The application controller concept: a first experience

P. Stecher* and Volker Allensteint

The application controller concept addresses DPS/end user interface problems in applications of a
stable and repetitive nature. These interface problems arise both during development and operation
of an application. To tackle these problems the application controller concept proposes a method-
ology for the application development process which is based on a state networking technique.
One main aim of this methodology is to involve the end user in the definition and design of his
application to a high extent. This paper presents the experience gained with the methodology in
the course of a major application development project at Lufthansa. The application controller
concept is also a proposal for a software system which supports the actual operation of the
application at run time. The last two sections of the paper will elaborate on some of the properties

of this software system.
(Received April 1980)

The Application Controller (AC) concept (Stecher, 1977; 1978)
consists of

(a) a methodology to structure and develop applications of a
stable and repetitive nature

(b) a proposal for a software system which would support the
development of the application and control the operation of
an application at run time.

In the paper we describe how we applied the methodology of
the AC concept in the project FAS (Frachtabfertigungs und
informationssystem = cargo handling and information system)
at Lufthansa. The basic principle of this methodology is to
structure an application by state networks in a way which is
close to the user’s perception of the application. (As a matter of
fact, one author of this paper is not a DP professional, but an
end user.)

First we introduce in general terms the application of cargo
handling, then we will present some facts of the project FAS.
After we have defined the state networking technique in more
detail we will describe its use during the phases ‘basic design’,
‘detailed design’ and ‘programming and testing’ of the applica-
tion development process. Finally we deal with the AC as a
software system.

1. The application FAS

In 1981 a new cargo base called ‘Cargo Base West’ is planned
to be operating at Lufthansa in Frankfurt. The FAS is intended
to provide part of the required data processing support. Fig. 1
shows an overview of the cargo handling application: Cargo is
received from customers or inbound flights at the transit
station (cargo arrival). After the essential data of the cargo has
been recorded the cargo is stored in warehouse. Documents
pertaining to the cargo are recorded separately. Subsequently
the document handling process starts:

(a) cargo which has arrived at its destination is assigned to
customers

(b) cargo which has not arrived at its destination is assigned to
outbound flights.

In the cargo departure section shipments are removed from

warehouses on demand to be delivered to customers or to be

transferred to outbound flights to which they were previously

assigned.

Fig. 2 depicts some of the items of the cargo handling process.
This figure also shows the relationship which may exist between
these items: In the centre of the cargo handling we find the

shipment (A). This shipment is defined by its airwaybill
(AWB). Shipments can be handled loose or in load units (2).
Example of load units (B) are containers, palets and igloos.
Shipments can be loaded on aircraft loose (1) or on load units
(3). They can be stored in the warehouse loose (4) or on load
units (5). Transport frames (C) are used in automated ware-
houses. On these transport frames shipments are carried loose
(6) or in load units (7) to their locations (8).

The FAS is going to support essential functions of the cargo
handling system (Fig. 3): As part of the document handling of
cargo the airwaybill data is recorded (1). Shipments are
assigned to outbound flights (2). After the departure of the
assigned outbound flights, or after the delivery to customers
shipments are terminated (3; 4). As part of the physical hand-
ling of cargo, shipments are recorded (5) and related to their
document data (6). The warehouse entry and exit messages (7;
8) are received and evaluated in the FAS.

In addition to these functions the FAS provides information
to the user through CRT displays and printouts. In the follow-
ing paragraphs we will explore the physical handling of cargo,
in particular the recording of physical data of cargo. We focus
on the function ‘Recording load unit/breakdown’.

Recording load unit|breakdown

A load unit of the type ‘breakdown’ arrives by an inbound
flight and may contain shipments with various destinations.
Before this load unit is broken down and the shipments are
separated according to their destinations, the load unit data is
recorded and the load unit itself is stored temporarily in an
automated warehouse. Fig. 4 shows the screen layout for this
function. The data elements HR-Nr., LE-Nr. and Flug-Nr. are
mandatory: HR-Nr. is the number of the transport frame on
which the load unit is to be carried; LE-Nr. is the number of
the load unit and Flug-Nr. is the number of the inbound flight.
The remaining data elements are optional and describe the load
unit in more detail.

The function ‘Recording load unit/breakdown’ will be used in
this paper to describe how we applied the state networking
technique in the FAS. Before doing this let us consider some
facts of the FAS project.

2. The FAS project

The FAS project was started in October 1977 and will be
completed in the middle of 1980. Currently the project team
consists of seven end users and 12 DP professionals.

*IBM Deutschland GmbH, Abraham-Lincoln-Str. 26, D-6200 Wiesbaden, West Germany, now at IBM Europe, Dept. No. 3433, Tour

Franklin, F-92081, Paris La Défense, France.

tDeutsche Lufthansa AG, Lufthansa Basis, Abteilung FRA OG 2, Flughafen, D-6000 Frankfurt, West Germany.

CCC-0010-4620/81/0024-0097 $05.00

© Heyden & Son Ltd, 1981

THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 97

20z udy 1| uo 1senb Aq ZG0BEE/L6/2/¥2/a10ME/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojuMoq

CARGO ARRIVAL

Reception from

—, Customer
vz

CARGO CONTROL

CARGO DEPARTURE

Outbound

I

Warehouse

flight X

Inbound flight

i
i
i
i
|
|
[}
|
|
|
|
i
1
z
|

19gy

)

Document handling:

- assigning shipment
to customer

- assigning shipment

P
k'?\

——
=5

Delivery to
customer

o ——

to outbound flight

Fig. 1 Overview of a cargo handling system

Flight

N, 2N

Load unit

Transport
frame

OTTTITTITTTITTTO

Warehouse

[1]

Fig. 2 Cargo items and their relationships

The data base/datacommunication system is IMS/VS (IBM,
1978). The programs are developed with COBOL and TSO-
SPF (IBM, 1977). The automated warehouse control in the
‘Cargo Base West’ is done by a process control system and
is separated from the FAS. However the FAS is in continuous
dialogue with this system.

A principle of the FAS project, which was formulated at
project conception, is the close and continuous co-operation
between the end user and the DP department. This principle
has been incorporated by the following procedures:

1. Common work locations.
2. Mixed task forces.

3. The total project was split into distinct phases. Each phase
uses the results of the preceding phase and develops them
further. In phase 1 ‘Requirement definition’ the objectives

98 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

and the scope of the FAS are specified. In phase 2 ‘Basic
design’ we define each of the FAS functions at a crude level,
and their interactions, and we describe input and ouput
formats and data elements. Data bases are designed and the
hardware configuration is finalised.

Phase 3 ‘Detailed design’ consists of detailing the functions
down to the programming level. Phase 4 comprises pro-
gramming and testing. Before cutover the functions are
integrated into one system and tested as a whole.

When each phase has been completed the results are
inspected by committees. These committees are made up of
end users and DP professionals. At the moment the project
is in phase 4.

4. Test cases are developed and documented by the end user
department which also analyses the test results.
5. The methods and documention tools have been selected for
the project with their user acceptability in mind:
(a) the documentation method for the whole project is
HIPO (Hierarchical Input-Process-Output; IBM, 1974),
its supporting program is HIPO-draw (IBM, 1).
(b) the state networking technique is the development
method in part of the FAS.
This method is the subject of the following sections.

3. The state networking technique
Because of the number of item relationships the FAS can be
considered a complex system. The main items are

(a) transport frame (FM)

(b) load unit (LU)
(c) airwaybill (AWB)
(d) flight (FL)
(e) location (LO)

During the operation of the FAS these items relate to one
another. Within the system the items are represented by data
bases, the item relationships by data base relationships. While
designing the application we soon realised that a particular
function can be specified only if it is known what the other
functions do with respect to item connection and discon-
nection. Since this statement is valid for nearly all functions we
decided to analyse first those activities of each function which
connect or disconnect items. Only after this has been done

© Heyden & Son Ltd, 1981

20z udy 1| uo 1senb Aq ZG0BEE/L6/2/¥2/a10ME/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojuMoq

CARGO ARRIVAL CARGO CONTROL

Reception from

CARGO DEPARTURE

1
I
customer : ; Outbound
ﬁ Recording of ! | flight
l'¢ physical data ! [Entry Exit |
- '

I 7 ' —
| Wlarehouse | termination

TIN= ,

Recordlng of
document data JT —WI_J
Document

Inbound
flight

to customer

handling:

|
|
I j Delivery
I

Delivery to customer

outbound flight

- assigning shipment to

2

Fig. 3 FAS functions

! l
| |
|
: i
1 1
! i
| - assigning shipment |
| |
I |
| :
I
! I
I
f !

would we consider the remaining activities of each function.
The method with which we define the connection and dis-
connection of items is the state networking technique.

The basic elements of this technique are activity and state. A
state expresses the result of an activity, in Fig. 3 for instance,
the statement ‘the physical data of the shipment has been
recorded’ describes a state of the activity ‘recording of physical
data’. The statement ‘the shipment has been stored’ describes a
state of the activity ‘warehouse entry’. The logic of the appli-
cation is such that a shipment assumes the state ‘stored’ only
after the state ‘recorded’ has been reached. The statement ‘the
shipment has been assigned to an outbound flight’ describes a
state of the activity ‘assigning shipment to outbound flight’.

On the one hand a state expresses the result of an activity, on
the other hand a certain state must have been reached before a
certain activity can be executed. This dual relationship between
state and activity is the characteristics of the state networking
technique. We have been applying this technique in the phases
‘basic design’, ‘detailed design’, ‘programming and testing’.
From the experience gained so far we may say that the state
networking technique is beneficial at all levels of detail of an
application.

In the ‘basic design’ phase the state networking technique was
the vehicle for defining the item relationships mentioned above.
Each one of the functions was analysed separately. How we
proceeded in the ‘basic design’ phase we will demonstrate by
means of the function ‘Recording load unit/breakdown’:

When this function is being executed, the identifying numbers
of the items transport frame, load unit and flight are recorded
using the screen layout as shown in Fig. 5. The aim is to set up
the relationships FM v LU, LU U FM, LU U FL, FL u LU
of the items thus recorded (Figs. 6 and 7). It should be noted
that pointers in data bases are not sufficient in our application
to establish a data base relationship, but that additional status
values are required.

In order to establish relationships between items in the data
base these items must not have any relationship to any other
item. This condition has to be checked for each item. If any
relationship between items happen to exist—this may be due to
end user errors or programming bugs—they have to be

© Heyden & Son Ltd, 1981

detached. Fig. 8 is an example of relationships which a single
item, the transport frame no. 12, may have.

Table 1 defines how relationships between data bases are
connected and disconnected for ‘Recording load unit/break-
down’. To simplify the matter we consider only the relationships
of the item transport frame. Under the heading ‘activity’ the
name of the function is specified. Under the heading ‘intention’
the subfunction is pinpointed on which we focus in our
analysis; for instance ‘connect FM U LU’ means that we want
to establish the relationship from FM to LU. In the example of
Fig. 7, the relationship would be established between FM-No.
12 and LU-No. P1G4711LH. While trying to connect these
items we may encounter the following states (see Table 1):

(a) there is a relationship between FM and LO

(b) there is a relationship between FM and LU

(c) there is a relationship between FM and AWB

(d) there is no relationship between FM and any other item.

These states are defined in column 3 of Table 1. In the example
in Fig. 8, the transport frame no. 12 which has just been input
from the screen is still connected to LU-No. UQ60003LH,
to AWB-No. Cl11-1234 and LO-No. 112. Depending on
the state which applies, a specific subactivity has to be executed
which is defined in the right hand column of Table 1. Usually
there are no relationships between items and the new relation-
ship can be established. If, however, old relationships do exist
they have to be disconnected.

For each of the FAS functions which incorporate item
relationships, an analysis was made similar to ‘Recording load
unit/breakdown’. The number of these functions is 35. The
result of this analysis was documented by means of the state
networking technique, as well.

Connecting and disconnecting items is one of the more
difficult tasks of the FAS. The state networking technique has
enabled us to tackle this problem in an early phase of the
project and to understand fully its implications. The results of
the analysis are the basis for the next project phase: the
‘detailed design’ phase.

THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 99

20z udy 1| uo 1senb Aq ZG0BEE/L6/2/¥2/a10ME/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojuMoq

261/A09 = F A S % triiiis iiii: TERMNR: :tz:izs:iiics: EMPF: $::csssc:c::
FCT: ______ SUCHBEGR: _ _ _ __ _ o _____
LETZTE EINGABE HR-NR R
Z1EL HE
ERFASSUNG EINGANGS-/DURCHEINHEITEN SCl: =:: SC2: :::
HR-NR: _____ K: _
LE-NR: __________ K: _
FLUG-NR: ___________
SCl: ___ SC2: ___
GEWICHT: _____ DEST: ___
J1EL: ___ VON: ___
FLGRD:
KONTUF :
BEI 2 CONT LE-NK: __________ K: _
FCT QHS SENDUNGS-LE, OHA AUSGANGS-LE, OHL LEER-LE/HR/HRS/TST/TRC/DDD

Fig. 4 The screen layout for the recording of physical data of a load unit/breakdown

4. The use of the state networking technique during the 11 present an overview of the program ‘Recording load unit/
detailed design phase breakdown’ by means of the graphical state networking
The function ‘Recording load unit/breakdown’ does not of technique. In these figures boxes represent activities and bars
course only consist of the activity ‘connecting and disconnect- represent states. The state which directly precedes an activity
ing relationships of items’ which we presented in Section 3. is meant to trigger this activity. The states which directly
Other subactivities are follow an activity describe the results of this activity.
1. The validation of input data, i.. the attributes of each input The names of the states and activities are such that they are
element such as numeric or a]phabetic are checked. meaningful to the end user. The state ‘message start’ triggcrs

2. The consistency test, i.e. the logical dependency among the the activity ‘data validation’. The result of this activity is either

input elements is checked and the compatibility of the input the state ‘input error’, or ‘input ok”. In the case of input error’,
data with already recorded data is tested. an error message is sent to the user, and the processing of the

. . message is terminated. In the case of ‘input ok’, the consistency
3. The storing of the input data. of the input data is checked. If the state ‘consistency ok’ is
During the ‘detailed design’ phase functions are specified down attained, the activity ‘identifying existing DB-relationships’ is
to a level where programming can start right away. In this triggered. This activity determines the kind of relationships the
phase functions are also grouped into programs. Figs. 9, 10 and items FM and LU, which have just been recorded, currently

100 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 © Heyden & Son Ltd, 1981

20z udy 1| uo 1senb Aq ZG0BEE/L6/2/¥2/aI0ME/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPEojuMOQ

2517403 +~ F A S * sisisee ey TERMNR:D tiiiiiiiis EMPF IR
FcT: QHE.__ SUCREBEGR: __ o _____
LETZTE EINGABE HR-MNF HER
Z1EL :
ERFASSUNG EINGANGS-/CURCREINRELTEN SC1 i SC2 :
HR-NR: ___12 Ks _
LE-NR: PAEST44LH_ K: _
FLUG-NR: LH9992/28 _
SCi: ___ SC2: ___
GEWICKET: _____ DEST: ___
ZIEL: ___ VON: ___
FLGRD: _
KCNTUK: __
BEI 2 CONT LE-NR:® _ _ o ___ K: _
FCT CHS SENCUNGS-LE, OHA AUSGANGS-LE, CHL LEER-LE/RR/RRS/TST/TRC/DCE

Fig. 5 Example for the recording of physical data of a load unit/breakdown

&._P Flight-No: LH9999/28

LU-No: P1G4711LH

Vi —————
.

Fig. 6 Item relationships of recording load unit/breakdown

===
-
FM-No: 12

© Heyden & Son Ltd, 1981

have. The result of this activity is reflected by the states ‘EX
FM u LO’, ‘EX FM u LU’, etc. Contrary to the previous
activities it is possible at this point that a number of states may
hold simultaneously. This fact is expressed by the symbol ‘D’.
If there is a branch directly after an activity, i.e. if an activity is
not followed by the symbol ‘D’, then this represents an
exclusive OR of states: one and only one state may be reached
by this activity. The symbol ‘D’ represents an inclusive OR,
i.e. any number of states can be reached by this activity. The
branch which in Fig. 10 leads to the states ‘EX FM U LO’ and
‘FM U LO disconnected’ respectively, expresses an exclusive
OR. In the case of ‘Recording load unit/breakdown’ each
branch after the symbol ‘D’ is entered. If an existing DB-
relationship has been identified, a state of the kind ‘connected’
such as ‘EX FM u LO’ is set. This state triggers a disconnect-
ing activity such as ‘disconnect FM U LO’, which in turn sets a
state of the kind ‘disconnected’ such as ‘FM u LO dis-
connected’. If no existing DB-relationship has been identified
the activity ‘identifying existing DB-relationship’ directly sets

THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 101

20z udy 1| uo 1senb Aq ZG0BEE/L6/2/¥2/a10ME/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojuMoq

the state of the kind ‘disconnected’ such as ‘FM u LO
disconnected’.

Before the function ‘Recording load unit/breakdown’ pro-
ceeds, all states of the kind ‘disconnected’ must have been
reached. This fact is reflected in the compound state ‘FM U LU
disconnected and FM u LO disconnected and . . ., etc.’. This
state now triggers the activities ‘storing of input data’ and
‘storing of data affected by disconnections’. Fig. 11 shows that
these two activities may be executed in parallel, as they are
independent from one another and are triggered by the same
state.

After both activities have been terminated, i.e. the state ‘data
stored’ has been reached, an ‘ok’ message to the sender of
‘Recording load unit/breakdown’ is transmitted and the final
state of the function has been reached. The state networks in

flight data base

FL-No : LH9999/28
LU-No : P1G4711LH
STATUS : Fl

LU data base

Figs. 9, 10 and 11 enable us to depict the logical dependency
among activities, i.e. the logical flow of a function. This state
network is developed stepwise:

We start with an overview of a function which is successively
detailed using the state networking technique. The refinement
of the function is stopped when the scope of each activity is
sufficiently narrow. It is difficult to establish a general rule
when this is the case. Our experience in the FAS had led us to
believe that an activity with a narrow scope has in general no
more than 30 single steps. (A single step in programming cor-
responds roughly to an imperative statement which may be
constrained by a condition clause.) We call such an activity
‘action’. There are, however, actions in the FAS with more than
100 single steps. Each action was specified using pseudo-code
as the definition method and HIPO-draw as the documentation
tool (see Fig. 12). Hence the complete definition of a function
consists of three parts: the final state network, the specification
of the actions and the input/output formats.

The complete definition of the function ‘Recording load unit/
breakdown’ comprises 42 actions and 80 states. The state net-
work of Figs. 9, 10 and 11 represents ‘Recording load unit/
breakdown* at a rather crude level: There we have only 10
actions and 21 states. The state networking technique can also
be employed within the actions to control the single steps. In

LU-No : P1G4711LH the complete definition of the function ‘Recording load unit/
FL-No : LH9999/28 breakdown’ there are 30 more states of this kind.
FM-No : 12 A comparison between Fig. 10 and Tables 1 and 2 will show
STATUS Il
FM data base
FM-No 12
FM data base AWB LU-No : UQ60003LH+— LU data base
FM-No : 12 data base < AWB-No : Cl1-1234
LU-No : P1G471lLH LO-No :112 —> L0 data base
STATUS . Il STATUS : I2
Fig. 7 Data base relationships after recording load unit/ Fig. 8 Data base relationships which may exist for a single
breakdown transport frame
Message Input error Message end Consistency

error Message end

ERROR ROUTIN

E

start
——>}—{DATA VALIDATION — ERROR ROUTINE j——i
CONSISTENCY CHECK
[.

Input OK

Fig. 9 The state network for recording load unit/breakdown

Consistency OK

EX FMcLO

EX FMvLU

FM.LO disconnected
|

DISCONNECT FMVLCjI

FMvLU disconnected
_

DISCONNECT FMVLUJI

Consistency
OK .
| IDENTIFYING EXISTING .
| DB-RELATIONSHIPS .
EX FM.AWB FMVAWB disconnected
EX LUVFL LUVFL disconnected
EX LUVLB LUVLB disconnected
EX LUvFM LUYFM disconnected
EX LUVAWB LUvAWB disconnected
Fig. 10

102 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

© Heyden & Son Ltd, 1981

20z udy 1| uo 1senb Aq ZG0BEE/L6/2/¥2/a10ME/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojuMoq

Table 1

Activity Intention State Triggered subactivity
RECORDING CONNECT EXFM v LO DISCONNECT FM v LO, DISCONNECT LO(FM) u FM
LOAD UNIT/ FM u LU —IF FM(LO) = LO, SET STATUS (FM) = 14
BREAKDOWN AND DELETE FM IN LO
—IF FM(LO) # FM, SET STATUS (FM) = 14
EXFM u LU DISCONNECT FM u LU, DISCONNECT LU(FM) u FM

—IF STATUS (FM) = 11 AND FM(SEG LU(FM)) = FM,
SET STATUS (FM) = 14 AND STATUS (SEG LU(FM)) = 14
—IF STATUS (FM) = 12 AND FM(SEG LU(FM)) = FM,

SET STATUS (FM) = 14 AND STATUS (SEG LU(FM))

14

AND ERROR MESSAGE

—IF STATUS (FM) = 11 AND FM(SEG LU(FM)) # FM,
SET STATUS (FM) = 14

—IF STATUS (FM) = 12 AND FM(SEG LU(FM)) # FM,
SET STATUS (FM) = I4 AND ERROR MESSAGE

EX FM u AWB DISCONNECT FM u AWB, DISCONNECT AWB(FM) u FM

—IF STATUS (FM) = 11 AND THERE IS ANY
AWB-LU LOCATION DATA WITH
FM(AWB-LU LOCATION DATA) = FM, SET STATUS FM = 14
AND STATUS (AWB-LU LOCATION DATA) = 14

—IF STATUS (FM) = 12 AND THERE IS ANY AWB-LU
LOCATION DATA WITH FM(AWB-LU LOCATION DATA)
= FM, AS ABOVE AND ERROR MESSAGE

—IF STATUS (FM) = 11 AND THERE IS ANY AWB-LU
LOCATION DATA WITH FM(AWB-LU LOCATION DATA)
FM, SET STATUS (FM) = 14

—IF STATUS (FM) = 12 AND THERE IS NO AWB-LU
LOCATION DATA WITH FM(AWB-LU LOCATION DATA) =
FM, SET STATUS (FM) = 14 AND ERROR MESSAGE

THERE ARE ESTABLISH RELATIONSHIPS OF FM

NO —STORE LU-NO. IN FM SEGMENT AND SET STATUS = 11
RELATIONSHIPS

BETWEEN

ITEMS

that the result of the ‘basic design’ phase, namely the relation
between states and subactivities triggered by these states, is
directly transferred into the ‘detailed design’ phase. Hence the
state networking technique allows us to investigate and to
analyse critical parts of the application early in the development
process and to consider the remaining subfunctions later during
the ‘detailed design’ phase.

5. The use of the state networking technique during the
programming and testing phase

The results of the ‘detailed design’ phase, namely the final state
network, the specification of the actions and the input/output
formats are the basis for the programming and testing of the
function ‘Recording load unit/breakdown’. This program
consists of a control section and a number of subroutines.
The control section (Table 2) has been derived from the final
state network (Figs. 9, 10 and 11) by directly translating a
graphical representation into a programming language syntax:
In Table 2 the left column corresponds to the states and the
right column to the actions triggered by these states. The actions
become subroutines in the program. Hence the structure of the
program corresponds exactly to the final state network.

The development of the test case is the task of the end users.
It starts right after the end of the ‘detailed design’ phase and
uses the same documentation as programming. The test
strategy is set up on the grounds of the final state network.

It must be ensured that the test cases cover all branches of the
state network. The test strategy generates a basic set of test

© Heyden & Son Ltd, 1981

FMULU disconnected
and

FM.LO disconnected
and

FM-AWB disconnected Data
and stored

STORING OF
INPUT DATA

STORING OF DATA
+—— AFFECTED BY
DISCONNECTIONS

end

OK MESSAGE
TO SENDER

and

LUvAWB disconnected
and

LU.FM disconnected

Fig. 11

cases. Each test case runs through certain actions of the state
network. It has then to be varied according to the single steps
of the actions in order to cover all existing branches. The test
results are also analysed by the end users.

The approach for programming is top-down: a functionally
related part of the control section is programmed, together
with the subroutines called in this part of the control section.
Then this program portion is tested before programming
proceeds. If the program abnormally ends during testing, the
history of the test run is captured by means of the states which
have been reached. This significantly helps the programmer
debug his program. Thus the state networking techniques
allows us to program and test in a modular fashion.

THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 103

Message

20z udy 1| uo 1senb Aq ZG0BEE/L6/2/¥2/a10ME/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojuMoq

FART VN]

PRUCESS

ouTPUT

Lo P, C
tFLUGL
CLs=Lttn))
+li-Lt(n))
IFLuL—

I LEDATEN

VERGC BE CALINR

L--——-----..

L

@ o= =g
I I)

NALHRI ChTENABLRULH

“ e G W G W e T E e e W -—'é'- - o w -

GuTU EXIT

It STATUSCULE =

ULLLETE

It N = 1
1E N = 2,

EXIT.

FIGURE 4.4

B w e e S S e I ek e eE W O Gk G G GG e e e E e "o

B e m e e e G e me e e e W S oae s R e e W

|
|
|
|
|

Fig. 12 The definition of an action

LUESEN=LE-FLUG SECTION

LE=EIN-FLUGREYIN) => FLUGKEY-GESUCHT

LEt=EIN-LMIDENTIN) => FLUG-LL=GESUCHT

PeRFUKM FLUG-LE -UATEN-BERELITSTELLEN

I+t NACHRICATENABBRUCH,

"y,
SETZE FLUG-LE-AUS—INDIKATUKIYF) =

LUESCHE LE-AUS—HLUGKLEY(N)

StTik Lel-LELUWEST-FLUG

ScT2E LEZ2-GELWLEST-FLUG

LELI=GELOEST-FLUG

LEZ-GELOEST-FLUG

6. Assessment

As we have seen, the basic elements of the state networking
technique for the specification of functions are state and
activity. This technique can be employed in each phase of the
application development process. By using graphical aids the
application becomes easier to understand.

The state networking technique enables us to develop the
application stepwise: we may start at a crude level and advance
to more and more detailed design levels. The end users are able
to participate in the project without any special DP knowledge.
They may, at any stage of the project, verify the functional
correctness of the application. As we employ terms which are
familiar to the user to name states and activities, all participants
of the project may use the same documentation. Hence the
communication between end users and DP professionals will
be improved.

Critical parts of the application can be analysed separately in
an early phase of the project. Thus we may avoid costly redesign
of the application at a later phase. The modularity of the
application is increased, the benefits of which are particularly
felt in the programming and testing phase. Test cases can be
developed systematically.

To summarise we may say that the state networking technique

104 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

(4) User (5)
BS environment
(6)
. (1) (1)
AC Status file C/A handler c/A file
(2) (3)
(6)
(4) l %) Function)

User data
DPS and

message file

Function
library

Fig. 13 The AC as an interface between the business system and
DPS

Processor

is an application development method which is beneficial to
both the end user and DP professionals.

7. The AC as a software system
The state networking technique is the methodology proposed

© Heyden & Son Ltd, 1981

20z udy 1| uo 1senb Aq ZG0BEE/L6/2/¥2/a10ME/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojuMoq

Table 2 Control section of the . . .

PERFORM INITIATION

IF MESSAGE START
PERFORM DATA
VALIDATION

IF INPUT ERROR
PERFORM ERROR
ROUTINE

IF INPUT OK
PERFORM CONSISTENCY
CHECK

IF CONSISTENCY ERROR
PERFORM ERROR
ROUTINE

IF CONSISTENCY OK
PERFORM IDENTIFYING
EXISTING DB
RELATIONSHIPS

IF EX FM u LO
PERFORM DISCONNECT
FM u LO

IF EXFM u LU
PERFORM DISCONNECT

FM U LU
IF FM v LU DISCONNECTED
AND
FM U LO DISCONNECTED
AND
FM u AWB DISCONNECTED
AND
LU UFL DISCONNECTED
AND
LU u LB DISCONNECTED
AND
LU UFM DISCONNECTED
AND
LU u AWB DISCONNECTED
AND PERFORM STORING OF
INPUT DATA

PERFORM STORING OF
DATA AFFECTED BY
DISCONNECTIONS

in the AC concept to develop applications. In the FAS project
we employed this methodology to develop programs and to
design application functions which are to be performed by the
end users, such as user procedures to handle items, to input data,
to correct errors. As a matter of fact the AC concept advocates
the integration of DP and user activities into one system and
the construction of this system by means of one methodology:
the state networking technique. The set of the state networks
would make up the so-called application model and would be
contained in the Condition/Action File in the shape of the state
network tables. The control section of the program ‘Recording
load unit/breakdown’ of Table 2 may be regarded as a kind of
state network table: In the left column we find states (including
Boolean expressions of states) to which actions are linked in
the right column. An entry in a state network table is made up
of a state and actions linked to it, representing a trigger
condition and the activities triggered by the condition.

Hence we may view the application model as consisting of
control sections such as in Table 2 for programs as well as for
user procedures. We extract the control structure from the

© Heyden & Son Ltd, 1981

application and have it reside in a special file, the Condition/
Action File.

The Status File, on the other hand, would contain the
instances of programs and user procedures in the form of data
and states which occur in each instance. Thus the Status File is
complementary to the Condition/Action File insofar as the
structure of application activities are described in the latter one,
while their occurrences, i.e. their data and states reached so far,
are kept in the former one.

A third component, the Condition/Action Handler, ‘arbitrates’
between the Condition/Action File and the Status File by
accessing the Status File to determine how far things have
proceeded in the operation of the application and by comparing
it with the application model of the Condition/Action File to
find out what has to happen next in the application. The pattern
by which the Condition/Action Handler accesses Condition/
Action File and Status File is defined in the polling list of the
Condition/Action Handler. This polling list links time con-
ditions to activities of the Condition/Action Handler.

The Condition/Action File, the Status File and the Condition/
Action Handler make up the AC as a software system, (see
Fig. 13). Fig. 13 depicts three levels of mapping in a computer
supported business system (BS): The highest level is the BS
level which represents the organisation where the application is
to run, its objectives, policies, procedures. The application is
placed on the intermediate level, and the lowest level is taken
up by the DPS. The square boxes in Fig. 13 represent a device
or human operator with processing capability, the boxes with
round edges represent files. The Condition/Action Handler
prompted by its polling list polls the state network tables in the
Condition/Action File and the pertinent data and states in the
Status File to identify activities which are due and resources to
carry them out (1). There are two categories of resources: the
DPS and the end user. An end user may be a person, a depart-
ment or a machine in the user environment. The Condition/
Action Handler marks instances of actions for execution by
chaining the pertinent data and states to action queues in the
Status File (2). To confine all initiative for performing activities
to the application model and the Condition/Action Handler
would be unacceptable to the organisation and furthermore
completely unrealistic. An end user or the DPS express their
wish for activities to be executed by means of messages which
flow between them (6).

The Condition/Action Handler is capable of intercepting
these messages and inserts them to the Status File (3), similar
to the way it processed data and states. These data and states as
well as the messages receive a priority number when they are
linked to the action queues. The priority number reflects the
urgency of the activity to be attended to by the resource and
specifies how quickly the resource should react. Activities
which are due for execution and messages are made available
to the user and DPS respectively (4). Being made available to
the user or DPS means that both resources may inspect queues
and entries in the queues which are assigned to them. They may
do this usually at their own discretion. However, the AC may
also cater for a prompting facility to notify a resource that
action is needed. The sequence of actions to be executed is left
to the resources.

If a user wishes to learn what his task is all about he gets the
desired information from the Condition/Action File (5). In
doing so a user employs the AC as a documentation facility.
DP programs which constitute DPS actions can be inter-
rogated in the function dictionary (7) and called from the
function library at run time (8). Both function dictionary and
function library are part of the DPS. The function dictionary
specifies the composition of each DP action, such as the DP
program modules and data involved, while the function library
contains the object code of these modules.

THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981 105

20z udy 1| uo 1senb Aq ZG0BEE/L6/2/¥2/a10ME/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojuMoq

8. Some benefits of the AC as a software system
What would be the benefits of having the AC as a software
system ?

1. There is an application model which is the reference point
for both user and the DPS and which remains in existence
during the whole of the life cycle of the application. User and
DP activities are actually based on it. It is recommended to
include in the application model also procedures of the BS
which have no bearing on the DPS. Thus the application
model may become a model of the whole of the BS.

2. The logical simplicity of an application and hence its
comprehension by a user and systems analyst are greatly
enhanced by the AC advocating (a) a separation of the
general case of activities in the Condition/Action File from
the individual case, i.e. the occurrence of activities, mes-
sages, data in the Status File; (b) the isolation of the time
aspect of an application in the Condition/Action Handler.
This component contains a ‘timetable’ of the application in
the shape of its polling facility; (c) a separation of triggering
functions from processing functions. The triggering
functions are the domain of the Condition/Action Handler,
while the processing functions are the domains of the user
or the DPS.

3. Through the AC we would be able to simulate the behaviour
of the DPS and the application as a whole, while we im-
plement them, and to predict their performance under various
load conditions. The state networks in the Condition/Action

References

File represent a model of the application on which simula-
tion can be directly performed. To this end actions in the
state networks are assigned resource consumption values.
The frequency of activities and messages can be derived
from the usage pattern of the application. The Condition/
Action Handler is the driving device in the simulation runs,
which can take place as the development work progresses.
Thus the simulation capability of the AC would ensure at
various stages of the development process that the applica-
tion design is not only functionally sound, but also meets the
performance requirements as laid down by the user.

4. We may visualise any BS as consisting of a subsystem of
physical activities, such as the production of goods or the
provision of services, and of a control subsystem. The
control subsystem comprises the decision procedures, data
files and the information flow between resources. Tuning
this control system means finding the ‘optimum’ time pattern
for making decisions and then constantly adjusting it to the
changing requirements of the BS. The AC has a range of
tools for setting and adjusting the control cycle in a BS.
The main tool is the polling list of the Condition/Action
Hander, as it specifies, by linking Condition/Action Handler
processes to time conditions, how quickly activities are
moved on in the user environment and the DPS.

Hence the AC as a software system would perform for the
application what a DBMS performs for data and an operating
system for computer resources: It would control the application
more efficiently than systems have hitherto done.

STECHER, P. (1977). Proposal for an interface system between the business and data processing systems, The Computer Journal, Vol. 20

No. 3, pp. 194-201.

STECHER, P. (1978). On the Interface Between Business Systems and Data Processing Systems, Ph.D. Thesis, University of London.

IBM (1). HIPO-Draw, Program-no. 5796-BFF.
IBM (1974).

HIPO, A Design Aid and Documentation Technique, GC20-1851.

IBM (1977). TSO-3270 Display Support and Structured Programming Facility (SPF), Version 2, General Information Manual, GH20-

1974.
IBM (1978).

Information Management System/VS, System/Application Design Guide, SH20-9025.

Book reviews

Logic for Problem Solving, by Robert Kowalski, 1979; 287 pages.
(The Computer Science Library/North-Holland, $18.95, $9.95
paper)

One of the interesting attributes of artificial intelligence is that it has
stimulated the creation of novel formalisms that are both funda-
mental and applicable to a wider area. Robert Kowalski’s work in the
field is a good example of this, and for several years he has seen
formalism in logic as a fundamental way of expressing notions in
problem solving. The central theme of the book is a form of ‘clausal’
logic which is related to top-down reasoning rather than the more
conventional inferential schemes as found in classical texts such as
Quine’s.

The introductory chapter centres around the way that one expresses
statements in clausal logic, while Chapter 2 begins to relate clausal
forms to traditional AI topics such as data base searches and
semantic networks. Chapter 3 discusses the parsing problem in the
framework of clausal logic, while Chapter 4 arrives at tree searching
in problem solving applications. This appears to be the intellectual
epicentre of the book, which then goes on to consider computational
procedures and plan formation, heading resolutely towards prov-
ability and ending with a brief consideration of the dynamics of
informational systems which ‘. . . attempts to combine the traditional
rdle which logic plays in epistemology and the philosophy of science
with its new réle in computing’.

For the browser, the book may be somewhat heavy going, while for
the teacher of AI or Computer Science Theory it is an essential
addition to the bookshelf.

I. ALEKSANDER (Uxbridge)

106 THE COMPUTER JOURNAL, VOL. 24, NO. 2, 1981

Simulation: Principles and Methods, by W. Graybeal and U. W.
Pooch, 1980; 249 pages. (Prentice-Hall, £12-95)

Simulation is a technique which involves the application of an
assortment of mathematical tools to the solution of a problem. It is
beset with pitfalls for the inexperienced and unwary. Graybeal and
Pooch have described the assortment of mathematical techniques
and the pitfalls, together with various approaches and simulation
languages in one single volume. In consequence, the treatment of any
topic can at best be described as superficial. However, there are
virtues in this approach. It illustrates a methodical approach to
simulation in outline and, provided the simulator is already acquain-
ted with various branches of mathematics, or is prepared to work
hard at becoming so acquainted, could act as a guide and catalyst. It
must be emphasised that it is not a practical how-to-do-it book. In
particular the last chapter raises the problems to be encountered
after a simulation model is completed and validated, namely the
design of experiments using the model. This is a much neglected area
in the world of simulation.

The presentation of material is clear, with mathematical results in
general being assumed. Concepts are both explained and described
mathematically and there are a number of simple arithmetic exam-
ples illustrating these and other ideas.

This book is designed to support a graduate course (in America) for
potential users, which explains the inclusion of three pages on
analogue computing (completeness?) but not the absence of
activity diagrams.

R. E. SMALL (London)

© Heyden & Son Ltd, 1981

20z udy 1| uo 1senb Aq ZG0BEE/L6/2/¥2/a10ME/UlWOd/ W00 dno dlWspeoe)/:SAjY Wolj paPeojuMoq

