, lines etc. The
attributes of the microprogrammed computer, on which the
specified architecture is to be implemented, are also specified by
such an abstract machine. The problem of verification then
reduces to a demonstration that the second abstract machine is
an algebraic simulation (Milner, 1971) of the first abstract
machine.
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[(MEM (16777216 32)
(STK 32)
X 32
(Ic 3)
SW 1]

Fig. 1(a) Description of a machine state by means of the components
of the machine in MCS (Joyner et al., 1976b)

execpgm =
SW = 1 > exec — pgm
execinstr (op, adl)
advetp
adl: instrprep (id, ix, op, ad)
id: a[0]
ix: a[l]
op: a[2 + ¢ 6]
ad: a[8 + ¢ 24]
a: fetchword (IC)
SW=0-Q

Fig. 1(b) A tree control in MCS (Joyner e al., 1976b)

Fig. 1(a) shows a description of the S-machine (Haralson and
Polivak, 1972) state vector in the MCS specification language
(Joyner et al., 1976b). The S-machine has a one-bit switch SW,
a main memory MEM of 224, 32 bit words, an index register X,
an instruction counter IC and a top-of-stack pointer STK, all
of 32 bits. The state vector components are treated as APL-like
variables and their sizes are declared in the declaration state-
ment as shown in Fig. 1(a). Fig. 1(b) shows a sample macro in
APL-like notation which is used in forming the control tree
(Joyner et al., 1976b). The execpgm macro is used when the
S-machine is ready to fetch and execute a machine instruction.
For more details on the execution of this macro, the reader
should consult Leeman et al. (1977).

The concept of algebraic simulation (Milner, 1971) is used in
MCS to determine whether one abstract machine correctly
simulates another. A theorem, stating the conditions for correct
algebraic simulation, is given in Leeman et al. (1977). The
problem is reduced to showing that the hypotheses of this
theorem are true. In MCS, this last step is carried out inter-
actively using automated expression simplifiers and theorem
provers and the goal-directed problem solving techniques of
artificial intelligence (Nilsson, 1971). An example of application
of MCS to a real system can be found in Carter et al. (1978).

Another automated verification system called STRUM is
described in Patterson (1976); an overview of STRUM is
shown in Fig. 2. The STRUM system uses the inductive
assertion method of proving programs correct, developed by
Floyd (1967), Manna (1969) and others. In this method, non-
executable logical assertions are added at suitable points in a
program to describe the state of the variables in the program at
those points. These assertions are combined with the program
text to create logical statements. If these logical statements are
verified they demonstrate a kind of consistency between the
program text and the assertions, often called partial correctness.
In STRUM these logical statements are called verification
conditions (VCs).

STRUM

sorce | STRUM| parial | vc  [FormulaglTheorem

with compiler verification |simplifier prover
specifications conditions

in ISP. (VCs) ]

User Axioms

Fig. 2 STRUM verification system (Patterson, 1976)
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The STRUM system uses an ISP (Bell and Newell, 1971)
description of a computer to be the specification of the micro-
program that emulates it. The algorithms are specified in the
STRUM language which is a language with Pascal-like
structure and syntax. The compiler accepts the ISP description
of the machine and the STRUM algorithms and generates a
prefix PASCAL and some tables. These are used by a VC
generator to generate the necessary verification conditions.
The VC simplifier simplifies complex VCs and proves the truth
of the simple ones. The remaining VCs are verified by the user
in an interactive manner by using a theorem prover (see Fig. 2).

MCS and STRUM are two of the major automated micro-
program verification systems reported in the literature that use
formal program proving techniques. Another such system has
been reported earlier in Ramamoorthy and Shankar (1974)
although it is not certain if it has been fully implemented. For
an algebraic method of microprogram verification, the reader
should consult Blikle and Budkowski (1976).

Simulation and test techniques

A formal proof of the correctness of a microprogram is the best
guarantee that it meets the given specifications. The next best
thing to a formal proof is extensive simulation and testing of
the microprogram and its target machine. An automated tool
that combines a hardware description language with a simula-
tion system capable of simulating microprogrammed machines
has been described in Adamowicz and Mirza (1977). This tool
is based on a microcomputer design and simulation language
(MDSL) and uses the basic model of microprogrammed
machines given in Wilkes (1951).

MDSL allows one to define the architecture of the target
machine, the structuare of the microprogram to be executed and
the initial state before execution starts. The simulator outputs
routine statistics and optional histograms indicating the
performance of the microprogrammed machine under various
test conditions. Other automated simulation and test techniques
(Howden, 1977; King, 1976) developed for software testing can
be adapted for the testing and verification of microprograms,
and Carter et al. (1978) mention the use of symbolic simulation
based on the idea of King (1976). The DISSECT system
presented in Howden (1977) is reported to increase the rate of
detection of errors in the programs tested in that paper. It
appears that this system is more of a debugger than a tool for
ascertaining the reliability of programs. In connection with the
reliability of programs, the method given in Musa (1975)
determines the mean time to failure (MTTF) of programs. It is
conceivable that this information can be combined with the
MTTFs of hardware components to compute the MTTF of a
microprogrammed machine.

As a final technique one should not discount the various
assemblers for microprogrammable processors. Although no
specific processor will be discussed here, the use of an assembly
language, with its symbolic names management, data area
definition and other facilities, can go a long way in producing
microprograms having a higher probability of success than
those composed at the control word level. The direct composi-
tion of control word contents is, unfortunately, an approach
used in all too many cases. This is especially true when a
register arithmetic logic unit (RALU) is employed to create a
processor. For example, the M2900 from Motorola, Inc.
(undated) is an example of one such RALU. With the control
function implemented directly at the control word level, errors
are likely to arise. If one makes use of an assembler and
emulator to provide an initial attack on the program develop-
ment, at least some errors can be found before the program is
committed to control memory and direct testing at the hard-
ware level is performed.

For a microinstruction control word that is not encoded the
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possibility exists that conflicting operations within the same
microinstruction can be specified. For example, there may
exist left and right shifts of the arithmetic logic unit output
which can be specified as needed. If both are specified in the
same microinstruction, anomolous behaviour will generally
result. Any competent supporting software will at least provide
an indication to the user that such a condition has been
specified. In all, the support software should at least test for any
conflict condition which can be reasonably located.

Discussion

In principle, the formal verification of microprograms is no
different from that of software; however, as noted in
Ramamoorthy and Shankar (1974), there is an important
difference in practice. To quote from Ramamoorthy and
Shankar, ‘. . . a program is said to be correct if its output is
correct for all legal input values. This seems to be inadequate for
microprogram correctness because what is significant here is
the final state of the machine after the microprogram execution.
State of the machine does not just mean the output of the
microprogram, whereas in the case of programs it did because
program correctness is defined independent of the machine.
The end state of program variables in the case of programs are
not of concern. In the case of microprograms this is significant
because the final state of the machine must include the internal
variable set condition’. This important distinction between soft-
ware and microprograms should be kept in mind when
verification techniques for software are adapted to micropro-
grams,

As noted in Carter et al. (1978), an interpreter of a high level
software is specified in an idealised manner but in connection
with microprograms, a piece of hardware must be specified in
detail as the interpreter. Special hardware features such as
parallelism without any synchronising primitives to make
executions orderly, absence of interlocks for shared com-
ponents, possible race conditions etc. must be considered
carefully at the time of specification.

It is clear from the published literature that most of the soft-
ware [except perhaps London (1971)] that has been formally
verified consists of very small programs artificially generated
for the very purpose of verification. This state of affairs raises
some doubts about the applicability of formal techniques for
the verification of large pieces of software. However, most
microprograms are reasonably small, use simple data structures
and operations, and hence perhaps are ideally suited for formal
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Book reviews

Digital System Design with LSI Bit-Slice Logic, by G. J. Myers,
1980; 338 pages. (John Wiley, £16:25)

Bit slice logic forms a relatively unknown segment of the rapidly
advancing LSI technology, but it is an important branch of this
technology since it can and does provide solutions to design prob-
lems which that other, now well known, strain of the technology, the
microprocessor, cannot provide due to its lack of speed or its
inherent ‘completeness’. Microprocessors are complete processing
units whereas bit slices are fundamental building blocks, and
consequently of immediate interest to a much smaller audience,
mainly minicomputer and special purpose computer designers,
system architects, and students. -

The main thrust of this book is as a tutorial and reference work for
the system architect and the digital design engineer, and being of a
practical nature bears little resemblance to the more theoretical text
which a student might require. The opening chapter provides an
introduction to bit slice logic and develops the concept of the
desirability of minimising the number of LSI chip types by making
available a small set of universal chip types. The bit slice is examined
in this context, and the most popular of all current bit slices, the
AMD?2901 is used as an example. A recurring theme throughout the
book is that there is little relationship between bit slices and micro-
processors other than that both are LSI components, and similarly
that microprogramming and conventional programming are very
dissimilar.

The following chapter introduces the concept of microprogrammed
control, which is normally, but not necessarily used with bit slices.
These first two chapters paint an easily readable picture of how bit
slices came about and how they might be used, and would be useful
reading to anyone who wished to gain a brief insight into the
subject.

The next chapters survey the currently available bit slices, sequenc-
ing and support devices and are bread and butter to digital design
engineers, but anyone else may find the going a little tough. The
chapter on micro-instruction design is really the heart of the book,
starting with pipelining and proceeding through various control
storage techniques to a case study. A brief chapter on the program-
mable logic array (PLA) is strictly speaking outside the scope of the
title of the book, but forms a useful interlude since the PLAisalsoa
new and powerful fundamental digital building block.

The book is concluded by two short chapters, the first outlining the
support tools which can be used by designers using microprogram-
ming, such as assemblers and simulators, and the final chapter
giving some thoughts on firmware engineering. The lasting impres-
sion that this book gives about designing systems around bit slices is
that it is not yet a rigorous process but a subtle blend of art and
science, based on intuition and experience, rather than established
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engineering principles. In places, the use of verbal explanations sup-
ported by an insufficient number of explanatory diagrams might
make progress unnecessarily slow, even for experienced digital
engineers. However, on balance this is a readable book, an excellent
tutorial which can rapidly bring an engineer to the point where he can
begin to use bit slices with confidence.
This book is thoroughly recommended to anyone who can, or
wishes to, be styled a digital designer or system architect.
HARLEY QUILLIAM (Guildford)

Computer Logic, Testing and Verification, by Paul Roth, 1980; 176
pages. (Computer Science Press Inc.)

Dr Roth has a long standing reputation in the field of formal design
and automatic logic testing. Users of his well known D-algorithm
will therefore need no persuading as to the efficacy of this book.
However, to the uninitiated, who may be looking for a general text-
book, there are some surprises. The book is written in the style of a
scientific paper and pays little regard to colloquialisms—for example
you will be hard-pressed to find ‘truth table’ or ‘nand gate’ mentioned
by name. Each chapter does indeed end with a short section entitled
‘other work’ and a bibliography, but these only tend to enhance the
impression that the book is a very personal view of computer design.
Chapter 1 introduces cubical calculus for 2-level logic minimisation
and develops the regular algorithmic notation, R-notation. Non-
mathematicians will find this decidedly heavy going, but it is worth
persevering because it is later generalised to a ‘D-calculus’ for the
purposes of test generation. Chapter 2 deals with combinatorial logic
design, with examples of the application of his P* algorithm for
transforming multiple-level design to equivalent 2-level networks
amenable to cubical calculus. Chapter 3 describes the testing of such
networks via Roth’s D-algorithm which, for a range of well defined
faults in moderate networks, is quite helpful in automatic error
detection. The next chapter, entitled logic automation, is really a
description of how the R-notation was used as a basis for the PL/R
design language. The tone of the book becomes somewhat parochial
at this point. The difficult topic of testing sequential circuits is given
sympathetic treatment in Chapter 5, via the concept of logic blocks
bounded by registers. Finally, there follow three short chapters on
logic verification, logic embedding (in the sense of VLSI cells), and
repairable logic. At various points in the text reference is made to
programs which use the formal techniques developed by the author;
figures are given which show that, with ingenuity, practical design
problems can be solved without prohibitively long run times. In
summary, the book is a useful research monograph but the treat-

ment is rather specialised.
S. H. LAvINGTON (Manchester)
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