Some experiences with the Johnson-Trotter
permutation generation algorithm

Yaakov L. Varol* and Doron Rotemt

Some experiences with the Johnson-Trotter permutation generation algorithm are reported. A
version which generates strings containing permutations as subsequences and has the offset mainte-
nance removed is proposed. This version is faster than any other known algorithm and has indexing

properties which make it of practical use.
(Received April 1978; revised April 1979)

In a survey paper, Sedgewick (1977) has pointed out that
permutation generation is not an end in itself, but rather a first
step of a more global process which seeks to find a permutation
satisfying a set of criteria. The set of criteria may be formulated
simply in terms of a partial order on the set of N marks to be
permuted, or may involve a complex cost reducing require-
ment, or in some other way. The time taken by this global
process is in general much higher than the task of generating all
permutations. This might be relatively simple for some appli-
cations if consecutive permutations differed in exactly two
adjacent locations. It may then be sufficient to calculate the
effect of an exchange rather than reprocessing the entire new
permutation (Sedgewick, 1977). A further characteristic of the
generation which may simplify the search for a particular
permutation is the presence of a hierarchical structure of the
subsets of permutations differing by a cyclic rotation of a
subsequence. Often, if a permutation does not satisfy the
requirements, then the same is true for any other permutation
obtained by a cyclic rotation of a subsequence. Thus, it is
possible to achieve great savings if subsets of cyclically related
permutations were properly nested with respect to the genera-
tion (Tompkins, 1956). The first condition above is satisfied by
the Johnson-Trotter (J-T) type algorithms (Johnson, 1963;
Trotter, 1962), while the second one is satisfied by algorithms
based on nested cycling such as the one by Langdon (1967).
Clearly, to have both conditions satisfied all the time is not
feasible, since rotating a subsequence of / elements introduces
changes in i locations. However, a compromise can be achieved.

Assume that a string which contained all permutations as
subsequences (Koutas and Hu, 1975) could be constructed. An
algorithm to extract from it the individual permutations might
be extremely complicated. Nevertheless, one could conceive of
a string containing a large class of permutations as substrings,
from which extracting them might be cheaper than generating
them one at a time. Our algorithm is based on the generation of
such keys differing from each other in two adjacent locations.
Each key is then cyclically rotated in both directions to obtain
all related permutations.

Consider the string P = 1234123. By using a pointer to
indicate the start and imply a direction, one could easily
extract from P the substrings

1234 4321
2341 1432
3412 2143
4123 3214

which are eight distinct permutations of the marks 1, 2, 3 and 4.
In general, each string P of length 2N — 1, constructed by
concatenating to the right of a permutation the first N — 1

elements of itself, will be the key for 2N permutations. For

instance, the three strings needed to generate all 24 permuta-

tions of four marks are 1234123, 2134213 and 2314231.

We now need a method for generating the (N — 1)!/2 keys.
We shall accomplish this by improving a modified version of
the J-T algorithm (see Sedgewick, 1977). This algorithm is
based on:

(@) a counter (i), | < c(i) < N + 1 — i, to indicate the number
of various positions mark i has occupied within the current
configuration of the subsequence containing only the marks
greater than i;

(b) a Boolean variable d(i) to indicate the direction of motion
of i, where

d(i) = {true if 7 is moving from left to right
false if i is moving from right to left
(c) an offset quantity x to take care of the fact that when i is
to be moved some of the lesser marks may be to the left of i,
while others may be to its right.
If the marks 1,2, ... N — 4, N — 3 are allowed to occupy
N -1, N - 2,...4, 3 distinct locations respectively, then

— 1
G@...(N-2WN - 1) =(_’Y_2L)'
distinct permutations would be generated. In the J-T algorithm
this can be accomplished by the requirements that
1 <i< N-3and!1 < c(i) < N — i Furthermore, if any
two of these permutations were used as keys, they would give
two non-intersecting sets of 2N permutations each. If the two
sets had a common permutation then the sets would be equal
due to the cyclic nature of their derivation, contradicting the
fact that the initial keys were distinct. These facts, together
with the logic of Johnson’s original proof (Johnson, 1963),
constitute the outline of a proof that all N! permutations would
be generated exactly once.

In deriving a new key if mark i is to be moved (by this we
mean that a decision to transpose mark i with one of its adjacent
marks is reached in the algorithm) this would necessarily be
with a mark greater than i, and it would effectively introduce a
cyclic rotation on the current configuration of the set
S; = {jli + 1 < j < N}. This configuration of S; remains
fixed for all the following 2N(N — 1)!/(N — i)! permutations,
and the moving of any of the lesser marks will not change it.
Thus, given two permutations, the size of the common subset
of marks which are fixed in their relative position except
possibly for a cyclic rotation, is a non-decreasing function of
the distance between the two in the generation sequence. In
other words, there is a proper nesting of cyclically related
permutations.
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In our generation of keys, since 1 < ¢({) < N — i, when mark
iis to be moved, the location k of the first (left) mark in the pair
of adjacent marks to be transposed is given by

k= c(i) + x(@i) = loc(i)
N —i— i) + x(i) = loc(i) — 1
where x(i) is the offset. The offset can be written as
i-1

= 50)  where 50) = {
j=1

Assume that mark i is being considered and let T},
1 < j < i — 1, stand for the number of times mark j has
completed a full traversal from left to right, or right to left
extremes. By definition, d(j) will be true if and only if T} is even.
Recall also that a mark can only move following a full traversal
of its predecessor mark, and that for any mark a traversal
means N — jmoves by it. When mark i — 1 has completed T;_,
traversals, i.e. mark 7 has occupied T;_, different positions,
mark i — 2 will have done T;_,[N — (i — 1)] traversals,
requiring T;_,[N — (i — 1)] [N — (i — 2)] traversals by
mark i — 3 etc. In general, we have

5 — 1) = {1 if T;_, is even

if d(i) is true
otherwise

1 if d(j) is true
0 otherwise

0 otherwise
and forj < i — 2
Tj=Ti[N-(G-DI[N-G-2]...[N=-(G+ 1]
For j < i — 3, the above product will involve two consecutive
integers, and thus
o) =1 for j<i-3
Finally, since T;_, = T;_ [N — (i — 1)]

i —2) = 1 ifd( - 1) is true or N — iis odd
0 otherwise

Combining these equations we can write: for i > 2,

if di — 1) is true

1
x() =i—<2 if (VN —i)is odd
3 otherwise

and for i = 2,
1 ifd@ — 1)is true
2 =
*@) {0 otherwise
Since it is known in advance if N — i is even or odd, the offset
x(i) is determined by simply testing d(i — 1). We can thus
compute k[ = loc(i) or loc(i) — 1] as follows
ifd(@) thenk:= c(i) +i—1
else k:= N + 1 — c(i);
ifnot d(i — 1) then k:= k — X(i)
where X(i) is precomputed as X(2) = 1 and for i > 2
1 if N—iisodd
X@) =
@ {2 otherwise
In this way, we add an offset to k only half as many times as
before, and we eliminate completely the resetting of the offset to
zero as well as its updating.

In the algorithm below we make use of a well known optimi-
sation and handle mark 1 separately since it is moved most
often [(N — 2) (N — 2)!/2 times]. Note also that its motion
does not require any offset. The variable V is a pointer to the
first element of a permutation. The two processes 1 and 2
differ in that they process N marks from left to right or from
right to left respectively starting with the mark at location V.
This may seem to be more expensive than handling a vector of N
elements where the start and end as well as the direction of
processing are fixed. However, it is easy to see that the only
extra work which is not shown explicitly in the algorithm
below, and that process 1 and process 2 need to do, is to
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compute an end pointer as ¥V + (N — 1)or V — (N = 1),
respectively. Finally, we assume that initially the vector P
contains the objects corresponding to the marks 1,2, ... N,
1,2,...N — 1in that order.

PROCEDURE PERMUTGEN(VAR N:INTEGER;
P:LIST1);
(* OBJECT IS A DATA TYPE DEFINED IN A®%)
(* CALLING PROGRAM, LIST1 IS A DATA TYPE OF *)
(* THE FORM ARRAY [1 .. 2U] OF OBJECT, LIST2 *)
(* HAS THE FORM ARRAY [1 .. U] OF INTEGER, *)
(* LIST3 HAS THE FORM ARRAY [1 .. U] OF*®*)
(* BOOLEAN, WHERE U IS AN INTEGER > N %
VAR LJ,V,K,K1,C1:INTEGER; D1:BOOLEAN;
C,X:LIST2; D:LIST3;
BEGIN
I:=N;WHILEI > 3DOBEGINI:=1-2;J:=1-1
Clil:=1;C[J] :=1;
D[I]:= TRUE;
D[J]:= TRUE;
X[I]):=2;X[J]:=1
END;
Cl:=1;D[1]:= TRUE; Dl:= TRUE; X[2]:= 1] :=1;
WHILEI < = N - 3DO
BEGIN FOR V:= 1 TO N DO PROCESSI(V);
FOR V:= NTO2+«N — 1 DO PROCESS2(V);
IFCl < N — 1 THEN BEGIN IF D1 THENK := Cl
ELSEK:=N -1 - Cl;
Cl:=Cl + 1 END
ELSEBEGINCIl:=1;Dl:= NOTDI;
D[1]:=D1;1:=2;
WHILEC[I] > = N - 1IDO
BEGIN D[I]:= NOT D[I];
Clll:=1; I:'=1+1;
END;
IFD[IJTHENK:=C[I] +1-1
ELSEK:= N — 1 — C[I];
IFNOTD[I — 1]THENK:= K — X[I];
ClI]:=C[I] + 1
END;
K1:=K + 1; P[K]:= P[KI1]; P[K1]:= P[N + K]J;
P[N + K]:= P[K];
P[N + K1]:= P[K1]
END
END

Following Sedgewick’s (1977) approach we can directly
translate this algorithm into a simple assembly language
program using only load, store, add, subtract, compare and
jump instructions. Assuming that instructions referencing data
in memory take two units, while all jump instructions and those
not referencing data in memory take one time unit, we can
record execution frequencies of all instructions and establish
that our algorithm requires

4N! + 12(N — I)! + O((N — 2)V)
time units, which compares favourably with any of the time
estimates given for all the algorithms surveyed by Sedgewick
(1977). Note that the improvement on the calculation of the
offset contributes a reduction in the time complexity of order
O((N — 2)!), while the more significant reduction in the
coefficient of N! is due to the use of keys. Empirical perfor-
mance statistics obtained from stand-alone executions of our
algorithm as well as the major algorithms given in Sedgewick
(1977), agreed with the theoretical time estimates.

Needless to say, our improvements do not make the problem
any more practical, since when considering N > 25 the time
required is either equivalent to the Earth’s age or twice as
much. Recall, however, that permutation generation algori-
thms would in general be used to obtain a specific permutation
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satisfying certain specified conditions. When it is not possible
to construct directly the required permutation and one must
rely on extensive search methods, then one must incorporate
some heuristics into the search, in order to be able to do
selective generation. Some backtracking applications use
implicit instructions like ‘don’t generate any more permutations
starting with these three marks’. However, this approach is not
suitable for all applications. In general one needs a generation-
order-preserving indexing of all permutations (a one to one
correspondence between the set of permutations and the set of
integers [0, N! — 1]) suitable for efficient implementation of
the tasks:

1. Given the index X find the permutation ny corresponding to
it.

2. Given a permutation = find its index K.

3. Given n = my start the generation from this point onwards.

Efficient routines for performing these three tasks would
provide the capability of jumping back and forth in the
sequence of all permutations. The first two are readily available
for most permutation generation algorithms, and they would
also cater for the random generation of a permutation or given
n = my finding my,, where L is an integer such that
0 < K + L < N! — 1. The third task, however, can be quite
complicated for some algorithms. For the generation algorithm
presented in this paper, routines designed to perform all three
tasks are given in the Appendix.
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Appendix
Using mixed radix representation of integers, it is easy to
construct a one to one correspondence between the set of
integers in- [0, N! — 1] and the set of all permutations of N
marks. The correspondence we consider is generation-order-
preserving, i.e. if & precedes ' in the generation sequence then
their corresponding indices K and K’ are such that K < K'.
Given an integer IND € [0, N! —1] let X,,, and K, be the
quotient and remainder resulting from dividing IND by 2N.
K, ., will be used to construct the key and K., to obtain from it
the permutation whose index is IND. Consider the sequence of
generated keys starting from 12 . . . N and ending with the one
whose index is K,.,. In this sequence, for 1 < i < N, let ¢, be
the total number of times mark i has been considered for
motion, and s; be the number of times it has been moved
following the last time it occupied a left or right extreme
position. Clearly, t, = K,., and

i=NN-1,N-2
Since there are N — i distinct positions mark i occupies before
mark i + 1 is considered for motion we can easily compute the

values of #;, , and s, respectively as the quotient and remainder
resulting from dividing #; by N — i, i.e.

si=4=0 for

Lo S
N-—i ™ N-i
The value #;,, also stands for the number of complete tra-
versals mark i has undergone. Thus

d(i) = {true if t;,, is even

false otherwise
The sequence sy, 55, . . . Sy_3, Kper uniquely defines K, and by
definition c(i) = s; + 1, where (i) is the counter used in our
algorithm. Furthermore, J(i), defined as the number of marks
greater than i and to its left in the key permutation, is related to
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s; as follows:
N s if d(i) is true

J6) {N —i—1—s ifdQ)is false
Note that to find the key with index K,.,, we do not need to
construct the vectors d or c. In fact, we can eliminate the vectors
t and s as well, since their entries can be used one at a time as
they are computed. To construct the key in a vector KEY
having initially 2V — 1 blanks we start from i = 1 and replace
the [J(i) + 1]st remaining blank in it by i. We also copy the
first N — 1 marks of KEY in sequence into KEY(N + 1),...
KEY(2N — 1). Having constructed the key, setv = 1 + K, if
K, < N, and the permutation with the given index is KEY(v)
KEY(v + 1) ... KEY(v + N — 1). If K., > N then the
desired permutationis KEY()KEY(v — 1)...KEY(v — N+ 1)
where v = K,,. An example listing the values of all relevant
variables follows.

N = 7, IND = 2361
K., = 168, K., = 9
(168, 28,
0, 3
<L
(true, false
0, 1,2,1,
15243671 52436
9
PERM = 5176342

The procedure below generates in PERM, the permutation
corresponding to a given index. It assumes that P contains the
permutation whose index is 0.

PROCEDURE PERMFROMIND(VAR N, IND:INTEGER;
P,PERM:LISTI);

(* OBJECT IS A DATA TYPE DEFINED IN A *)
(* CALLING PROGRAM, LISTI1 IS A DATA TYPE OF *)
(* THE FORM ARRAY [1 .. U] OF OBJECT, LIST2 *)
(* HAS THE FORM ARRAY [1 .. 2U] OF OBJECT, *)
(* WHERE U IS AN INTEGER > N *)
VAR KKEY,KPER,TI,SLLJI, NMI L,M,V:INTEGER;

’

’0’
0

-

5
1
4,2,2,

1
1,
fal

true, true, true)

KE

CE SUUE N

KEY:LIST2;
BEGIN
KKEY:= IND DIV (2«N); KPER:= IND MOD (2«N);

TI:= KKEY;
FORI:=1TON - 1 DO
BEGIN NMI := N — I;SI:= TI MOD NMI;
TI:= TIDIV NMI;
IF ODD(TI) THENJI := NMI — 1 — SI
ELSEJI := SI;
L:=0;M:=0;
WHILEL < = JIDO
BEGINM :=M + 1;
IFKEY[M]=''THENL:=L + 1
END;
KEY[M] := P[1]; KEY[N + M]:= P[I]
END;
KEY[N] := P[N];
IF KPER < NTHEN FORV:=1TON DO
PERM[V]:= KEY[V + KPER]
ELSEFORV:=1TON DO
PERM[V]:= KEY [KPER + 1 — V]
END

We now consider the converse problem of finding the index of
a given permutation 7. Let us first find the key permutation
from which n was derived. To do so, we make use of the facts
that in a key permutation the rightmost mark must be N and
the marks N — 2, N — 1 and N must appear in this relative
order. In any given m(not necessarily the key) these three marks
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seen from left to right can appear in one of the six relative
orders
(@N-2,N,N -1 or N,N-1,N-2

or N-1,N-2,N
WDN-2,N-1,N or NN-2,N-1

or N-1,NN-2

We can determine which case is true by finding the locations
of the marks in question and testing for the conditions above.
In case (a), start with the mark to the left of N and read cycli-
cally into KEY,N marks from right to left. Set K, =
N + loc (N) — 1. In case (b), start with the mark to the right
of N and read cyclically into KEY,N marks from left to
right. Set K., = N — loc(N).

Having found the key permutation, we proceed to find
Ky, = 1, by performing in reverse order the computations in
PROCEDURE PERMFROMIND starting with J(N — 3) =
Sy—3 = Iy.3. Finally, we compute the index as t; x 2N +
K,... As before, we can also set the variables c(i) and d(i) along
the way. An example listing the values of all relevant variables
follows.

n = 5216473 KEY = 3521647352164
K,=7T-6=1

J=( 3, 2,0,2,0,0,0)

c=<{ 4, 31,3 1,1,1)

d = (true, true, true, true, true, true, true)

s={ 3, 2,0,2,0,0,0)

t = (255,42,8,2,0,0,0)

The procedure below assumes that P contains the permutation
whose index is 0, and computes the index corresponding to a
permutation given in PERM.

PROCEDURE INDFROMPERM(VAR N,INDEX:
INTEGER; P,PERM:LIST);

(* OBJECT IS A DATA TYPE DEFINED IN A*¥*)
(* CALLING PROGRAM, LIST IS A DATA TYPE OF *)
(* THE FORM ARRAY [1 .. U] OF OBJECT, WHERE *)
(* UIS AN INTEGER > N *)
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