KING, J. C. (1976). Symbolic execution and program testing, CACM, Vol. 19 No. 7, pp. 385-394.
Leeman Jr, G. B. (1974). Some techniques for microprogram validation, IBM Research Report RC 4616 (revised), Yorktown Heights, New

York (April).

LeemaN Jr, G. B. et al. (1977).
York (June).
LonpoN, R. L. (1971).

No. 188, pp. 236-252, Springer.

An automated proof of microprogram correctness, IBM Research Report RC 6587, Yorktown Heights, New

Experience with inductive assertions for proving programs correct, Symp. Sem. Algo. Lan., Lecture Notes in Maths

MANNA, Z. (1969). The correctness of programs, Journal of Computer and System Sciences, Vol. 3 No. 5, pp. 119-127.
MILNER, R. (1971). An algebraic definition of simulation between programs, Proc. Second Inter. Conf. on Artificial Intelligence, London,

pp. 481-489 (September).
More Jr, T. (1973).
MoToroLA INcC. (undated).
MuUsA, J. D. (1975).
327.

Axioms and theorems for a theory of arrays, IBM Journal of Research and Development, Vol. 17 No. 3, pp. 135-175.
Booklet on the M2900 TTL Processor Family.
A theory of software reliability and its application, IEEE Transactions on Software Engineering, Vol. 1 No. 3, pp. 312-

NiLssoN, N. J. (1971). Problem Solving Methods in Artificial Intelligence, McGraw-Hill, New York.
PATTERSON, D. A. (1976). STRUM: Structured microprogram development system for correct firmware, IEEE Transactions on Computers,

Vol. 25 No. 10, pp. 974-985.

RAGLAND, L. C. (1973).
RAMAMOORTHY, C. V. and SHANKAR, K. S. (1974).
Transactions on Computers, Vol. 23 No. 8, pp. 768-782.

A verified program verifier, PhD Dissertation, University of Texas, Austin (May).
Automatic testing for the correctness and equivalence of loopfree microprograms, /[EEE

WILKES, M. V. (1951). The best way to design an automatic calculating machine, Proc. Manchester University Inaugural Conference, pp. 16—

18 (July).

Book reviews

Digital System Design with LSI Bit-Slice Logic, by G. J. Myers,
1980; 338 pages. (John Wiley, £16:25)

Bit slice logic forms a relatively unknown segment of the rapidly
advancing LSI technology, but it is an important branch of this
technology since it can and does provide solutions to design prob-
lems which that other, now well known, strain of the technology, the
microprocessor, cannot provide due to its lack of speed or its
inherent ‘completeness’. Microprocessors are complete processing
units whereas bit slices are fundamental building blocks, and
consequently of immediate interest to a much smaller audience,
mainly minicomputer and special purpose computer designers,
system architects, and students. -

The main thrust of this book is as a tutorial and reference work for
the system architect and the digital design engineer, and being of a
practical nature bears little resemblance to the more theoretical text
which a student might require. The opening chapter provides an
introduction to bit slice logic and develops the concept of the
desirability of minimising the number of LSI chip types by making
available a small set of universal chip types. The bit slice is examined
in this context, and the most popular of all current bit slices, the
AMD?2901 is used as an example. A recurring theme throughout the
book is that there is little relationship between bit slices and micro-
processors other than that both are LSI components, and similarly
that microprogramming and conventional programming are very
dissimilar.

The following chapter introduces the concept of microprogrammed
control, which is normally, but not necessarily used with bit slices.
These first two chapters paint an easily readable picture of how bit
slices came about and how they might be used, and would be useful
reading to anyone who wished to gain a brief insight into the
subject.

The next chapters survey the currently available bit slices, sequenc-
ing and support devices and are bread and butter to digital design
engineers, but anyone else may find the going a little tough. The
chapter on micro-instruction design is really the heart of the book,
starting with pipelining and proceeding through various control
storage techniques to a case study. A brief chapter on the program-
mable logic array (PLA) is strictly speaking outside the scope of the
title of the book, but forms a useful interlude since the PLAisalsoa
new and powerful fundamental digital building block.

The book is concluded by two short chapters, the first outlining the
support tools which can be used by designers using microprogram-
ming, such as assemblers and simulators, and the final chapter
giving some thoughts on firmware engineering. The lasting impres-
sion that this book gives about designing systems around bit slices is
that it is not yet a rigorous process but a subtle blend of art and
science, based on intuition and experience, rather than established

142 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

engineering principles. In places, the use of verbal explanations sup-
ported by an insufficient number of explanatory diagrams might
make progress unnecessarily slow, even for experienced digital
engineers. However, on balance this is a readable book, an excellent
tutorial which can rapidly bring an engineer to the point where he can
begin to use bit slices with confidence.
This book is thoroughly recommended to anyone who can, or
wishes to, be styled a digital designer or system architect.
HARLEY QUILLIAM (Guildford)

Computer Logic, Testing and Verification, by Paul Roth, 1980; 176
pages. (Computer Science Press Inc.)

Dr Roth has a long standing reputation in the field of formal design
and automatic logic testing. Users of his well known D-algorithm
will therefore need no persuading as to the efficacy of this book.
However, to the uninitiated, who may be looking for a general text-
book, there are some surprises. The book is written in the style of a
scientific paper and pays little regard to colloquialisms—for example
you will be hard-pressed to find ‘truth table’ or ‘nand gate’ mentioned
by name. Each chapter does indeed end with a short section entitled
‘other work’ and a bibliography, but these only tend to enhance the
impression that the book is a very personal view of computer design.
Chapter 1 introduces cubical calculus for 2-level logic minimisation
and develops the regular algorithmic notation, R-notation. Non-
mathematicians will find this decidedly heavy going, but it is worth
persevering because it is later generalised to a ‘D-calculus’ for the
purposes of test generation. Chapter 2 deals with combinatorial logic
design, with examples of the application of his P* algorithm for
transforming multiple-level design to equivalent 2-level networks
amenable to cubical calculus. Chapter 3 describes the testing of such
networks via Roth’s D-algorithm which, for a range of well defined
faults in moderate networks, is quite helpful in automatic error
detection. The next chapter, entitled logic automation, is really a
description of how the R-notation was used as a basis for the PL/R
design language. The tone of the book becomes somewhat parochial
at this point. The difficult topic of testing sequential circuits is given
sympathetic treatment in Chapter 5, via the concept of logic blocks
bounded by registers. Finally, there follow three short chapters on
logic verification, logic embedding (in the sense of VLSI cells), and
repairable logic. At various points in the text reference is made to
programs which use the formal techniques developed by the author;
figures are given which show that, with ingenuity, practical design
problems can be solved without prohibitively long run times. In
summary, the book is a useful research monograph but the treat-

ment is rather specialised.
S. H. LAvINGTON (Manchester)

© Heyden & Son Ltd, 1981

20z udy 01 U0 188n6 Aq £91.8E€/Z 1 L/2/¥Z/10M4e/|uf00/W0d"dNo"oILEPEDE//:SARY WO.) PAPEO|UMOQ

