A set of modules for the solution of integral equations
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The provision of software for the solution of integral equations is complicated by the fact that the
integral equations arising from practical calculations are very diverse in form, and usually fail to fit
into any of the standard categories (Fredholm or Volterra first and second kind, Fredholm third
kind) for which routines are normally provided. We describe here a set of ALGOL 68 modules
which provide considerable flexibility in the types of equations which can be handled, while retaining
reasonable run time efficiency. The modules yield a user interface which is recognisably close to
that of the underlying mathematical formalism, and demonstrate the advantages of an extensible
language such as ALGOL 68 in providing such a ‘natural’ interface without the need for an ad

hoc preprocessor.
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1. Introduction

Numerical analysts, and writers of numerical software, nor-
mally consider integral equations as having a nice tidy classifi-
cation into:

Volterra equations of the first kind

0 = y(s) + J Ks, 1, x(0))dr )
Volterra equations of the second kind
x(s) = ¥(s) + §5 K(s, 1, x(1))dt 2
Linear Fredholm equations of the first kind
0 = y(s) + [® K(s, t) x(t)dt 3)
Linear Fredholm equations of the second kind
x(s) = ¥(s) + f3 K(s, 1) x()at @
Linear eigenvalue problems (third kind Fredholm equations)
x(s) =0 + A [ K(s, t) x(t)dt (5)

In addition, they recognise, and to some extent cater for,
different classes of kernels K:
Smooth: K(s, t) well behaved analytically over [a, b] x [a, b]
Split (Green’s Function):
K(s, 1) = Ki(s,t)s >t
K,, K; smooth
=K)(s,t)s <t
Convolution: K(s, t) = K(s — 1)
Singular: K(s, t) is unbounded on [a, b] X [a, b], and/or
the range [a, b] is not finite.
The commonest classes of singularity appear to be those of
type:
Abel: K(s, 1) = Ko(s, ) (s — )¢
K, smooth
Logarithmic: K(s, t) = Ko(s, t)In|s — t |
To cater for all possible combinations of kernel type and
equation type in this list, is a formidable task, and to date
standard software is available, in libraries or as published
algorithms, only for the following classes of problems:

Type 4 Smooth kernel (NAG routine DOSABA/F, DO5SCAB)
Type 4 Green’s Function kernel (NAG routine DOSAAA/F)
Type 2 Smooth kernel (see, e.g., Phillips, 1978; Pouzet, 1963).

Of course, there may be published algorithms of which we are
not aware; but the list is painfully incomplete, and to fill in the
gaps would be a very large task.
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Worse, it would not be a particularly worthwhile task, since in
our experience most user problems fail to fit into any of the
categories listed. This point has been made in Delves and
Hendry (1976) and in Delves (1978); in a scan of the applica-
tions literature, the only ‘standard’ integral equation encoun-
tered was a first kind Fredholm equation. It was argued in these
references that to obtain a reasonable coverage of user
problems (4) with manageable cost (and bulk) of software,
required a more flexible approach than that provided by self-
contained routines such as (for example) DOSCAB.

This routine solves equations of the form of (4) by the Nystrom
method. It requires that the user provide function segments for
computing K(s, ), (s), and makes some attempt at flexibility
by letting him specify the quadrature rule (so that an infinite
range can be handled). The routine then sets up the Nystrom
equations, and solves them using Gauss elimination.

DOSCAB perform very badly on either of the following
problems

x(s) = e — Ae**? — 1/« + Bs) + A [ e x(t)dt (6)
witha = B = 1; 1 = 10°, Such a problem is very illconditioned,
and should be solved by techniques appropriate to the first kind
problem (3). The solution is x(s) = e*

x(s) = Ns) + fgin|s — ]| x(r)dt m

H)=5s—-05[s*Ins+ (1 —s2)In(l —s) — (s + 05)]
(Baker, 1978 p. 537).

solution: x(s) = s .

This problem has a logarithmic singularity in the kernel, and a
sum of singular terms in the driving function. Because of this
latter sum, even a routine written for logarithmic kernels will
fail to obtain an accurate solution of (7).

But we could describe these problems in stages, as follows.

Egquation 6
(a) The interval is [0, 1]

(b) The operator equation has the form [/ — K]x = y

(c) The kernel of K is a smooth function

(d) The driving term g is smooth

(e) The equation is likely to be illconditioned (for large |4|)

Equation 7
(a) The interval is [0, 1]

(b) The operator equation has the form [/ — K]x = y

CCC-0010-4620/81/0024-0184 $03.50

184 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

© Heyden & Son Ltd, 1981

20z udy €0 U0 189n6 AQ | GZ8EE/PL/Z/PZ/B10Ne/uloo/W0d"dNo"oILePED.//:SARY W) PAPEOUMOQ



Table 1 Solution of the integral equation (7), using FAG 1
User programme [excluding output statements]

interval := finite (0, 1);

proc gl = (real x) real: (1-5+ x + 0-25);
proc g2 = (real x) real: (0-5% x * x);

proc g3 = (real x) real: (0-5+ (1 — x * x));

Problem errorestimate e;
description kvalue 1ks, rhs;
lhs := unitop (1:0) — fredholm (logsing (2));
rhs := noparams g1 — noparams g2* logsing (1) — noparams g3*
logsing (—1);
for n from 3 by 2 to 9 do
Problem [1:n] real x;
solution linearsolve (1hs, rhs, x, )
od
end
Solution obtained with FAG 1
N 3 5 7 9
actual error 117 x 10™2 35 x 10712 1-1, —11 9:6, —12
estimated error 75, -2 21, —11 34, —11 4-8, —11
Solution from Baker (1978) using a modified Nystrom method with N equally spaced points
N 2 4 8 16 32 64
error 13, -2 36, -3 10, -3 27, —4 7-1, -5 1-8, -5

(c) The kernel of K is In | x — y |

(d) The driving term is y, + y, Ins + y; In (1 — s5) where Yi»
Y2, ¥3 are smooth.

(e) The equation is well conditioned.

We have written a pilot set of modules (‘FAG 1) which essen-
tially allows the user to describe his problem in these stages. It
contains separate modules for handling the unit operator  and
the Fredholm integral operator X, for example, together with a
mechanism for defining the sum, difference, and product of
operators so that nonstandard forms of equations can be
constructed and solved. It also attempts to handle singular
problems effectively where possible; the package contains a
library of standard singular functions and kernels, such as
In(1 — 5),In|s — t|, and allows the user to add, subtract or
multiply both these standard functions and his own user
defined functions, to give a complete description of the kernel
and driving term in his equations. Finally, it contains a number
of solution modules; the user is asked (forced!) to choose the
one appropriate to his equation. The code which the user
would write to solve equation (7) is shown in Table 1, together
with the results obtained, and those obtained for the same
equations by Baker (1978) using a method designed to cope
with the singular kernel. These results demonstrate that
flexibility need not imply inefficiency.}

We give in this paper a brief description of FAG 1 as it cur-
rently exists, together with some simple examples of its use.
FAG 1 yields an implementation in ALGOL 68 of the Fast
Galerkin technique and associated error estimates (Delves,
Abd-Elal and Hendry, 1979; Babolian and Delves, 1979);
however the choice of underlying algorithm is only important
here insofar as it and its error estimates can be extended to
cover the class of equations considered. The purpose of the
present paper is to demonstrate that the difficulties of handling
a wide class of user problems can be at least to some extent
overcome by a careful design of the user interface, and to

discuss how this interface can be implemented in a relatively
straightforward manner using the standard facilities of
ALGOL 68.

The description given is pedagogical in style and does not
presuppose a knowledge of ALGOL 68; it is intended to
demonstrate by example the advantages of an extensible
language in developing natural, simple to use and portable
software packages without the need for application oriented
language preprocessors. The description is also deliberately
simplified in various places; ‘frills’ which exist in the code but
are inessential to its overall structure, have been omitted from
the description.

2. Class of problems treated
2.1 Class of equations
Equation (7) can be written in the operator form
[I-Klx=g ™)

where / is the unit operator and K a Fredholm integral operator
acting in an underlying space R. This space has as elements
functions f(s) defined on the interval @ < s < b, and possessing
‘suitable’ smoothness properties. The required properties
depend on the algorithm used to solve (7); for the Fast
Galerkin method we require, roughly speaking, that the
Chebyshev expansions generated all exist. The package FAG 1
is designed to handle more general equations of the form

Alg [1’ K! - Kn] X = Alg (g’ —gm) (8)
where K, — K, are (possibly nonlinear) integral operators on
[a, b]; g, — g are functions on [a, 4] which may also depend
on the solution x; and Alg denotes an arbitrary algebraic
expression formed using the elementary operations +, —, *
between operators or between functions. The operators K
currently available in FAG 1 are listed in Table 2. With their
use, the form (8) clearly encompasses all of the ‘standard’
equations (1)-(5), and in addition a wide variety of non-
standard relatively common forms; for example the linear

{To be fair to the technique being demonstrated by Baker, the rapid convergence obtained for equation (7) is untypical of what might be
expected for a logarithmic kernel, since it depends on strong cancellation of singularities in the kernel and driving term. However, the example
does demonstrate that FAG 1 not only handles the singularities effectively and obtains the cancellation, but recognises, via its error estimate,

that it has done so.
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Table 2 Operators currently available in FAG 1

Operator ¢ (ox) (s) Comments
Unit (4) Ax(s) Only given a parameter to avoid a
compiler bug
Fredholm (K) 12 K(x; s, 1) x(t)dt
Volterra (K) 12 K(x; s, t) x(t)dt
Inverse Volterra (K) 12 K(x; s, t) x(t)dt
Green’s Function (K|, K,) 1® K(x; s, t) x(t)dt Equivalent to
K =K1, t<s Volterra (K;) +
= Ky(s,t), t>s Inverse Volterra (K,)
Table 3
FAG 1 function Parameter values represents the function comments
logsing (n) -1 In[b — s]
a+b
0 n|s - ( 3 ) I
1 In(s — a)
2 In|s—1t]
algsing (n, «) -1, a b - s o« > —05
0, a Is—“;bl x> =05
l,a (s — a)* o> —05
2, a |s -t o> —05

Table 4 The types of user defined function acceptable to FAG 1

Here, mode vector = ref [ ] real; the vector a represents the discretised solution, « a row of input parameters

Mode Representing Usage
Proc (real) real g(s) noparams g
Proc (real, vector) real g(s, @) g withparams o
g(s, a) noparams g
Proc (real, vector, vector) real g(s, a, a) g withparams o
Proc (real, real) real K(s, t) noparams K
Proc (real, real, vector) real K(s, t, @) K withparams o
K(s, t, a) noparams K
Proc (real, real, vector, vector) real K(s, t, a, a) K withparams o
equation defined functions, which may be nonlinear (that is, depend
x(s) = g(s) + A [* K(s, z) {* K(z, 1) x ()dt dz (9) upon the (upknown) solution x), and which FAG 1 hopes are
corresponding to th t ti smooth (b) library functions containing singular factors which
ponding to the operator equation , FAG 1 is able to treat efficiently. Table 3 contains a list of the
[Il-AK*K]x =g, (9)  one and two dimensional singular functions kown to FAG 1,

2.2 Class of kernels K and driving terms g

The kernel function (s) K(x; s, t) arising in integral equations
are often singular, or have singular derivatives of low order, at
one or more points in the domain a < s, ¢ < b; the driving
function may also be singular in nature. Examples are given by
the logarithmic kernel of (7), which is singular along the line
s = t; and by a typical Green’s function kernel (see Table 2)
which is normally continuous but with discontinuous partial
derivatives, along this line. Such singularities lead to slow
convergence unless the numerical method used deals with them
explicitly. In order for this to be possible, FAG 1 allows the
user to define both kernel functions and driving functions as
algebraic combinations of simpler terms:

K(X;s’ I) =A1g(Kl - Kp’gl
gx;s) = Alg(g,s; — &)
where the terms X, (x; s, t) and g,(s) are of two types: (a) user

—- &) (10)
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together with an indication of how they are accessed; their use
is considered in more detail in Table 4.

Equation (7) yields a simple example of equation (10); the
kernel has only a single, standard singular term, while the
driving term is an algebraic expression composed of the
functions:

smooth: s, —0-5 5%, —0-5(1 — s52), 0:5(s + 0-5)
singular: In s, In (1 — )

3. Kernel and driving term description

We now give a bottom-up description of the way in which this
class of problems can be conveniently described, using the
standard facilities of ALGOL 68.

3.1 Description of the solution
Since the user-defined kernel and driving terms may depend on
the solution x, it is necessary to consider its representation
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first; this depends on the underlying algorithm used. In FAG 1,
this is an expansion technique (Delves, Abd-Elal and Hendry,
1979) in which the interval [a, b] is first mapped to [—1, 1] and
then x(s) expanded as a Chebyshev series: ’
z = z(s) -1<z<1 (11)
x(s) = X(z)
N
X(2) ~ Xy(2) = ZoajTj(z)
i=

The solution x(s) is therefore represented by the vector
a = {a,i = 0 — N}, together with the mapping Z(s). This
latter is specified (see Table 1) by the line

interval: = finite (0, 1);
Here, interval is a globally declared variable structure which is
assumed by FAG 1 to contain procedures to evaluate z(s),
z7Y(s), z' (s); it has the ALGOL 68 declaration

mode vector = ref [ ] real;

mode map = struct (proc (real, vector) real map, inverse,

derivative,

vector data);

map interval;

The value of interval is set by a call of the procedure finite,
which takes as parameter the data of the map and delivers as
result a structure of mode map. finite is a FAG 1 procedure
implementing a simple linear map; others (for infinite intervals,
for example) can be predefined or user provided.

Note that this construct makes use of the ALGOL 68 treat-
ment of procedures as ‘just another mode’; procedures can be
stored away in structures or delivered as results by other
procedures, for example. We have leant heavily on this con-
venient facility.

3.2 Treatment of individual terms

A kernel or driving function is in general (see equation (10)) an
algebraic expression formed from a number of terms. The
terms may be:

a user defined function
a singular library function
a constant

in one or two variables
with or without parameters

dependent or not
dependent on the solution

The ALGOL 68 modes of the various possible defined functions
are listed in Table 4: FAG 1 requires that objects of any of
these modes be accepted and stored, together with data para-
meters where relevant, for later use. ALGOL 68 provides the
convenient concept of umions to deal systematically with
objects which come in different variants.
We therefore declare a generalised procedure mode;

mode kproc = union (all of the modes listed in Table 4, plus

others for constant terms and for
singular library functions)

We can now store individual terms in a structure containing the
procedure, its parameters (if any) and any other information
that might be useful later:

mode kstruct = struct (kproc proc, vector params, etc etc);
It then only remains to provide a painless way for the user to
put his functions into such structures. In FAG 1, this is carried
out by the FAG 1 operators withparams and noparams,
declared as

op noparams = (kproc p) kstruct

op withparams = (kproc p, [ ] real params) kstruct
and used as indicated in Tables 1 and 4. The library routines
logsing and algsing (see Table 3) also return a result of mode
kstruct when called. Constant terms are treated separately for
efficiency; and hence an individual term k, or g; in equation

© Heyden & Son Ltd, 1981

(10) may be either a (real) constant or a kstruct:
mode kterm = union (real, kstruct);

3.3 Forming algebraic expressions (kernels and driving functions)
A complete kernel or driving term may be a single term (e.g. the
kernel in Table 1) or an algebraic expression; we now have to
consider the latter. Fortunately, this is relatively straight-
forward in ALGOL 68 (even for a numerical analyst) since
meaning can be given to the usual operator symbols +, —, *
between operands of any user defined types and new operator
symbols declared if required, as for withparams and
noparams above. We require that the operators produce a
suitable linked list which can be traversed later to recover the
expression. This may be done in a number of ways; that
implemented in FAG 1 makes use of the standard ALGOL 68
operator precedence for +, —, * to do most of the sorting out.
If we consider the expression for the driving term in Table 1:

g=8 —&*h—8&*h 12
and split this at any operator into a left part and a right part,
we see that either of these may be a single term, or a (simpler)
algebraic expression. We characterise each such node by the
operator at the node, and by its left and right parts:

mode kvalue = union (ref klink, kterm)
(an expression may be a single term, or a compound expression
of mode klink)

mode klink = struct (kvalue lef?, right, int op)

(where op = 1, 2, 3 stands for +, —, *)
We can now define the operators +, —, *; for example
op + = (kvalue left, right) ref klink
(heap klink result := (left, right, 1));
The code defining equation (12) is shown in Table 1; it yields
a kvalue structure of the form

g = ((gla (gz» hla 3)’ 2) ’ (83) hz, 3): 2)
corresponding to the parse tree shown in Fig. 1.

Note that the nesting is automatically correct, with multi-
plications coming first, because the operator * has higher
priority than +, — and hence is obeyed first when the program
of Table 1 is run.

Because the same mode objects are used to hold one variable
and two variable functions, kernel expressions can be set up
in the same manner. Moreoever, since one variable functions
can occur in kernel expressions, FAG 1 allows the intermixing
of one and two variable functions. Thus it is possible for the
user to write code fragments such as (with notation as in
Table 4):

noparams g ® noparams K or noparams K ® noparams g

where ® = +, — or *.
The first of these is taken to mean g (s)® K (s, t); the second,

g,y h

Fig. 1 Structure generated by FAG 1 for the driving function of
Table 1
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K (s, )®g (t). It is the user’s responsibility, however, to
ensure that the driving term which he sets up is a function only
of one variable (FAG 1 will fail him at solution time if he
makes a mistake).

3.4 Defining integral operators
Integral operators (and the unit operator) are defined by
calling library procedures which take as arguments a kernel
description (of mode kvalue) and return a result of this mode;
for example, a Fredholm operator with kernel X (s, ) defined
by the call
Fredholm (K)

To see what the routine Fredholm accomplishes, it is necessary
to describe the underlying solution method. We consider for
simplicity a linear Fredholm equation of the second kind in the
mapped space [—1, 1]:

X@-f1K@nX@®d =g@)
Introducing the expansion (11), multiplying by (Ti(z) (1 — z
and integrating we obtain the standard Galerkin equations for
the coefficients a:

2)—4}

[D-Kla=¢g
where D is a diagonal matrix with elements
v T(z)dz 2] i=0
D, = Bl 1 ol Aaend 13
i j_l(l—zz)‘* 1} i>0 (13)
and
1 1
K;; =j dzj dt Ti(z)T,-(t)—K(ig— 0<i,j<N(49
-1 -1 (1 -z )’
1
82) Ti2) ci<
= = = N
w-| S 0<t

Table 5 Solution of a problem containing the product of two
singularities

Equation (Baker, 1978)
x(s) = ps) +2/3f_11s—t|7¥x(t)at
ys) = (1 = sH — /22 — sH)/4

Solution: x(s) = (1 — s»)?

The singular function (1 — s)* is not available in FAG 1, but
(1 — s)*and (1 + s)* are. FAG 1 treats the product of two
singular functions as a special case, in an attempt to retain
accuracy. The following program demonstrates this.

begin

errorestimate e;

interval := finite (—1, 1);

proc gl = (real s) real: (pi * sqrt(2) * 2 — s * 5)/4);
kvalue 14s, rhs;

1hs := unitop(1) — (2/3) * fredholm (algsing (2, —0-5));
rhs := algsing (—1, 0-75) * algsing (1, 0-75) — noparams
gl;
for n from 3 by 2 to 15 do
[1:n] real x;
linearsolve (1hs, rhs, x, e)
od
end

Results for FAG 1

N 3 5 7
error 44, —1 36, —3 1-5, -3
estimated 2.1, -1 14, -3 1-8, -3

Results from Baker (1978) using a modified Nystrom method
N 10 20 30
error 62, —2

23, =2 1-2, =2

Apart from a constant factor, the elements g, are identical to
the expansion coefficients in a Chebyshev expansion of the
driving function g:

- o}

80 =2 > &) as)

i=0
FAG 1 computes the coefficients g; at solution time, from
Chebyshev expansions of the individual terms in the algebraic
expression given for g(s). Similarly, the coefficients K;; are
related to the Chebyshev expansion of the modified kernel
KQ — t»)
o]

4 ’
=2

i,j=0
These coefficients will be evaluated at solution time from the
algebraic expansion given by the user for K. All that the
procedure Fredholm need do, therefore, is to (formally)
multiply the algebraic expression by (1 — t?)* to ensure that
the correct matrix is generated. A similar situation holds with
Volterra or inverse Volterra generators, save that the singular
function needed is modified. Thus, for a Volterra equation, the
factor (1 — t2)* is replaced by (1 — t?) x h(z, ), where

h(zt) =1, z>1t
=0, z<t 17

Finally, algebraic operator expressions are handled using the
same mechanism as kernel and driving term expressions, save
that a separate flag (op = 4) and corresponding operator (op*)
is required for operator products.

K@, 1)1 — 1)} = K, T{)T(t) (16)

4. Setting up and solving the equations

There are solution modules in FAG 1 for solving linear or non-
linear, illposed or wellposed, inhomogeneous equations; there
is currently no eigenvalue solver, though it would be simple to
add one. Since nonlinear problems are solved as an iterative
sequence of linear problems, each of these routines has as its
major task the production of the Galerkin matrices (13)
and (14). The numerical techniques used are described
in Delves, Abd-Elal and Hendry (1979). The matrices and
vectors required are formed from the Chebyshev expansions of
the constituent functions, user defined functions being expanded
numerically using the Fast Fourier Transform and singular
(library) functions being expanded analytically using a set of
recurrence relations. The final equations are pieced together
during a recursive scan of the integral operator and driving
term structures; however, a preliminary scan is made first to
effect one important optimisation. FAG 1 is able to multiply a
rapidly convergent expansion (one resulting from a smooth
kernel or function) by a slowly convergent expansion (resulting
from a singular kernel, or from an ‘induced’ singularity such as
is represented by the factor (1 — ¢?)*) without loss of accuracy.
There is always one such singular function, induced by the
treatment of the integral operators; if there is a second singular
factor, FAG 1 will absorb the two so that they are treated as a
single compound factor. Accuracy is therefore lost only when
two library singularities are explicitly multiplied; even then,
the result is better than would be obtained by coding the
singular factor as a user function. For an example in which two

9 11 13 15
87, —4 36, —4 41, —4 1-6, —4
13, -3 95, —4 71, —4 55, —4
40 50 60 70
7, -3 5.5, —3 43, -3 34, —3
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singular factors are multiplied, see Table 5. Once the matrix
equations are formed, their solution is straightforward. FAG 1
distinguishes between wellposed problems (as exemplified by
equations (2) and (4)) and illposed problems (exemplified by
(1) and (3)). The routines linearsolve, illposed solve, implement
respectively the iterative scheme of Delves (1977), and the
augmented Galerkin scheme of Babolian and Delves (1979).

5. Error estimates
Errors in a Galerkin calculation contain two main components:

1. Truncation errors stemming from the use of a truncated
basis.

2. Quadrature errors: the matrices are computed numerically
only to finite accuracy.

The Fast Galerkin scheme provides estimates for both sources
of error. FAG 1 keeps these estimates for each operator, and
estimates from them the total error resulting from individual
operations (+, —, X ) on two operator matrices. It finishes up
with an error estimate for the user defined equation, which is
again in two parts: the truncation error associated with the
final N x N matrix, and the error in each of its elements. From
these, FAG 1 produces an overall estimate of the error in the
solution, which it returns to the user (it also returns a flag if it
has any reason to suspect that the error estimate may be
unreliable). The results shown in Tables 1 and 5 indicate that
these error estimates, which are very cheap to produce, are
reasonably successful, being usually slightly pessimistic but
within a factor 10 of the true error.

The module illposed solve also uses the error information
associated with the matrices to produce an error estimate,
although for illposed problems this is very difficult to do and the
estimate is largely heuristic. More importantly, it is possible for
problems to be posed which have no solution. A feature of the
augmented Galerkin method is that it generates a numerical
criterion for the existence of an L2 solution of the problem being

Table 6 A first kind Fredholm equation

Problem
JOK(s, )x(t)dt = e + (1 —e)s — 1
Kis,t)=t(s—-1)t<s
=s@t—-Dt=s
Solution: x(s) = €*
Program
begin

errorestimate ¢; [ ] int nuse = (3; 5, 7, 10, 15, 20);
interval := (0, 1);
proc k1 = (real s, t) real: (1 * (s — 1));
proc k2 = (real s, ) real: (k1 (¢, 5));
proc y = (real 5) real: (exp(s) + (1 — exp(1)) *s — 1);
for i to 6 do
[1 : nuse [i]] real x;
illposedsolve (Greens function (noparams k1, noparams k2),
noparams ), X, e)
od
end

Comments

The solution quickly reaches a minimum error of 10”7, and
then remains stable: a feature of the augmented Galerkin
method.

Solution

N 3 5 7

error 19, —1 49, -2 1-6, —4
solution exists? yes yes yes

solved. illposed solve implements thi§ criterion, and although it
will always return a computed solution x(s) to the user, it
returns also an opinion as to whether a genuine solution to the
problem exists or not. This criterion has proven rather success-
ful in practice (so far). An example of the use of illposed solve to
solve a first kind Fredholm equation is given in Table 6.

6. Discussion

We may discuss the capabilities of FAG 1 on two levels: as a
package for solving integral equations, or as a demonstrator of
the virtues of a modular approach to numerical software, and
of an extensible language such as ALGOL 68 for its
implementation.

Viewed as an integral equation solver, FAG 1 is reasonably
successful. Although its capabilities are still rather limited, it
shows that a modular approach of this sort to the solution of
integral equations is both feasible and useful; it is easy to use
and accepts a wide variety of problems. Its achieved accuracy
is startlingly high on some problems, and as good (so far as we
have comparisons) as that of special purpose routines on
others, for a fixed discretisation length N. Although its opera-
tion count is ¢(N? I,N), the Galerkin scheme is still rather
slower (by a factor almost 2), over the range N < 50, than the
nominally ¢(N3) Nystrom scheme with direct solution of the
equations for wellposed problems (see Riddell and Delves (1979)
for comparative timings). However, it repays this additional cost
(which would be reduced with a faster FFT module) by provid-
ing an effective and usually quite realistic error estimate. For
illposed problems, comparative timings are more difficult to
obtain; again, the augmented Galerkin scheme used here is
slower than would be a regularisation scheme with a Nystrom
discretisation of the regularised equations; but it is certainly
quicker than the method recommended as best in a review by
Lewis (1975). More important than speed however is stability
for such problems; and the method performs well in this
respect.

Some of the limitations of the current versions of FAG 1 can
be easily removed. For example, we plan to add in due course a
linear eigenvalue solver, and to add to the library of
singularities.

We would also like to add differential operators and their
associated boundary conditions, giving an ability to solve
integrodifferential equations; the algorithm described in
Babolian and Delves (1979) represents one way of doing this.
Other limitations are less easy to remove: there are no plans to
treat multidimensional problems. Finally, some are straight-
forward but would cost considerable effort to remove. The
chief extension of this type, which would add considerably to
the usefulness of the package, is the ability to handle coupled
equations. Another desirable extension would be the ability to
split the range [a, b], computing independent expansions on
several subranges. In both these respects, FAG 1 is much more
primitive than current counterparts in initial value ordinary
differential equations or numerical quadrature, although
probably no more so than available boundary value o.d.e.
routines.

Viewed as a demonstrator of the usefulness of an extensible
language for the production of numerical software, we believe
FAG 1 to be quite persuasive. Its user interface is pleasant and
natural, and is achieved entirely within the standard language;
further, the package was not especially difficult to write,
although some of the programming techniques involved are
perhaps mildly unfamiliar to a traditional numerical analyst.

10 15 20
22, -7 87, -7 9-4, -1
yes yes yes
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Book reviews

Principles of Database Systems by J. D. Ullman, 1980; 379 pages.
(Pitman, £12-50)

The author’s approach is similar to that of, for instance, C. J. Date or
A. F. Cardenas; his book differing from theirs mainly in including
more up to date material. It begins with an introductory survey of the
objectives and underlying ideas of data base systems, followed by a
useful summary of relevant file storage and access strategies (includ-
ing a lucid account of B-trees). Then comes an extensive treatment of
the relational, network, and hierarchical data models and their
various implementations, and finally two chapters on security,
integrity, and the handling of concurrent accesses to a data base.

Of the data models, the relational is given the lion’s share of
attention; there are chapters on: the algebra and calculus and their
manifestations in query languages such as ISBL, SEQUEL, and
Query-by-Example; relational normalisation; and the optimisation
of query language expressions to minimise the inefficiency often
associated with the standard relational operators. In this area the
author draws upon a number of recently published research papers
and puts the proposed algorithms into context admirably. His treat-
ment of DBTG systems and IMS (the sole representative, as usual, of
the hierarchical data model) is much more cursory.

I found a great deal of interest in the book but I should hesitate to
recommend it to a complete beginner in the subject since, in spite of
being based on an introductory course offered at Princeton, it is
hardly a teaching text. The author comments that in the past it has
been difficult, when teaching about data base systems, to achieve
“the mix of principles and practice” well established in other
branches of computer science. An understanding of the principles is
obviously assisted by practice, and now that students are being given
the opportunity to use real data base systems they will initially need
simple, specific and practical guides rather than the fairly hefty
volumes produced by Date, Cardenas, James Martin and the current
author, all of whom attempt to cover the whole of a very wide field.

I wonder, incidentally, whether one in a hundred readers of books
of this kind actually does the exercises so copiously supplied at the
end of each chapter? The most industrious learner must baulk at
constructing complex query language expressions, or even programs,
which he will never have the chance to test!

S. JonEs (London)
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Mathematical Methods in Computer Graphics and Design edited by
K. W. Brodlie, 1980; 147 pages. (Academic Press, $23.00,
£9-80)

This book contains an account of the proceedings of a conference
organised by the Institute of Mathematics and its Applications
(IMA) at the University of Leicester in September 1978. Its intention
was to bring together those developing graphical algorithms and
those likely to use them.

Six papers are included together with brief summaries of the
discussions, two each on curve drawing, contouring and geometric
problems in design. On curve drawing, Brodlie himself reviews
algorithms where the curves are required to pass through the data
points, and McLain treats least-squares fitting of curves to data
which are subject to error—rather confusingly he refers to this as
interpolation.

The contributions on contouring each assume precomputed data
points—rectangular and skewed rectangular grids by Sutcliffe, and
scattered points by Sabin. If a reviewer may presume to state an
interest, there may sometimes be an advantage in choosing the data
points dynamically while contour following so as to economise in the
number of height determinations (Reeves, 1980).

The paper by Forrest on the three problems of nearest neighbour
searching, intersections of bodies and hidden surface computation, is
of particular interest in relating the complexity of algorithms to the
choice of suitable structures in which to embed the data. Finally,
Braid, Hillyard and Stroud in a paper rather too dense for an
innocent reader discuss the stepwise construction of polyhedra in
geometric modelling.

The book is carefully produced and contains numerous references
to the work reviewed.

C. M. REeEevEs (Keele)
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