A style for writing the syntactic portions of complete
definitions of programming languages*

F. G. Pagan

Department of Computer Science, Southern lllinois University, Carbondale, IL 62901, USA

A strategy for the formalisation of the syntactic aspects—abstract syntax, textual (or concrete)
syntax, and context conditions (or ‘static semantics’)—of programming languages is described.
The strategy emphasises the centrality of abstract syntax in a complete language definition and is
compatible with the principle of using a general purpose programming language as a metalanguage.
The proposed technique for specifying (using a set of mutually recursive procedures) textual syntax
and its relationship to abstract syntax provides a sort of programming language counterpart of
BNF as far as overall structure is concerned, and the technique for specifying (using another set of
mutually recursive procedures) context conditions parallels the use of attribute grammars or two-
level grammars for the same purpose. The techniques are illustrated using the miniature language

Asple.
(Received October 1979)

1. Introduction

The principle of using general purpose programming languages
as metalanguages for the formal specification of programming
languages (Pagan, 1976; 1979a; 1979b; 1980a) has two major
potential advantages. The first stems from the fact that
programming languages in general are familiar entities to all
concerned. Formal specifications should be more acceptable
and more widely understood by the community of language
designers, implementers, and users if they are expressed in a
familiar, general purpose programming language than if they
are expressed in an esoteric, specialised, formal metalanguage.

The second advantage is that specifications expressed in a
programming language can easily and immediately be subjected
to computer aided analysis and testing—they can simply be fed
to a compiler for the (meta-)language and perhaps even
executed. One facet of the pervasive analogy between pro-
gramming and language definition is that in both cases: he
‘software engineering’ problem becomes more and more
serious as the size and complexity of the product increase. It is,
of course, extremely difficult to achieve full correctness in a
large program without the aid of some debugging runs on a
computer, no matter how sophisticated the methods and tools
used or how thorough the proofreading. It is just as difficult to
achieve total completeness and consistency in a set of language
specifications that is not readily amenable to mechanical
checking. Language specifications are ‘metasoftware’, and one
can be much more confident of their validity if they have been
computer tested than one ever could be otherwise.

All this presupposes that the metalinguistic use of a program-
ming language is feasible with respect to expressive adequacy
and qualities of specification such as clarity and conciseness.
Evidence that such feasibility is possible in the contexts of
operational semantics (Pagan, 1976) and denotational seman-
tics (Pagan, 1979a; 1979b) has been presented elsewhere.
Those studies largely disregarded the question of how syntax
(context sensitive as well as context free aspects) should be
defined. Of course, syntax usually presents a much less difficult
problem than semantics as far as formalisation is concerned,
but syntactic specifications are nevertheless an essential part
of a complete definition of a language.

2. The syntactic aspects of formal definitions of programming
languages

In the area of formal specification of programming languages,
the following concepts relating to syntax are relevant: (a)
abstract syntax, (b) textual or concrete syntax, (c) correspon-

dence between abstract syntax and textual syntax, and (d)
context sensitive conditions. In many approaches to formal
specification, a complete language definition would include all
four of these components in recognisable form.

An abstract syntax for a language highlights those structural
features that are semantically relevant and forms the basis for
the assignment of meaning to programs by a set of formal
semantic specifications. Almost all approaches to formal
semantics, whether they be categorised as operational, de-
notational, or axiomatic in nature, employ some sort of
abstract syntax. The concept is present even in the technique of
defining semantics by means of two-level grammars
(Cleaveland and Uzgalis, 1977), where metalinguistic ana-
logues of program constructs occur as elements of the grammar
vocabulary. A scheme for abstract syntax must allow for the
unique naming and selection of semantically relevant com-
ponents of constructs. Some of the most flexible and detailed
schemes, in which constructs are represented as structured,
mathematical objects, are those used in the Vienna methods
(Lucas et al., 1968; Bjerner and Jones, 1978) for formal
definition. The technique of specifying abstract syntax by
means of the data structuring facilities of a modern, general
purpose programming language (Pagan, 1976; 1979a) is closely
analogous.

It is often useful to think of the abstract form of a program as
the ‘fundamental’ form and the textual version as a derived
form, rather than vice versa. The textual form is then regarded
merely as a linear encoding of the abstract form as a character
string. Among the textual properties that need not be incor-
porated into an abstract syntax are defaults and optional parts
of constructs, parenthesisation and operator precedence
conventions, and delimiter symbols.

Assuming that a language definition scheme does differentiate
between abstract and textual syntax, the correspondence
between the two must be formalised if the language definition is
to be complete. (Many published language definitions are
intentionally incomplete in this respect, sometimes even
omitting the textual syntax specifications, in order to focus on
techniques for the specification of semantics.) In the two-level
grammar scheme, the correspondence is inherent in the
grammar mechanism. In the more common schemes, there are
basically two possibilities: specifications are supplied either for
mapping textual programs to abstract programs or for map-
ping abstract programs to textual programs. The textual-to-
abstract strategy is analogous to compilation and involves
(usually) definition of a many-to-one transformation. Examples

*This material is based upon work supported by the National Science Foundation under Grant No. MCS-7902962.

CCC-0010-4620/81/0024-0143 $02.50

© Heyden & Son Ltd, 1981

THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 143

20z udy 01 U0 188nB Aq |/ L8EE/EY L/2/PZ/10n4e/|uloo/Wod"dno-oIepED.//:SARY W) PAPEoumMoQ

of its adoption may be found in the Semanol system (Anderson
et al., 1976) and the VDL definition of Asple (Marcotty et al.,
1976). The abstract-to-textual strategy is analogous to de-
compilation (e.g. prettyprinting) and involves (usually) a one-
to-many transformation. An example of a definition using this
strategy is the VDL definition of ALGOL 60 (Lauer, 1968).
Clearly, the latter strategy is more compatible with the idea that
abstract as opposed to textual syntax should be considered as
fundamental. It also circumvents matters such as lexical
scanning and symbol table lookup which, although of interest
to the compiler writer, can add unnecessary complexity to a
formal definition.

The enforcement of context conditions (noncontext free
aspects of a language’s syntax, also known as static semantics)
has been handled in a variety of ways. One strategy (used in
Lauer, 1968, for example) is to combine the specification of all
such properties with the specification of (dynamic) semantics.
The objections to this approach are that context conditions are
more properly considered to be syntactic than semantic in
fhature and that the semantic component of a language defini-
tion has enough to deal with without piling on more. Another
strategy is to embed the context sensitive restrictions in the
specifications for the abstract-to-textual mapping or the
textual-to-abstract mapping (e.g. the VDL definition of Asple
(Marcotty et al., 1976)). The trend in several recent language
definition studies (e.g. Bjerner and Jones, 1978; Anderson ef
al., 1976; Tennent, 1977), including some of the denotational
variety, appears to be toward the specification of context
conditions by means of a separate set of predicates or functions
operating on abstract programs. This strategy improves the
modularity of a language definition as a whole.

3. A proposed scheme
The general philosophy being advocated here is that a
complete, formal definition of a programming language should
consist of, first and foremost, a set of abstract syntax specifica-
tions together with (a) a set of semantic specifications for
assigning meaning to abstract programs and (b) two sets of
syntactic specifications for (i) mapping abstract programs to
textual representations and (ii) enforcing context sensitive
restrictions. Ideally, the abstract syntax and other syntactic
components should be formulated so as to be independent of
the type of semantics (operational, denotational, etc.) used.
Applying this philosophy to the case where a programming
language is used as the metalanguage, and for the sake of
concreteness taking that language to be ALGOL 68, the overall
layout of a complete set of language specifications could be as
follows:

mode Prog =... A
proc ptrogtext =... B
proc ‘;.lfprog = ... C
proc i;zterpret =... D

Here A defines the abstract syntax in terms of a set of mutually
recursive modes as described elsewhere. D defines either the
operational (Pagan, 1976) or the denotational (Pagan, 1979a;
1979b) semantics in terms of a set of mutually recursive
procedures. B defines the abstract-to-textual mapping in terms
of mutually recursive procedures, and C expresses the context
conditions in terms of yet more mutually recursive procedures.

Given an abstract program p (a value of mode prog), the call
progtext(p) yields the textual form of p. The meaning of p is
defined only if wfprog(p) yields “true” and is then given by
interpret(p,). (Here it is assumed that the mode of interpret is

144 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

proc(prog.file)file, where the mode file characterises the data
sets manipulable by the language being defined, so that when it
is partially parametrised with p, it yields a routine of mode
proc(file)file (Pagan, 1980a). Partial parametrisation is an
extension of standard ALGOL 68.)

The next two sections illustrate how abstract-to-textual
mappings (B) and context conditions (C) can be specified,
using the miniature language Asple as an example. Asple has
been the object of many previous case studies (Cleaveland and
Uzgalis, 1977; Marcotty et al., 1976) with which the present
study may be compared. The choice of ALGOL 68 as the
metalanguage is for the sake of concreteness only and is not
meant to imply that this is an ideal programming language for
such a role.

4. Correspondence between abstract and textual syntax
The abstract syntax of Asple may be formulated in ALGOL 68
as follows:

mode prog = struct (decl de, stm st),
decl = union (declist, dec),
declist = struct (dec de, ref decl next),
dec = struct (type ty, ref[Jid ids),
type = struct (int refcount # > = 0 #, string primtype
“bool” or “int” #)’
stm = union (stmlist, cmd),
cmd = union (asgt, cond1, cond2, loop, inp, outp),
stmlist = struct (cmd s, ref stm next),
asgt = struct (id dest, exp source),
condl = struct (exp cond, ref stm st),
cond2 = struct (exp cond, ref stm st1, st2),
loop = struct (exp cond, ref stm body),
inp = struct (id var),
outp = struct (exp ex),
exp = union (id, const, infix, compare),
infix = struct (ref exp opdl, opd2, string opr # *“+” or
6“” #),
compare = struct (ref exp compl, comp2, string rel #
u=” or u/___,’ #)’
const = union (bconst, iconst),
bconst = bool,
iconst = union (diglist, dig),
diglist = struct (dig d, ref iconst next),
dig = char # “0”...“9” #,
id = string # of charsin 4 ...Z #
It can be seen that a program contains only one level of
declarations. The data type of a variable consists of one or
more “ref” indicators together with a ‘primitive type’ of
“bool” or “int”.

The problem in this section is to specify a mapping from prog
values to textual programs that conform to the following BNF
grammar:

{program) ::= begin {dcl train); {stm train) end

{dcl train) ::= (declaration) | {(declaration); {dcl train)

(declaration) ::= (mode) (idlist)

(mode) ::= bool | int | ref {mode)

(dlist) ::= (id) | <id), (idlist)

{stm train) ::= (statement) | (statement); {stm train)

(statement) ::= (id) := {exp) |

if {exp) then {stm train) fi |
if {exp) then {stm train) else {stm train) fi |
while {exp)> do {stm train) end | input {id) | output {exp)

(exp) ::= (factor) | {exp) + (factor)

{factor) ::= {primary) | {factor) * {primary)

{primary) ::= (id) | {constant) | ((exp)) | ((compare})

(compare) ::= {exp) = <exp) | <exp) # {exp)

{constant) ::= (bool constant) | {int constant)

(bool constant) ::= true | false

© Heyden & Son Ltd, 1981

20z udy 01 U0 188nB Aq |/ L8EE/EY L/2/PZ/10n4e/|uloo/Wod"dno-oIepED.//:SARY W) PAPEoumMoQ

(int constant) ::= {digit) | {int constant) (digit)

(digit) ::=0[|1]...]9
id) ::= (letter) | (id) (letter)
(letter) ::=A|B|...|Z

(This grammar is given here for expository purposes only; it
will not form part of the final specifications, since the infor-
mation it contains will be implicit in the mapping definition.)

The first question to be settled is whether a program in its
textual form is to be considered as a sequence of characters or
as a sequence of tokens. With some (but not all) languages, the
latter possibility could carry more information about just
where spaces and line boundaries can or must be inserted in
programs. Such matters are often left to the individual imple-
mentation, however, and in any case are generally not dealt
with in the formal syntax (e.g. BNF). For this reason, and
because a sequence of tokens is a more complicated structure,
a textual program will be regarded as a simple of nonblank
characters; layout rules will be assumed to be separately
formalised if necessary. Thus the mode of the procedure
progtext will be proc(prog)string.

As a starting point, to give the basic flavour of the technique,
the following procedures define textual representations of
Asple statements and expressions:

proc stmtext = (stm s) string:
case s in
(stmlist s):
stmtext (st of) + *“;” + stmtext (next of s),
(asgt s):
destof s + *“:=" + exptext (source of s),
(condl s):
“if” + exptext (cond of 5) + “‘then” +
stmtext (st of 5) + “fi”,
(cond2 s):
“if” + exptext (cond of s) + ‘‘then” +
stmtext (st1 of s) + “else” + stmtext (st2 of s) + “fi”,
(loop s):
“while” + exptext (cond of s) + “do’ +
stmtext (body of s) + “‘end”,
(inp s):
“input” + var of s,
(outp s):
“output” + exptext (ex of s)
esac,
proc exptext = (exp e) string:
case e in
(ide): e,
(const e): consttext (e),
(infix e): “(” + exptext (opdl of €) + oprof e +
exptext (opd2 of e) +)",
(compare e): “(” + exptext (compl of €) + rel of e +
exptext (comp2 of e) + *“)”
esac,
proc consttext = (const c) string:
case c in
(bconst ¢):
(c | “true” | “false”),
(iconst c):
case c in
(diglist c): consttext (d of c) + consttext (next of c),
(dig ¢): ¢
esac
esac

Such procedures can be read in much the same way as a
grammar, and are much simpler than a set of ‘compilation’
(textual-to-abstract) specifications would be.

As it stands, the procedure exprext does not completely
define the textual syntax of Asple expressions. According to the

© Heyden & Son Ltd, 1981

BNF rules, any expression may be parenthesised, whereas the
procedure employs parentheses only for enclosing infix
expressions (and comparisons). Thus exptext defines only one
of the possible texts for each expression, and not necessarily
the best one at that, since the parentheses it does specify are
often redundant.

The need to express the fact that any expression can be
(perhaps multiply) parenthesised is a special case of the
general problem posed by ‘optionality’ in the textual syntax of
programming languages. The procedures must somehow map
each abstract program on to a whole set of textual representa-
tions. A natural way of programming such multiple-valued
‘functions’ is to make use of a suitable form of nondeterminism.
(The next best thing to use is, probably, the metalanguage’s
facilities for random number generation, and this may work
better if the specifications are to be executed for testing
purposes.) In ALGOL 68, for example, if a conformity clause
contains more than one specification matching the mode of the
object being tested, then it is undefined which case is chosen.

The procedure exptext can be refined in the following manner.
(The use of union(exp, void) instead of just exp as the parameter
mode is a technicality of the metalanguage.)

proc exptext = (union(exp, void) e) string:

case e in
(ide): e,
(const e): consttext (e),
(infix e): (
proc sum on left = (infix) bool:
(opd] of e | (infix o1): opr of o1 = “+” | false),
proc prod on right = (infix e) bool:
(0pd2 of e | (infix 02): opr of 02 = “‘»” | false),
proc simple = (exp e) bool:
(e | (infix): false | true);
string left = (opr of e = “‘»” and sum on left (e) |
“(’ + exptext (opdl of e) +)’ | exptext (opd] of e)),
string right = (opr of e = “+” and prod on right (e) or
simple (opd2 of e) |
exptext (opd2 of) | “(” + exptext (opd2 of €) + *)”);
left + opr of e + right),
(compare ¢):
“(’ + exptext (compl of e) + rel of e +
exptext (comp2 of e) + *)”,
(exp e): “(” + exptext (e) + *“)”
esac
An infix expression is now definitely parenthesised only if (a)
its operator is ‘+’ and either it is the left operand of a ‘*’ or it
is the right operand of any operator, or (b) its operator is ‘s’
and it is the right operand of another ‘x’. However, any
expression may be optionally parenthesised (to any depth,
because of the recursion). Now the procedure completely and
accurately characterises the textual syntax of Asple expressions
together with its relationship to the abstract syntax. The set of
textual representations of an abstract expression e is defined to
be the set of all possible values of exptext(e).

It remains to define the textual form of declarations and
complete programs. The procedure typetext specifies that the
first “ref”” of a mode does not appear in the textual form:

proc typetext = (type t) string:

if refcount of t < =1
then primtype of t
else “ref” + typetext (type (refcount of t — 1, primtype of t))
fi

Thus in the case of the program

begin

intl,J;
ref int P; ref ref bool B;

end

THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 145

20z udy 01 U0 188nB Aq |/ L8EE/EY L/2/PZ/10n4e/|uloo/Wod"dno-oIepED.//:SARY W) PAPEoumMoQ

the relevant types are (1, “int””) for I and J, (2, “int”’) for P, and
(3, “bool”) for B.

The ordering of the declarations in a program is arbitrary.
Two of the alternative orderings for the declarations in the
above example are

int I int J; ref ref bool B; ref int P

ref ref bool B; int J; ref int P; int |
In this paper, it is assumed for simplicity that all these pos-
sibilities correspond to distinct (though semantically equi-
valent) abstract programs. A more elaborate scheme whereby
each abstract program in such an equivalence class has all
permutations of declarations in its set of textual representations
is given elsewhere (Pagan, 1980b). The remaining procedures
for the abstract-to-textual mapping are thus quite straight-
forward:

proc decltext = (decl d) string:

case d in
(declist d):
decltext (de of d) + **;” + decltext (next of d),
(dec d): (
string text := typetext (ty of d) + (ids of d)[1];
for i from 2 to upb ids of d do
text := text +)’ + (ids of d)[i] od;
text)
esac,

proc progtext = (prog p) string:
“begin” + decltext (de of p) + “; + stmtext (st of p) +
‘(end”
The specification of Asple’s textual syntax and its relationship
to the abstract syntax is now complete. The set of textual
representations of an abstract program p is defined to be the
set of all possible values of progtext(p).

5. Context conditions

Not all values of mode prog are valid programs; that is to say,
the syntax of Asple has various context sensitive aspects. The
major context conditions may be informally stated as follows:

1. All identifiers used in a program must be declared.
2. No identifier may be declared more than once.

3. The two sides of an assignment statement must have the
same primitive type and the number of “refs’ in the left type
must not exceed the number of “refs” in the right type by
more than one.

4. The primitive type of the expression in a conditional or loop
statement must be “bool”.

5. The primitive types of the operands of an infix expression
must be the same.

6. The primitive types of the operands of a comparison must
both be “int”.

The proposed technique for formalising such context conditions
is similar to that used in the Vienna Development Method
(Bjorner and Jones, 1978), except of course that here the
metalanguage is a programming language. The conditions are
characterised by a set of mutually recursive predicate routines
(procedures returning boolean values) together with some
additional procedures needed by the predicate routines. The
various procedures need to manipulate new types of structured
values which are closely analogous to the attributes of an attri-
bute grammar or the metanotions of a two-level grammar in a
definition of the context conditions expressed in either of these
formalisms. In the case of Asple, the only additional modes
needed are

mode item = struct (type ty, id id, table rest),
table = ref item

146 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

A table value, which is a linked list of nodes of mode item, will
serve 1o record the name and type information corresponding
to a set of declarations. The ‘well-formedness’ (adherence to
context conditions) of many of the constructs in an Asple
program can only be defined relative to a table containing the
name and type information corresponding to all the program’s
declarations. The following procedure augments a table b/
with the information specified by a declaration d:

proc newtable = (table tbl, decl d) table:
case d in
(declist d):
newtable (newtable (tbl, de of d), next of d),
(dec d):
table 1 := 1bl;
for i to upb ids of d do
t := heap item := (¢ty of d, (ids of d)[i], ?) od;
1)
esac
The procedure consistent enforces the restriction against
multiply-declared identifiers:

proc consistent = (table tbl) bool:
if tbl is nil then true
elif table (rest of tb!) is nil then true
else table p := rest of tbl, bool con := true;
while table (p) isnt nil do
if id of tbl = id of p then con := false fi,
p :=restof p od;
con and consistent (rest of tbl)
fi

The well-formedness of a complete program is then defined by

proc wfprog = (prog p) bool: (
table tbl = newtable (nil, de of p);
consistent (tbl) and wfdecl (de of p) and wfstm (st of p, tbl))

(In an attribute grammar, ‘“table” would be a synthesised
attribute of {dcl train) and an inherited attribute of (state-
ment) ; the function for evaluating it would be the counterpart
of the procedure newtable here.)

The predicate for declaration well-formedness is very simple:

proc wfdecl = (decl d) bool:
case d in
(declist d): wfdecl (de of d) and wfdecl (next of d),
(dec d): refcount of ty of d > = 1
esac

In order to define the predicates for statements and expres-
sions, auxiliary procedures are needed for determining the
types of variables and expressions and checking that identifiers
have been declared:
proc vartype = (id i, table tbl) type:
if tb/ isnt nil then

if i = id of tbl then ty of tb!

else vartype (i, rest of tbl)

fi

fi,

proc exptype = (exp e, table tbl) type:

case e in
(id e): vartype (e, tbl),
(const e): (e | (beonst): (0, “bool”),

(iconst): (0, ““int™)),

(infix €): (0, ptype (opdl of e, tbl)),
(compare e): (0, “bool”)

esac,

proc ptype = (exp e, table tbl) string:
primtype of exptype (e, tbl),

© Heyden & Son Ltd, 1981

20z udy 01 U0 188nB Aq |/ L8EE/EY L/2/PZ/10n4e/|uloo/Wod"dno-oIepED.//:SARY W) PAPEoumMoQ

proc declared = (id i, table tbl) bool:
if tbl is nil then false
elif i = id of tbl then true
else declared (i, rest of tbl)
fi

The procedures wfstrm and wfexp may now be written as
follows:
proc wfstm = (stm s, table tb/) bool:
case s in
(stmlist s):
wfstm (st of s, tbl) and wfstm (next of s, tbl),
(asgt s): (
type td = vartype (dest of s, tbl),
ts = exptype (source of s, tbl);
declared (dest of s, tbl) and wfexp (source of s, tbl) and
refcount of td — 1 < = refcount of ts),
(condl s):
wfexp (cond of s, tbl) and wfstm (st of s, tbl) and
ptype (cond of s, tbl) = “bool”,
(cond2 s):
wfexp (cond of s, tbl) and wfstm (st1 of s, tbl) and
wfstm (st2 of s, tbl) and
ptype (cond of s, tbl) = “bool”,
(loop s):
wfexp (cond of s, tbl) and wfstm (body of s, tbl) and
ptype (cond of s, tbl) = “bool”
(inp s):
declared (var of s, tbl),
(outp s):
wfexp (ex of s, tbl)

References

esac,
proc wfexp = (exp e, table tbl) bool:
case e in
(id e): declared (e, tbl),
(const): true,
(infix e):
wfexp (opd] of e, tbl) and wfexp (opd2 of e, tbl) and
ptype (opdl of e, tbl) = ptype (opd2 of e, tbl),
(compare ¢):
wfexp (compl of e, tbl) and wfexp (comp?2 of e, tbl) and
ptype (compl of e, tbl) = “int” and
ptype (comp2 of e, thl) = “int”
esac

6. Conclusion

Additional examples of the use of the techniques illustrated in
this paper are given in Pagan (1980b). The techniques imple-
ment a comprehensive strategy for syntactic specification which
emphasises the centrality of abstract syntax in a complete
language definition, is largely independent of the approach
used to define semantics, and is compatible with the principle
of using a general purpose programming language as a
metalanguage. Roughly speaking, the technique for specifying
textual syntax and its relationship to abstract syntax constitutes
a programming language counterpart of BNF grammars as far
as overall structure is concerned, while the technique for
specifying context conditions parallels the use of attribute
grammars or two-level grammars for the same purpose. The
examples suggest that a satisfactory degree of clarity and
naturalness of the specifications can be achieved.

ANDERSON, E. R., BeLz, F. C. and BLum, E. K. (1976). SEMANOL (73) A Metalanguage for Programming the Semantics of Programming

Languages, Acta Informatica, Vol. 6, pp. 109-131.

BiorNER, D. and Jones, C. B. (eds.) (1978). The Vienna Development Method: The Meta-Language, Springer-Verlag Lecture Notes in

Computer Science, No. 61.

CLEAVELAND, J. C. and UzgGauis, R. C. (1977). Grammars for Programming Languages, Elsevier North-Holland, New York.
LAUER, P. (1968). Formal Definition of ALGOL 60, TR 25.088, IBM Laboratory Vienna.
Lucas, P., LAUER, P. and STIGLEITNER, H. (1968). Method and Notation for the Formal Definition of Programming Languages, TR.087,

IBM Laboratory Vienna, 1968 and 1970.

MARCOTTY, M., LEDGARD, H. F. and BocHMANN, G. V. (1976). A Sampler of Formal Definitions, Computing Surveys, Vol. 8, pp. 191-276.

PAGAN, F. G. (1976). On Interpreter-Oriented Definitions of Programming Languages, The Computer Journal, Vol. 19, pp. 151-155.

PaGaN, F. G. (1979a). ALGOL 68 as a Metalanguage for Denotational Semantics, The Computer Journal, Vol. 22, pp. 63-66.

PaGAN, F. G. (1979b). Studies in the Metalinguistic Use of a General-Purpose Programming Language for the Specification of Denotational
Semantics, Technical Report 79-01, Dept. of Computer Science, Southern Illinois Univ. at Carbondale.

PAGAN, F. G. (1980a). On the Generation of Compilers from Language Definitions, Inf. Process. Lett., Vol. 10, pp. 104-107.

PAGAN, F. G. (1980b). Programming Languages as Metalanguages: A Style for Specification of Syntax and Context Conditions, Technical
Report 80-81, Dept. of Computer Science, Southern Illinois Univ. at Carbondale.

TENNENT, R. D. (1977). A Denotational Definition of the Programming Language PASCAL, Technical Report 77-47, Dept. of Computing

and Information Science, Queen’s Univ., Kingston, Ontario.

© Heyden & Son Ltd, 1981

THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 147

20z udy 01 U0 188nB Aq |/ L8EE/EY L/2/PZ/10n4e/|uloo/Wod"dno-oIepED.//:SARY W) PAPEoumMoQ

