Eliminating null rules in linear time*

M. A. Harrison and A. Yehudait

Computer Science Division, University of California at Berkeley

We present a linear time algorithm for eliminating null rules in context free grammars. Until recently
all algorithms given in the literature for this problem required exponential time.
(Received November 1978; revised January 1980)

Null rules (i.e. productions like A — A where A is the empty
string) are often undesirable in a context free grammar either
for a theoretical reason (it may be easier to prove properties of
grammars with no such rules) or for practical reasons (some
parsing techniques may fail to work in the presence of null
rules).

It is well known (Bar-Hillel, Perles and Shamir, 1962) that for
every context free grammar G one can construct a context free
grammar G' with no null rules that is equivalent to G (i.e.
generates the same language). This process is called a trans-
formation (or, more specifically a null rule eliminating
transformation).

The algorithm from Bar-Hillel, Perles and Shamir (1962), as
well as some other algorithms found in the literature, turn out
to be quite inefficient. They are intended mainly as constructive
proofs for a Normal Form theorem. Also, their inefficiency
surfaces only on certain specially designed grammars. Still, it is
important to investigate the complexity of null rule elimination.
We prove that this can actually be done in linear time.

While the paper is concerned with a problem interesting to
compiler writers, it can also be viewed as an example of
algorithmic improvement. In particular the development of the
programs for the new algorithm are done in a careful systematic
fashion, as details of the implementation (i.e. the choice of data
structures) significantly affect the programs’ efficiency.

The remainder of the Introduction provides some basic
definitions and notation. In Section 1 we analyse the classical
algorithm and show that it is exponential. We also discuss some
other algorithms that are exponential. Then we show how one
can improve the performance of the algorithm. Section 2
considers the computation of all non-terminals of a grammar
that can generate the empty string. This is needed as a sub-
routine to the main algorithm. Finally, in Section 3, we obtain
our main results by combining some of the previous results.
We use fairly standard notation and repeat only some of the
elementary definitions; for details see Harrison (1978) and
Hopcroft and Uliman (1969). By a grammar we always mean
a context free grammar.

We would like to present our algorithms in a readable way
without hiding the main complexity issues. We choose to write
algorithms in Pidgin ALGOL (¢f. Aho, Hopcroft and Ullman,
1974). This representation enables us to specify as much or as
little of the actual implementation of the algorithm as we find
necessary. We then analyse the time complexity assuming the
algorithm is executed on a reasonable model of a computer.
We are interested in the asymptotic behaviour of the worst case
complexity. Since the complexity is computed as a function of
the input size, and since the input to the algorithms is (an
encoding of) a grammar we need to discuss the size of such an
encoding. A reasonable encoding consists mostly of a list of the
productions in the grammar. (The size of any additional
information such as the list of nonterminals and terminals, as
well as delimiters signifying end of production, etc. will be

smaller.) There are two principal ways to measure the size of
the encoding (i.e. of the production list of a grammar).

Definition 1
Let G = (V, Z, P, S) be a context free grammar. Define
G| =2%21|Aa]

A—a

in P
and
|Gl =1G]|-log, | V].

| G | is simply the number of symbols involved in productions.
| G | is a more realistic measure because it takes into account
the number of bits needed to encode each symbol in ¥ (assum-
ing a fixed alphabet). Unless otherwise specified n will denote
the size of the input using either measure.

Whenever | G | is assumed as the size measure, we need to
estimate | G | and | V| in order to compute the complexity.
The following lemma establishes some relationship between
these quantities.

Lemma 1

For any context free grammar G = (V, Z, P, S), if L(G) # 0,
L(G) # {A}, and if every letter in V¥ occurs in at least one
production, then

@2<|VI<|GCG|

®) | VI< 2 wheren=| G| =|G|log| V| (Al logs
logn
are to the base 2.)
Proof
Since S € N, |[N| = 1. Since £ # 0, we have

| V| =|N|+|Z| =1+ 1 =2 The upper bound of (a)
follows from the assumption that each symbol of V appears in
at least one production.

From (a), we have

n=|Gl|log|V|=|V]|log|V]|=>2log2.
Consider the function
f(x) =2/x — log x.
It can be seen that for x > 2 f(x) > 0. It follows that, for all
nz=2
2/n > logn.
So

Taking logs and multiplying by % > 0 we obtain

___2n lo 2n >n
log n gIogn

*Research supported by National Science Foundation Grants GJ-43332 and MCS74-07636-A01.
tDivision of Computer Science, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, ISRAEL.

CCC-0010-4620/81/0024-0156 $03.00

156 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

© Heyden & Son Ltd, 1981

20 udy 01 U0 1s8n6 Aq 881.8EE/9S L/2/¥Z/101e/|uf0o/W0d"dNo"oILEPEDE//:SARY W) PAPEO|UMOQ

Hence
2n 1og(2_"> > | V|log|V]|

log n logn
and it follows that
2n >V
log n 0O

When discussing the complexity of algorithms we will often
make two evaluations according to the size measure we use.
The use of a specific measure for the size of the input will imply
that if the algorithm has a grammar as its output then it is
assumed to be written out in the same ‘format’.

An interesting property of many of the algorithms that
perform grammatical transformation is that their time com-
plexity is dominated by the size of the output grammar. In such
cases we need only evaluate the size of the output grammar
(using either size measure), and show that the computation
itself is of the same order of magnitude as the size, in order to
obtain the algorithm’s complexity.

Next we introduce some ‘Normal Forms’ of grammars.

Definition 2
A grammar G = (V, Y, P, S) is said to be

1. Reducedif P = Qorforevery AeV, S > oaAp > w for some
o, feV*. wel*

2. A-freeif P N x V* U {§ > A}andif S > Ain P
implies that S does not appear in a right hand side of any
production.

3. chain-free if P A N x N = 0.

4. in 2-Normal-Form 2NF) if P = N x V2. (V, denotes the
set ¥V u {4}) Hunt, Szymanski and Ullman (1975)

5. in Chomsky-Normal-Form (CNF) if it is A-free and
Pc Nx (N2uUX)u{S-> A}

It is well-known that every language has a reduced grammar. In
Yehudai (1977) it is shown that reduction can be done in
linear time. The definition of a A-free grammar allows S —» 4
to be used only in generating A. 2NF only limits the length of
the right hand side of a production, while CNF allows only
three types of productions: A - BC, A - a or S — A where
A,B,CeNandael.

1. Eliminating null rules

We begin this section by presenting the classical algorithm, due
to Bar-Hillel, Perles and Shamir (1962) for null rule elimina-
tion. The construction is very simple, but the grammar can
grow exponentially.

Algorithm 1
Input: G = (¥, Z, P, S) a reduced grammar
Output: grammar G such that L(G) = L(G) and G’ is A-free

begin

NULL := {d€ N | A = 4};
N := N,
P :=0;
forall A - a € P do comment a = 0yB, ... B, n >0,
B, e NULL, a; € (V — NULL)*;
forall (X, X,,..., X,)e{B, A} x {B;, A} x ... X
{B,, A} such that ¢ X,a, ... X,a, # Ado P’ :=
P u{A4- X ... Xa,};
if S € NULL then begin N' := N' U {S'}; P':=P' U
{S'> 85,8 > A} end
else ' := S,
G :=(NuUZLZP,S)
end.

© Heyden & Son Ltd, 1981

This algorithm should be followed by reduction, since some
nonterminals may become useless.

The computation of NULL needs to be specified. It turns out,
however, that the above algorithm has so large a time com-
plexity that the way NULL is computed is irrelevant.

Lemma 2
Algorithm 1 performs null rule elimination in exponential
time.

Proof

The correctness of this algorithm is proved in Harrison (1978).
We will now present a grammar G, for which Algorithm 1
produces a A-free grammar G whose size is exponentially
larger than that of G. This will be sufficient to prove the result
since the size of the output is clearly a lower bound on the time
complexity.

More precisely we will consider an infinite family of grammars
G,,G,,...,G...where G, = (V, Z;, P, A), N, = {4, B,
B,,...,B}, %, = {a,a,...,q}and P, = {A - B\B, ...
B} u {B, > a, B, » A |1 < i < k}. (In subsequent dis-
cussions the subscript £ will be omitted whenever no con-
fusion may arise and we will talk about G, N, Z, V, P, etc.)
We can see that NULL = N since B; = A for each i and

k

A = BB, ... B,= A. The production 4 - BB, ... B,in P
will yield 2* — 1 productions in P, namely 4 — B for every
non-null subword § of B, B, . . . B,. The result of the trans-
formation (again omitting subscripts) is G’ = (V v {S}, Z, P,
A)where P = {A" - A4, A > A} U {4 > X, X, ... X, |
X,e{B, A}, X, X, ... X, # A} O {B; > a; |1 <i<k}.

We can compute the sizes of the grammars involved:
[V|=2k+1,|G|=4k+1,|V | =2k +2and|G | =
(k + 2)2*~! + 2k + 2.| G' | is exponentially larger than | G |,
and the same is true for | G' || as a function of | G ||. O
The proof indicates a stronger result than the one stated in the
lemma.

Corollary

Any algorithm for null rule elimination which produces the
same output grammar as Algorithm 1 takes at least exponential
time.

Graham (1974) gives an algorithm to eliminate null rules
without destroying the (m, n) BRC property. While the latter
requirement calls for a more complicated construction than
Algorithm 1, it does resemble it. In particular, when that
algorithm is applied to the grammar G in the proof of Lemma
2 (which is clearly (k, k) BRC), the resulting grammar is
essentially G', which is exponentially larger.

Rosenkrantz and Stearns (1970) present a null rule elimination
algorithm for LL grammars which guarantees an LL(k + 1)
grammar as a result if the original grammar is LL(k). This
algorithm cannot be used for arbitrary grammars since the
construction is shown to produce a finite number of non-
terminals only for unambiguous grammars.

The question to ask at this point is: why does this algorithm
produce such large grammars, and is there any better way to do
it? Clearly, the exponential growth is the result of a ‘subset
construction’ reminiscent of the transformation from non-
deterministic to deterministic finite automata (Harrison, 1978;
Hopcroft and Ullman, 1969). The following observation proves
useful in the realisation that unlike the finite automaton case,
null rule elimination may be done without possible exponential
explosion.

Lemma 3
Let G = (V, Z, P, S) be a reduced grammar and let/ > 0 such
thatforall4 - ain P, |a | < L

THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 1567

20 udy 01 U0 1s8n6 Aq 881.8EE/9S L/2/¥Z/101e/|uf0o/W0d"dNo"oILEPEDE//:SARY W) PAPEO|UMOQ

Algorithm 1, when applied to G, yields a grammar G* whose
size depends upon that of G as follows

1G'1<2'|6G|
|V =1VI
16 1<2'16]|

Proof

Algorithm 1 replaces each production 4 — oy B, . .. B,a, by at
most 2" productions each of no greater length than the original
one. Butn < | ayB, .. B,a,| < /hence | G'| < 2'| G| The
number of nonterminals is unchanged hence | V' | = | V' |. The
bound for | G || follows by definition

Since / may be forced to be small by an appropriate trans-
formation (which, as we shall see, is quite efficient) there is a
good prospect that A-rules can be removed without huge
increases in size. While it is possible to obtain an algorithm that
directly eliminates A-rules (¢f. Yehudai, 1977), it is quite
complicated. We therefore use a two step approach.

The following is a simple algorithm to convert any grammar
to 2NF. This is done by factoring ‘long’ right hand sides and
introducing new nonterminals where necessary. It is essentially
the classical algorithm for Chomsky-Normal-Form but we use
it in a broader context by not requiring the input grammar to be
A-free or chain free.

Algorithm 2
Input: G = (V, X, P, S) a reduced grammar
Output: a grammar G in 2NF such that I(G) = L(G)

begin
N := N;
P =0,

forall 4 - a e Pdo

begin
ifla] <2then P’ :=P' U {A > o}

else begin
commentx = X, X, ... X,,r >3, X,eV;
fori:=1tor — 2do
begin

N := N v {C(4 - a)};
comment abbreviate C, let C, = 4;
P :=P vy {Ci—l i X'C‘}

end;
P :=P u{C,._, > X,_,X,}
end
end;
G:=(NuUZXZP,S)
end.
Lemma 4

Algorithm 2, when applied to G = (¥, Z, P, S) correctly
produces an equivalent grammar G’ in 2NF. Moreover if G is
A-free (chain free) then so is G

Proof

It is easy to see that P’ does not contain any production with a
right hand side longer than 2. That L(G') = L(G) can be seen as
a result of the following claims.

Claims
Forall Ae N, a, pe V¥,

1. IfA—»aePthenA;:-a
Py

2. if A= Bthen 4 = B
G G’

3. LetA»abeinP,a = X, X, ... X, forsome X,, X,,...,
X,eVandlet C; = C(4 — o) bein N for some i,0 < i €

158 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

+
r — 2. If C; = B then this derivation can be factored
+ ¢ .
C‘= XH-I .-.X,:ﬂ.
G’ G’

4. 1f A= Bthen A = B
G’ G

Claim 1 can be proved by induction on | a |, Claim 2 by
induction on the length of the derivation, Claim 3 by induction
onr — i =|a| — i(with basis r — i = 2), and Claim 4 by
induction on the length of the derivation.

Finally, productions with right hand side 0 or 1 are included
in P’ only if they are in P so that the algorithm does preserve
A-freeness and chain-freeness. O

We note in passing that if G is A-free and chain-free then only
a minor modification is required to put the output grammar G’
in Chomsky-Normal-Form.

Lemma 5
Algorithm 2 yields a grammar G” whose size depends upon that
of G as follows:
|G| <3|G|
IN|<|N|+1G|
I1G I =0(G|log|Gl).
The time complexity of the algorithm is dominated by the size
of the output.

Proof

For every A — a € P, where | « | = r (and the production con-
tributes r + 1 to | G |), either 4 —» a € P’ (if r < 2) or else we
get r — 1 productions (C; - X;4,,Ciy, 0 S i < r — 2,
C,_, = X,_,X,) in P In this latter case we also added r — 2
new nonterminals to N' — N.

Hence
|G| K Z|Aa| + Z3(Ao | — 2)
A—>a€P A—>a€P
r=|a|<2 r=|a|>2
so that
|G| < J|Aa| =3|G|
A—>a€P
also
IN|=|N|+Z(Ax|=3)<|N|+|G|
T;T;EZP
wehave |G| = O0(G|)and | V' | = O(G)
I G| =1G |log| V' |=0(G|log|G)

andsince |G | < || G ||
IG' I =0(G|log|Gl)
The statement about time complexity is obvious as there is
virtually no computation done.
We can now perform null rule elimination in the following
way.

Algorithm 3
Input: G = (¥, Z, P, S) a reduced grammar
Output: G' a A-free grammar such that L(G") = L(G)
begin
apply algorithm 2 to G, obtaining G, in 2NF
apply algorithm 1 to G,, obtaining G’ a A-free grammar in
2NF
end.

The following result relates to algorithm 3.

Lemma 6

Algorithm 3 correctly computes a A-free grammar G’ such that
L(G) = L(G) and the size of G depends upon that of G as
follows.

© Heyden & Son Ltd, 1981

20 udy 01 U0 1s8n6 Aq 881.8EE/9S L/2/¥Z/101e/|uf0o/W0d"dNo"oILEPEDE//:SARY W) PAPEO|UMOQ

|G| <12]|G|
Vi< 2|G|
and |G | = O(]| G| log | G |)

Proof
The correctness of the algorithm is self evident. To compute the
sizes we note that Lemma 5 yields

|Gy | <3|G|and
[Vil=IN I+ |ZI<IN|+|G|+|Z]|
=|VI+I1G|<2|G|
and by Lemma 3

|G| <4|Gyland |V | =|V,]|.
Hence
|G| <12]|G|
[V I<2|G|

and as in Lemma 5
I1G | =0(G|log|Gl.

O
Lemma 6 falls short of stating the time complexity of the
algorithm. Before we can do this we must discuss the compu-
tation of NULL.

2. Computation of NULL
The algorithms in the literature use a nested set construction to
compute NULL:

Let Wo = 0
andfori> O, W,,, = W, U {4e N| A - «isin P for some
o € W}}. We can then let NULL = W\n- ¢f. Harrison (1978)
for a proof of the correctness of this construction.

But the nested set construction is inefficient. It may require up
to | N | passes over the grammar (in Yehudai (1977) we show
that this bound is achieved). So its time complexity is (| N | - n)
where n is the size of the grammar. If we use n = | G | as size
measure then, since | N | < | V| < | G| this means O(n?) steps.
If we take n = | G | as measure then, using Lemma 1 we
obtain

IN|- |G| < 2- 1616

2
and the time complexity is 0(") .
logn

A question raised by the above analysis is whether or not we
can do better. A close examination of the nested set con-
struction shows that while each computation of W,, , involves
rescanning the entire grammar, only a small fraction of it is
pertinent. Moreover, each production can only yield infor-
mation about the symbols that appear in it. It appears that if
we organise the information provided by the grammar in some
meaningful way, scanning the grammar many times will not be
required. Hunt, Szymanski and Ullman (1974) suggest the
possibility of computing NULL in linear time. We now present
such an algorithm. First we discuss the data structures used by
the algorithm in some detail. W and U are both sets. W is used
to collect elements known to be in NULL (elements are added
but never removed from W). The use of U will become clear
later. When the grammar is read, a symbol 4 is entered in both
W and U whenever a production 4 — A is encountered (and
provided 4 is not yet in NULL). For each X € ¥V, POS(X) s a
multiset (i.e. analogous to a set but elements may appear more
than once.)

Elements of POS(X) are productions in P. In particular when
a production A4 — o is read in, it is entered in POS(X) / times
if B appears in a / times. This is done for all X e V. The infor-

© Heyden & Son Ltd, 1981

mation in POS(X)is later consulted in the process of ‘updating’.

For each production 4 — « in P the integer NONNULL
(4 — «) denotes the number of occurrences in of symbols not
yet known to generate A*. This number is constantly updated
and if and when it reaches 0, we may conclude that A can
generate A. If that is not already known (i.e. if 4 is not yet in
W) then A is entered in W and in U.

The process of ‘updating’ is as follows. A symbol B is removed
from U. B is now known to be in NULL (i.e. to generate A).
Therefore for each 4 - a in P we decrement NONNULL
(4 — «) by one for each occurrence of B in a. To do this only
POS(B) need be inspected (rather than the entire grammar):
for each occurrence of a production 4 — a in POS(B). NON-
NULL (4 — o) is decremented by one. As mentioned above
we add 4 to W and U whenever, in the course of decrementing
NONNULL (4 — a), it reaches 0 and if 4 is not in W. Note
that U is always a subset of W containing those elements for
which ‘updating’ was not yet done. When U becomes empty the
algorithm terminates.

NULL appears as a variable in the algorithm. Just before
termination it is assigned the value of W.

Next we present the algorithm.

Algorithm 4
Input: G = (V, L, P, S)

Output: NULL = {d e N|, A= A}

begin
Ll: W:=0;
U :=0;

for all X € V do POS(X) := 0;
L2: forall 4 - ain P do
begin
if « = A then begin
if A ¢ W then begin
W:=W u {4};
U :=

U v {4}
end
end
else begin
comment « = X, X, ... X, k > 1,
XieV;

NONNULL (4 - «) := k;
foralll < i< kdo
POS(X)) := POS(X) U {4 — a}

end
end;
L3: while U is not empty do
begin
choose B e U;
U:=U- {B};
for all A —» « in POS(B) do
begin

NONNULL (4 - a) := NONNULL (4 - «) — 1;
if NONNULL (4 - a) = 0 andAﬁ w

then begin

W= W v {4};
U:=Uwvu{4)

end

end

end;

L4: NULL := W
end.

*In fact NONNULL (4 — a) is defined only for « # A, but one can
assume that the value is zero for « = /1 since this value is never
consulted anyway.

THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 159

20 udy 01 U0 1s8n6 Aq 881.8EE/9S L/2/¥Z/101e/|uf0o/W0d"dNo"oILEPEDE//:SARY W) PAPEO|UMOQ

The statement labels L1, L2, L3 and L4 used in the algorithm
designate the start of four phases in the algorithm: Initialisation
(of W, U and POS), reading the grammar (the for loop),
‘updating’ (the while loop), and outputting the result.

The following example illustrates the behaviour of the
algorithm.

Example

Let G = (N v {a}, {a}, P, A,),where N = {4, A,, ..., 4}
and P = {4; > A, | 1 < i < n} v {4, > A}. Apply
Algorithm 4.

When L2 is reached for the first time W = @, U = ¢ and
POS(X) is empty for all x € N. After the for loop at L2 is
executed once (with the production 4, — A4,), we obtain
NONNULL (4, = 4,) = 1 and POS(4,) contains the single
element 4; —» A, (once). The for loop is then executed with the
productions A, —» A,;,..., 4, - A, and finally 4, - A.

When L3 is reached for the first time POS(4;) contains the
single element 4;_, — A4, (once) for all i, 2 < i < n. Both W
and U contain only 4,, and for all 1 < i < n NONNULL
(4> A,4y) = 1.

The while loop is executed » times, and after the last time
U=20 W= {4,, Ay_y, . . ., A,;} and NONNULL
(4> A,,) =0forall 1< i < n.

It should be noted here that if the productions in the grammar
were ordered differently, then the while loop may have been
executed fewer times. However even in this worst ordering the
computation is efficient because we only look at the ‘right
points’ in the grammar rather than make a full scan every
time.

A completely formal proof of correctness of Algorithm 4
(using the techniques of Hoare (1969)) is lengthy and rather
technical. We will give a less formal argument.

We denote, for any set M < N and any string « € V*, OC(M,
a) to be the number of occurrences of symbols from M in «. To
avoid confusion we will use D and C — B as bound elements
from M and P respectively. The next lemma establishes
invariant conditions for the while loop at L3.

Lemma 7

The following conditions are invariants to the while loop at L3
(i-e. if conditions 1-5 (below) hold at L3, and if the while loop is
then executed once then conditions 1-5 hold after that
execution).

1. For each D € N and each C —» f in P, OC({D}, B) = the
number of times C — B appears in POS(D).

2. Ucs w

3. For each C —» B in P, NONNULL (C - B) = OC(V,
B) — OC(W — U, p).

4. W = {Ce N| 3B e V*such that C — B is in P and NON-
NULL (C -) = 0}

5. W {CeN|C> A}

Proof

Assume 1-5 hold when the while condition is about to be
executed. Also, suppose U # @ and B € U. Then the while loop
will be executed. Condition 1 holds after execution of the loop
since POS(D) remains unchanged for all D € N.

Execution of the loop removes B from U and then adds zero or
more elements on to both Wand U. Thus U = W must remain
true. Moreover the only change in W — U is the addition to it
of B (before execution of the loop Be Uand U = W, B is
removed from U but not from W). For all C — fin P, execution
of the loop decrements NONNULL (C — f) by the number of
occurrences of C — f in POS(B). By condition 1 that quantity
is OC({B}, B). So, for all C — B in P both sides of equation 3

160 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

are decremented by the same number so that condition 3
remains true.

From condition 3 and the fact that W — U < Vit s clear that
NONNULL (C — B) > 0 s satisfied for all C — 8in P. There-
fore, since the loop never increments NONNULL (C - p) for
any C — B in P, no element may leave the right hand side of
equation 4 during execution of the loop. The same is true of
W, the left hand side of that equation. An element C may
enter the right hand side if NONNULL (C — B) is decremented
to zero for some C — B in P so that C was not yet in the set.
But whenever that happens, the if condition is satisfied and the
element is placed in W (and in U). Hence condition 4 is
preserved.

Now suppose condition 5 holds just before execution of the
while loop. Let C € N be any element that would be placed in
W during execution of the loop. Since condition 4 would hold
after execution of the loop it follows that for some production
C - Bin P, NONNULL (C - B) would be zero after execution
of the loop. From the proof of 3 it follows that for that
particular production NONNULL (C — B) = OC({B},) just
before execution of the loop. By condition 3 that means
Be(W — U) u {B} = W* We can write § = B, ... B, for
somen > 0, B;e Wforall 1 < i < n. By condition 5 (which

holds just before execution of the loop), B, = A for all i,

1 <i<n.ThereforeC=>B=B,...B,,;AsothatC
belongs to the right hand side of equation 5. Since C was an
arbitrary element which is added to W during execution of the
loop we conclude that 5 is satisfied after execution of the
loop.

Lemma 8
Algorithm 4 correctly computes in linear time.

Proof
First we consider ‘partial correctness’ (¢f. Manna, 1974).
We want to show that if the algorithm terminates then

NULL = {CeN | C = A}. This will follow directly from
Lemma 7 and the next two claims, which deal with the parts of
the algorithm before and after the while loop, respectively.

Claim 1

When L3 is reached for the first time (after execution of the
initialisation and reading phases) conditions 1-5 of Lemma 7
are satisfied.

Proof

It is quite easy to verify that when L3 is reached for the first
time condition 1 is satisfied. Also

6. Forall C —» g in P, NONNULL (C - B) = OC(V, B)

7. W={CeN|C - Aisin P} and

8. U=W.

Then 2 follows directly from 8, 3 follows from 6 and the fact
that W — U = 0. From condition 6 we also obtain that
NONNULL (C - B) = 0if and only if B = A, hence using 7
weget W= {CeN| C— Aisin P} = {Ce N | there exist
C - Bin P, NONNULL (C — B) = 0} and 4 follows. Con-
dition 5 clearly holds since for all Ce W, C = A.

Claim 2
Suppose 1-5 hold at L4, and assume U = . Then after this

line has been executed NULL = {Ce N| C b A}.

Proof
For this condition to be satisfied after execution of this line, we

must have W = {CeN|C = A} at L4. This will be shown to

© Heyden & Son Ltd, 1981

20 udy 01 U0 1s8n6 Aq 881.8EE/9S L/2/¥Z/101e/|uf0o/W0d"dNo"oILEPEDE//:SARY W) PAPEO|UMOQ

follow from 1-5 and U = 9. In particular 3 and U = @ implies
that for each C —» g in P, NONNULL (C - B) = OC(V,
B) — OC(W, B). So that NONNULL (C —) = 0 if and only
if B € W*. Therefore, using4, W = {Ce N | 38 € W* such that
C — Bisin P}.

We now prove that W = {Ce N |C > A} by contradiction.
Since 5 directly yields containment in one direction we assume,

for the sake of contradic.tion, that {Ce N | C = A} g W, and
choose 4 € {Ce N| C = A} — W such that 4 has a shortest
derivation of A, A =i> Aamong all elements in this set difference.
Since i > 0 we can write A = BB, . .. B,,: ;IA. Then for each

hl1<j<mB; = A in a derivation of length less than i. By
the minimality of i none of the B;’s can be in {C € N |

C= A} — W. But all the nonterminals among the B;’s must

belong to {Ce N| C - A} and therefore also to W. Then
B,... B,eW*and Ae {CeN|3Bpe W*suchthat C - B is
in P} = W. This contradiction completes the proof of the
claim.

We can observe that every element of N can be removed from
U at most once (since an element is entered in W and U only
when it is not already there, and nothing is ever removed from
W). Therefore the while loop is executed at most | N ! times.
This immediately proves termination and hence total correct-
ness (¢f. Manna, 1974).

Before we can compute the time complexity of the algorithm
we must specify the implementation of some data objects. We
use an array of bits to implement W so that membership may
be checked in constant time.* U is implemented as a stack so
choosing an element takes constant time. For each D € N

*When a uniform cost criterion is used, array indexing takes con-
stant time (Cf. Aho, Hopcroft and Ullman, 1974).

References

POS(D) is stored as a list, so that adding an element takes
constant time and scanning the entire list requires a constant
time per element.

Initialisation consists of | N | + 2 operations (of assignment
to 0). Forevery A - « € P, NONNULL (4 — a) is once set to a
value n = | a | and then decremented at most | a | times, and
compared to O that many times. The number of operations
involving NONNULL is therefore proportional to the size of
G. The same is true for operations on POS, since every position

" of a nonterminal is recorded once and consulted at most once.

As noted above we can have at most | N | operations of each
of the following types: adding an element to W, adding an
element to U, choosing and removing an element from U.
Checking for membership in W can be performed at most 2 | P |
times. In the reading phase, a check may be done for each
production and one check per production can occur in the
‘updating’ phase. In fact one can show that only | P | operations
are required. Each operation discussed takes a constant amount
of time. We conclude that the time required by the algorithm is
O(] G |) if we consider reading of a symbol a constant-time
operation and O(|| G |) otherwise. O

Using algorithm 4 to compute NULL we can characterise
the time complexity of algorithm 3.

Theorem

There is an algorithm that performs null rules elimination on
any grammar G = (¥, Z, P, S) in time O(n log n) (O(n)) if the
size measure is | G || (| G |) respectively.

Proof
Follows from lemmas 6 and 8 (since all other computations
done by algorithm 3 are easy). O

A polynomial time algorithm for eliminating null rules has
been independently obtained by Hunt, Rosenkrantz and
Szymanski (1976). Their algorithm runs in times O(n? log n) or
O(n?) depending on the size measure.

AHo, A. V., HOPCROFT, J. E. and ULLMAN, J. D. (1974). The Design and Analysis of Computer Algorithms, Reading, Mass: Addison-

Wesley.

BAR-HILLEL, Y., PERLES, M. and SHAMIR, E. (1962). On Formal Properties of Simple Phrase Structure Grammars, Zeitschrift fiir Phonetik,
Sprachwissenschaft, und Kommunikationsforschung, Vol. 14, pp. 143-172.

GRAHAM, S. L. (1974). On Bounded Right Context Languages and Grammars, SIAM Journal of Computing, Vol. 3, pp. 224-254.

HARRISON, M. A. (1978). Introduction to Formal Language Theory, Reading, Mass: Addison-Wesley.

Hoarg, C. A. R. (1969). An Axiomatic Basis for Computer Programming, CACM, Vol. 12, pp. 576-581.

HopcroFrT, J. E. and ULLMAN, J. D. (1969). Formal Languages and Their Relation to Automata, Reading, Mass: Addison-Wesley.

HunT, H. B. III, ROSENKRANTZ, D. J. and Szymanski, T. G. (1976).

On The Equivalence, Containment and Covering Problems for the

Regular and Context Free Languages, Journal of Computer and System Sciences, Vol. 12, pp. 222-268.
Hunr, H. B. III, Szymanskl, T. G. and ULLMAN, J. D. (1974). Operations on Sparse Relations and Efficient Algorithms for Grammar
Problems, Conference Record of IEEE 15th Annual Symposium on Switching and Automata Theory, New Orleans, Louisiana.
Hunr, H. B. I, SzyManskl, T. G. and ULLMAN, J. D. (1975). On the Complexity of LR (k) Testing, ACM, Vol. 18, pp. 707-716.
MANNA, Z. (1974). Mathematical Theory of Computation, New York: McGraw-Hill.
ROsENKRANTZ, D. J. and STEARNS, R. E. (1970). Properties of Deterministic Top-down Grammars, Information and Control, Vol. 17, pp.

226-255.

YEHUDAL A. (1977). On the Complexity of Grammar and Language Problems, Ph.D. Thesis, University of California, Berkeley.

© Heyden & Son Ltd, 1981

THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 161

20 udy 01 U0 1s8n6 Aq 881.8EE/9S L/2/¥Z/101e/|uf0o/W0d"dNo"oILEPEDE//:SARY W) PAPEO|UMOQ

