The determination of eigenvalues of symmetric

quindiagonal matrices

W. A. Sentance* and I. P. Cliff}

Evans (1975) has described a method for finding the eigenvalues of quindiagonal matrices 4 based on
the bisection and the Sturm sequence property of the leading principal minors Pi(Q) of A — AL The
algorithms there presented contained certain typographical errors, but even with these removed the
procedures give incorrect results for certain matrices which have some zero P;i()) at the point of
bisection. This paper describes a modification, based on earlier work on general band matrices, in
which the sign of Pi(}) is determined without calculating its value. Thus there are no problems with

underflow or overflow.
(Received April 1980)

1. Introduction

One of the best methods for determining the eigenvalues of a
symmetric tridiagonal matrix 4 is based on the Sturm sequence
property of the leading principal minors of (4 — AI). This has
proved itself to be reliable and robust and is available on a
number of machines both through the auspices of the NAG
library and manufacturers’ provided software. On account of
its well established behaviour an attempt was made, in a paper
by Evans (1975), to extend this method to quindiagonal
matrices. This included two ALGOL procedures: quin-
diageigen based on a Newton iteration method to find the
eigenvalues of a general pentadiagonal matrix and quindibisect
which used the method of bisection to determine the eigen-
values of a symmetric quindiagonal matrix. A summary of
Evans’s paper is given in Section 2. It was decided to include the
procedure quindibisect in a comparative study of methods cur-
rently available for the location of eigenvalues of band sym-
metric matrices (Cliff, 1977). During its implementation, a
number of typographical errors were found. These, together
with their corrections, are given by Cliff. However, even with
these corrections, the algorithm gave wrong results in certain
cases and in Section 3 we explain why this is so. In Section 4 the
modifications of the method to avoid such errors are described.
Some numerical examples of the modified method are given in
Section 5 and the new ALGOL procedures in Section 6.

2. Summary of Evans’s method
The eigenvalues of the symmetric quindiagonal matrix 4 are
given by

Cl—l b2 d3
b, cy—A by  d, 0
d, by cs—A b, ds
d4 b4 04_1 b5 dG
det . . .o =0
S d,
0 . bu—l cn—l—)‘ bn
. b, ¢, — A

Evans developed a recursive sequence for Pi(4),i =0, 1,2, ...
n, the leading principal minors of order i of the matrix A — 1.
This sequence of polynomials, with P;(4) being of degree i in 4,
can be shown to form a Sturm sequence of polynomials in the
interval (— o0, + o). Thus the number of disagreements in
sign s(4), in the sequence Py(4),i = 0, 1,2, .. .n, is equal to the
number of roots of P,(A) = O smaller than A. This property
enables one to use the process of bisection to calculate the

eigenvalues of 4. In the computation of the sequence P;(4),
i=0,...n, for a particular value of 4 both underflow and
overflow may occur making it difficult to design a robust
algorithm. To overcome this difficulty the sequence of poly-
nomials P,(2) is replaced by the sequence p,(4) defined by

_ P o
pid) = P i=1,...n

The p{(A) may be shown to satisfy a modified recurrence
relation and with its use we are able to calculate the number of
negative p,(1) which gives s(1) the number of eigenvalues
smaller than A.

3. Errors in the symmetric case

Applying the corrected algorithm to various test matrices, it
was first found to give wrong results for matrices in which the
elements of the diagonal, the upper and lower sub-subdiagonals
all had the value one and the rest of the elements were zero.
Inspection of the algorithm showed that there was incorrect
treatment of P;,(A) when 1 was equal to the element in the first
diagonal position. As the situation was further complicated by
the zeros in the upper and lower subdiagonals, the matrix

2 1 4 0
17 3 1
4 3 2 3 1)
o 1 3 5

was specifically designed to give A = 2 on the first iteration
while, at the same time, having all the elements in the band non-
zero. The output from Evans’s corrected algorithm was

—2-813, 2-000, 2-000, 10-516,
whereas the accurate eigenvalues to three decimal places are
—2-813, 3-413,  4-883, 10-516

This discrepancy may be explained by examining the method
used to obtain the recurrence relation for p(4). The calcula-
tion of the P,(A)/P;_,(1) involves expressions of the form
P,(A)/P;_,(A) for r < i — 1 which may be evaluated in terms
of the previously computed p,(4), k < i — 1 using the
algebraic identity

P PP, ...

r

P, P.P, .. .P_,

Pioy _ 1

Py \Prys - - - Pi-1
r<i-1) ?2)

Such a substitution is satisfactory provided that the P,, where
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k=r+1,r+2,...i— 1,areall non-zero. In addition, if one
or more of the P,, wherek =r + 1,r +2,...0i — 2, are zero,
then the above expression contains the indeterminate 0/0. A
similar problem arises when dealing with symmetric tri-
diagonal matrices. In this case, Wilkinson (1960, 1965) has
shown that we may replace zero valued p,(4) by a suitably small
quantity, related to the machine precision constant relfeh, with
little or no loss of accuracy. This technique was followed by
Evans who, during the computation of p/(4) in the procedure
quindibisect, substituted the quantity relfeh for any divisor
containing a zero p,(1) as a factor. However, it is this step
which leads to wrong results in the quindiagonal case as may
be illustrated by considering the leading submatrix of order

3 of Matrix (1):
2 1 4
1 7 3
4 3 2

If we take A = 2, the sequence P, (4) has the values:

Py =1, P, =0, P, = —1, P3=-56
Hence, the correct values of the sequence p(2) are:
Po = 1 (by definition), p; =0, p, = —00,
py = 56 3)

Using formulae derived through the application of (2), Evans’s
corrected algorithm yields:

pi =0, pp=75~— (relfeh)™,

3 -9
T I5 = (relfeh)™]

The computed value of p; will be — 56(relfen) ™! and its sign is
different from that of the correct p5 in Eqns (3). This is due to
the replacement of Po/P, by PoP,/P,P, = (p,p,)” ' and leads to
a true value of —1 being replaced by (relfeh)™*; a fact borne
out when one compares the two values of p;(2). If one assigns a
positive sign to the zero p(4), then Eqns (3) give the correct
value: s(2) = 1, whereas Eqns (4) give s(2) = 2.

Po =1,

Ps — S6(relfeh)™" @

4. Reduction to upper triangular form

The errors described in Section 3 may be circumvented by
basing the calculation of s(A) on a method described by
Wilkinson (1965). This involves using a variation of Gauss
elimination with pivoting to decompose 4 — A into upper
triangular form. The same approach was adopted by Peters and
Wilkinson (1969) in the determination of the eigenvalues of
Ax = ABx with band symmetric 4 and B and made use of a
previously published algorithm bandet2 described by Martin
and Wilkinson (1967). However, this procedure was more
general than our application required. In particular, it dealt
with general band matrices, took no account of symmetry and
also produced the LU decomposition with interchanges of
A — Al The present authors have extracted the relevant parts
from bandet2 and have made it more efficient by using both the
symmetrical and quindiagonal properties of the input matrix.
The new algorithm is named quindet2 and appears in Section 6.
For quindiagonal A there are only three rows and five columns
to be considered in each major step of the Gauss elimination,
the values of these elements being held in the array r. For
further details of this method readers may consult the above
references together with Wilkinson and Reinsch (1971). The
procedure quindibisect was altered so that s(1) was calculated
using a call to procedure quindet2. In addition, since it now no
longer used the values of the squared subdiagonal and sub-
subdiagonal elements of the matrix, these were removed from
its parameter list. The improved procedure has been named
quindibisect2 and will also be found in Section 6.
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5. Numerical results

The procedures have been tested using several matrices with
epsl = 107% and relfen = 2737, the machine precision con-
stant relevant to the ICL 1900 series. We quote here a selection
of results.

(@) The 10 x 10 matrix used in Evans (1975). Results expressed
in floating decimal form correct to eight significant figures are:

1-461 648 1, 1;
7-5412116, 0;

1-733 6868, 1;
9-4729460, 0;

2-:0588891, 1,
11943311, 1;

59764482, 0; 4-3530204, 0; 2-571 8218, 0;
59900089, —1;
(b) The 10 x 10 matrix in which
the diagonal ¢; = 1-0 i=1,...10
the subdiagonal b; = 0-0 i=2...10
the sub-subdiagonal d; = 1-0 i=3...10

Results correct to seven decimal places are:

2:000 0000,  2-000 0000, 1-000 000 O, 1-000 000 O,
0-000 0000, 2-732050 8, 2:7320508, —0-732050 8,
—0-7320508, 0-000 0000

(c) The 14 x 14 matrix in which

;=10 i=1,...4 ¢=00 i=5...14
by=00 i=2...14
d =10 i=234, d =00 i=5...14

This matrix would give underflow problems if the values of
P,(4) themselves were computed. During this test (and others
t00), on the occasions in which various Py(4) were found to be
zero, we printed out the values of A and s(2). In every case s(A)
was the correct number of eigenvalues < A. Results correct to
seven decimal places are:

2-000 000 0, 2-000 000 0, with all the rest 0-000 000 0

6. ALGOL programs
procedure quindet2(c,b,d,n,mu,no);
value n,mu;
integer n,no;
real mu;
array c,b,d;
comment The arrays ¢, b and d contain the diagonal, sub-
diagonal and sub-subdiagonal elements of a symmetric quin-
diagonal matrix of order n. The value of the output parameter
no is the number of eigenvalues greater than mu;
begin
integer i,j.k,rr,w;
real x;
array r[1:3, 1:5];
comment Initialise the array r;
r[2,1] := c[1] — mu;

r[2,2] := r[3,1] := b[2];

r[2,3] := d[3];

r[3,2] := c[2] — mu;

r[3,3] := b[3];

r[3,4] := d[4];

r[2,4] := r[2,5] := r[3,5] := 0;

no := if r[2,1] = O then 1 else 0,
comment k counts the major stages;
for k := 2 step 1 until n do
begin rr := 1;
fori:=2,1do
if K > i then
begin w := 3 — i;
comment Interchange row w and row 3 if necessary;
if abs(r[3,1]) > abs(r[w,1]) then
begin for j := 1 step 1 until i + 3 do
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begin x := r[3,j];

r[3,j] := r{w,j1;

riw,j] := x
ifr[3,112 0 = r[w,1] 2 O then rr := —rr
end;

comment Elimination of subdiagonal elements;
x := if r[w,1] = O then O else r[3,1]/r[w,1];
forj:= 2 step 1 until i + 3 do

r[3,j — 17 := r[3,j1 — x » r[w,j1;

r[3,i+3]:=0
end i;
if r[3,1] < Othenrr := —rr;

ifrr > Othenno :=no + 1;

comment Update elements of array r;
fori:=1,2do

for j := 1 step 1 umtil 5 do r[i,j] := r[i + 1,j];
ifk + 1 < nthen

begin r[3,1] := d[k + 1];

r[3,2] := b[k + 1];

r[3,3] := c[k + 1] — mu

end;

r[3,4] := if k + 2 < n then b[k + 2] else O;
r[3,5] :=ifk + 3 < nthend[k + 3] else O;
end k;

end quindet2;

procedure quindibisect2(c,b,d,n,m1,m2,epsl,relfeh) res:(eps2,z,
x);

value n,m1,m2,epsl,relfeh;

real epsl,eps2,relfeh;

integer n,m1,m2,z;

array c,b,d x;

comment c is the diagonal, b the subdiagonal and d the sub-

subdiagonal of a symmetric quindiagonal matrix of order n.

Input to vectors b[i] and d[i] should begin with i = 2 and 3

respectively. The value of relfeh is machine dependent and

is the precision of the arithmetic used, i.e. for a r digit

binary mantissa relfeh is of the order of 27°.

The eigenvalues lambda[m1], . . . lambda[m2], where m2 is not
less than m1 and lambda[i + 1] is not less than lambda[i], are
calculated by the method of bisection and stored in the vector
x. Bisection is continued until the upper and lower bounds for
an eigenvalue differ by less than epsl, unless at some earlier
stage, the upper and lower bounds differ only in the least
significant digits. eps2 gives an extreme upper bound for the
error in any eigenvalue, but for certain types of matrices the
small eigenvalues are determined to a very much higher
accuracy. In this case, eps1 should be set equal to the error to be
tolerated in the smallest eigenvalue. It must not be set to zero;

begin real 4,xmin,xmax; integer i;
comment calculation of xmin and xmax;
d[1] :=d[2] := 0;

References

b[1] := 0;
xmin := c[n] — abs(b[n]) — abs(d[n]);
xmax := c[n] + abs(b[n]) + abs(d[n]);
h := abs(b[n — 1]) + abs(d[rn — 1]) + abs(b[n]);
if c[n — 1] + h > xmax then xmax := c[n — 1] + h;
if c[n — 1] — h < xmin then xmin := c[n — 1] — h;
fori := n — 2step —1 until 1 do
begin
h := abs(b[i]) + abs(d[i]) + abs(b[i + 1])
+ abs(d [i + 2]);
if c[i] + h > xmax then xmax := c[i] + h;
if c[i] — h < xmin then xmin := c[i] — h

end 7;
eps2 := relfeh » (if xmin + xmax > 0 then xmax else
— xmin);

if epsl < O then epsl := eps2;
eps2 := 05 x epsl + 7 = eps2;
comment inner block ;
begin integer a,k; real x1,xu,xo; array wu[ml:m2];
X0 1= xmax;
for i := m]l step 1 until m2 do
begin x[i] := xmax; wuli] := xmin
end i;
z:=0;
comment Loop for the kth eigenvalue;
for k := m2 step — 1 until m1 do
begin xu := xmin;

for i := k step — 1 until m1 do

begin if xu < wu[i] then

begin xu := wu[i]; goto contin

end

end /;

contin: if xo > x[k] then xo := x[k];
for x1 := (xu + xo0)/2 while xo — xu >

2 « relfeh » (abs(xu) + abs(xo)) + epsl do
beginz := z + 1;
quindet2(c,b,d,n,x1,a);
a:=n-— a;
if a < k then
begin if a < m1 then xu := wu[ml] := x1
else
begin xu := wu[a + 1] :=
if x[a] > xI then x[a] :=
end
end
else xo := x1
end x1;
x[k] := (xo + xu)/2
end k;
end inner block;
end of quindibisect2;
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