S. M. Deen, D. Nikodem and A. Vashishta

Department of Computing Science, University of Aberdeen, King's College, Old Aberdeen,
Aberdeen AB9 U2B, UK

The design of a canonical database system (PRECI)

PRECI is based on a canonical data model potentially capable of supporting user views of other
models—notably CODASYL and relational ones—through local schemas and appropriate data
manipulation languages. The canonical global schema consists of normalised relations and is
backed up by a storage schema and a data dictionary. The model is being implemented at
Aberdeen University as a generalised database system, to be used primarily as a tool for research
in databases, with a modular design approach so that future changes can be incorporated easily.
The CODASYL and relational subschema facilities are currently being developed; a relational
algebra to be used for DM commands from FORTRAN programs has been provided.

The storage and access strategy in PRECI is based on internal record identifiers (or surrogates)
created largely in entity-identifier order. Entity records can be accessed very quickly—both randomly
and sequentially—by surrogates or entity identifiers, partly with the help of a novel indexing
technique, called hash tree, which is based on data compression and hashing.

The model provides maximal data independence through load-time and run-time binding. The
local user may define access paths independently of the storage schema. Data items, record types
and set types can be added to or deleted from the global schema; the storage schema can be re-
structured and data pages and indexes can be easily reorganised. Changes in one schema do not
require recompilations of the unaffected schemas. The DBA has complete control over the storage
and indexing strategy which he can manipulate to improve performance. Five levels of optimisation
are provided to enhance execution efficiency and minimise memory usage. Certain integrity
checks are also carried out during run-time.

(Received October 1979)

1. Introduction

It is nearly a decade since database technology began in Application || Application || Application || Application
earnest, and a number of models of widely different capabilities programs programs programs programs
and user facilities fhavc now established themselves as the] | [I
major systems, the foremost among them are the CODASYL -

and relational models, the others being IMS, ADABAS, s%t?gglla Sgﬁ%cl%la S(I:‘l?ecglla S(I;}?g;lla
SYSTEM 2000 and TOTAL. The presence of so many (relational) ||(CODASYL)|[(CODASYL)|| (ADABAS)
different models invariably creates a serious problem of

portability, compatibility and intermodel communication;

therefore, it seems that a generalised model which can support

the user view of all other models as local interfaces would be

a useful facility. This would solve not only the aforementioned

problem, but also enable the user, for instance a programmer, %“::vrvy GLOBAL SCHEMA ; %}:;I;y
to retain his skills and use the system through an appropriate

local interface as his familiar old model without requiring any

major reorientation and without needing any substantial Query Query
changes in his old programs. Above all, such a generalised user user
model will provide the combined user-facilities of the local Storage schema

models it supports, and will thus offer greater flexibility and

convenience to the users, which in a distributed environment Physical

will be particularly desirable. There is already a growing stgrage

awareness among many experts of the need for a common
framework providing such interfaces, at least for the
CODASYL and relational models. These considerations
motivated us to study the feasibility of such a generalised
data model (Deen, 1977b) and finally prompted us to embark
on the design of PRECI (prototype of a relational canonical
data model with local interfaces—Deen, 1980).

PRECI is a generalised database system based on a canonical
data model potentially capable of user views of all major
models through appropriate local schemas (subschemas) and
host languages (Fig. 1); but in the version under development
only the CODASYL and relational facilities without any
integrity and privacy constraints, are being implemented. The
global schema is described in a canonical form using normal-
isedf relations_(Fagin, 1977), and is backed by a storage schema
and a data dictionary system. A stand-alone query-language

Fig. 1 Architecture of PRECI (there can be any number of local
schemas for every local model, each local schema catering
for an arbitrary number of application programs)

facility is also contemplated. The design of PRECI has been
partly dictated by the need for a generalised system, which can
also be used as a test vehicle for research in the various aspects
of databases including distributed databases. The structure of
PRECI is modular and flexible with an open-ended approach
so that changes can be incorporated easily.

Run-time efficiency, minimal memory usage, optimisation
facility, data independence and ease in restructuring and
reorganisation are the major features of the model. The basic

CCC-0010-4620/81/0024-0200 $05.00

200 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

© Heyden & Son Ltd, 1981

20z udy 01 U0 188nB Aq ZZEEEE/00Z/E/PZ/310M4e/|u00/W0d"dNo" oIS PEDE//:SARY W) PAPEO|UMOQ

design phase is now complete. In this paper PRECI and the
major features of its design will be described.

In Section 2 the canonical data model used in PRECI is
outlined, followed by a discussion in Section 3 on local
interfaces (particularly on the CODASYL and relational
subschema) and by the basic PRECI commands and its
relational algebra in Section 4. The next two sections are
devoted to the storage system of PRECI, with Section 5 on
storage structure and Section 6 on storage usage and efficiency.
Associated issues such as data independence and ease of
restructuring and reorganisation are covered in Section 7, and
optimisation facilities in Section 8. The run-time control
system is presented in Section 9, with a conclusion in Section
10.

2. Canonical data model

We define a canonical schema as the description of the inherent
structure and usage constraints of data in a standardised
form independent of its local interfaces. Local interfaces are
the user views of other models supported as local schemas
(subschemas).

Such a canonical schema, also referred to as the global
schema in this paper, could describe the following objects:

entity records
entity relationships
usage constraints (privacy and integrity)

We intend to implement usage constraints in a later version,
and hence these are not described here. In PRECI the content
of the global schema is visible to the other schemas but the
converse is not true since storage and local schemas are
derived from the global schema. The storage schema provides
specifications for:

storage descriptions of data
storage strategy (space allocation, placement and overflows)
access paths (keys, orderings and indexes)

To ensure data independence the entries in the storage and
local schemas are kept invisible from each other. This allows
storage (schema) entries to be changed without affecting the
local views. In general, a local schema describes entity records
and relationships, additional usage constraints (i.e. in addition
to those provided in the global schema) and access paths. If
these local access paths are supported by corresponding
storage entries, access is faster. It is the responsibility of the
database administrator (DBA) to examine usage statistics
and to restructure the storage schema periodically.

As indicated earlier, normalised relations were used to repre-
sent entity records. This choice was mainly dictated by the
brevity, elegance and convenience of the relational representa-
tion. Many other authors also seem to prefer a relational
approach in data definition [see, among others, the papers by
Adiba et al. and Benci et al. in Nijssen (1976); and Biller and
Neuhold, and Schmid in Nijssen (1977)].

In PRECI each entity record of a relation is uniquely
identified by an entity identifier (EID) made up of one or more
attributes of the relation and concatenated in a preassigned
sequence. An entity identifier is assumed to represent the
entity and unique identifier of the entity record. The entity
identifiers represent an essential characteristic of entity
records, which should be declared in the global schema so that
they are visible—through the local schemas—to the users who
need them for the identification of records. Since by definition,
an entity record is a collection of values describing the proper-
ties of an entity, we argue that the entity identifiers should in
general be the primary means of access, and as such we
require them to be declared as the principal access keys in the
storage schema—referred to in PRECI as primary keys. Thus
the EIDs specify both the inherent data characteristic (declared

© Heyden & Son Ltd, 1981

in the global schema) and the primary key (declared in the
storage schema). This primary key determines the stored order
of the entity records; and therefore the efficiency of the model
crucially depends on the correct choice of entity identifiers,
which must serve not only as unique identifiers but also as the
principal key for direct and sequential access. Internally each
entity identifier is represented by a unique internal number
called a surrogate [see the paper by Hall er al. in Nijssen
(1976)] which is not visible to the user and cannot be changed
except by deleting the record and then reintroducing it as a
new record.

PRECI allows two special attributes, called time attributes
which can be declared in any relation. The creation-time
attribute (CRE), if specified, will automatically record the date
and time of insertion of each new tuple, which cannot be
altered without deleting the tuple. The update-time attribute
(UPD) notes the date and time of the last amendment of each
tuple, and its value can be changed only by rewriting the tuple.
The formats are system defined (SYS). These time attributes
can be used for integrity and concurrency controls and also
as keys in the storage or local schemas for time dependent
ordering.

(a)
| DEPARTMENT | [DEPARTMENT | [TEACHER | [TEACHER | [TEACHER |

| STAFF

!

| TEACHER |[STUDENT |[STUDENT][STUDENT][TEACHER]

][crowp || reGeNT | [aDbvisor] [HEAD]

(b)

|DEPARTMENT—{ STAFF |—{TEACHER| [HEAD |
|_crowp | [aDvisoR] [REGENT |

[STUDENT B

Fig. 2 (a) Set types, and (b) relationships between set types (boxes
with double vertical lines indicate set types)

1o NAME IYBE S12E QWNER

SCH SCHEMA=-X

REL DEPARTMENT

EID DNO CHAR S
ATT DNAME CHAR 20

REL TEACHER

EID STAFF SET DEPARTMENT
EID TNO INTE S
ATT TNAME CHAR 30
ATT ADDRESS CHAR 50
ATT HEAD SET

TIiM T=-AMEND uPD SYS

TEACHER

REL STUDENT

EID SNO INTE &

ATT SNAME CHAR 20

ATT CROWD SET DEPARTMENT
ATT REGENT SET TEACHER
ATT ADVISOR SET TEACHER
ATT YEAR INTE 1

ATT AGE INTE 4

TIM S=INS CRE SYS

TIm S=AMEND uPD SYS

Fig. 3 A canonical schema (sizes given here refer to the logical
sizes only, the physical sizes are declared in the storage
schema)

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 201

20z udy 01 U0 188nB Aq ZZEEEE/00Z/E/PZ/310M4e/|u00/W0d"dNo" oIS PEDE//:SARY W) PAPEO|UMOQ

-As discussed in Deen (1980), 1:N relationships are represented
as set types (basically a CODASYL term), essentially using the
foreign key concept of the relational model. Consider for
example the relationship among three entity record types
TEACHER, STUDENT and DEPARTMENT represented
by five set types STAFF, HEAD, CROWD, REGENT and
ADVISOR as shown in Fig. 2. In some universities each
student is assigned to two teachers, a regent and an advisor, the
regent acting as the academic guardian in all matters except
advice on courses which is given by the advisor. Teachers and
students belong to departments, and it is assumed that, like a
teacher, a student also belongs to only one department (the
department of his/her honours subject) which is not necessarily
the department of his/her regent or adviser. The teachers are
also related to the head of the department who is another
teacher. These five set types are represented for PRECI in
Fig. 3.

In our schema representation, ser names are replaced by set
attribute names, each set attribute containing the entity
identifier of the owner. Assuming that TNOs are unique only
within departments, the EID of relation TEACHER is
(STAFF) (TNO), that is (DNO) (TNO), and hence teachers
are the automatic fixed members (in the CODASYL term) of
the set type STAFF which Kay (1975) describes as a ‘dependent’
set type.

In relation TEACHER the identity of two separate attributes,
STAFF and TNO making the EID is maintained. This is not
so in set attributes REGENT and ADVISOR, each of which
refers to the full EID of teachers as a single concatenated
attribute constructed from DNO and TNO. This prevents the
student from automatically becoming a member of his/her
regent’s or advisor’s departments in addition to his/her own
and thus avoids the confusion which would otherwise ensue.
To represent M:N relationships in PRECI, one must use the
link record approach [see Chapter 3 of Deen (1977a)]. Note
that an update-time attribute has been declared in relation
TEACHER; and both time attributes in relation STUDENT.

3. Interfaces

The canonical schema described above appears to be capable
of supporting the user views of most models as local interfaces.
We have studied CODASYL, relational and ADABAS
models (Deen, 1980). In particular the feasibility of the
CODASYL model was investigated with respect to the repre-
sentation of (@) records and sets (b) set membership class
() set selection criteria (d) record keys and search keys (e) set
order criteria and keys; and (f) subschema entries.

The study shows that PRECI is not only capable of providing
and sustaining a CODASYL subschema, it would also help
remove inconsistencies by imposing certain constraints. The
model gives greater data independence by giving the user
freedom to define any key, set order criteria or set selection
criteria in the local schema irrespective of the specifications
in the storage schema. Time attributes in the global schema can
be used to define the set order FIRST or LAST of the
CODASYL model. PRECI interprets set membership criteria
essentially as integrity constraints. We have also reached a
positive conclusion for the ADABAS interface. Since the
canonical schema is defined in terms of relations, the relational
interface is naturally straightforward, except that PRECI
does not allow the relational user to violate usage constraints
such as the deletion of an owner record in the presence of
member records. We describe below briefly the CODASYL and
relational interfaces.

CODASYL interface
Most CODASYL entries (CODASYL, 1978) are unaffected
by our model, except for minor changes to the alias section

202 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

MAPPING DIVISION,
ALIAS SECTION.
DN CROWD BECOMES POP.

SN CROWD BECOMES MOS.
DN STAFF JECOMES DFPT.

STRUCTURE DIVISION.

SET SECTION.

SD STAFF
SET SELECTION THRU DATA-3ASE-KEY.

SO REGENT
SET SELECTION THRU CURRENT OF SET,

SD MO3
SET SELECTION THRU DNO VALUE 0OF POP.

RECORD SECTION.

21 STUDENT.
02 SNO PIC 9(4) COMP,
02 PoOP PIC X(S).
02 SNAHME PIC Xx(20).

01 TEACHER.
02 DEPT PIC Xx(S5).
02 TNO PIC 9(5).

01 DEPARTMENT.,

02 ONO PIC X(S5).
02 DNAME PIC X(20).

Fig. 4 A CODASYL subschema (title division and realm secfion
are not shown)

9] NAME IYeE SI2E HBEL ALIAS

REL TEACHER TCR

PKEY bNO FKEY
PKEY TNO INTE S
ATT TNAME CHAR 30

DEPARTMENT

REL STUDENT STOD

PKEY SNO INTE 6
ATT SNAME CHAR 30
ATT REGENT FKEY
ATT YEAR INTE 1
ATT ADVISOR FKEY
ATT AGE INTE 2

TEACHER RGT

TEACHER ADV

Fig. 5 A section of a relational subschema

and set selection criteria. To avoid confusion between a set
name and the possible use of the same set name as a data item
name—and also to improve clarity—we have introduced
three new entries in the alias section, DN for data item name,
SN for set name and RN for record name. Note that the system
does not need these new entries to distinguish between a set
name and data item name, but they are helpful to the user. A
sample subschema is presented in Fig. 4. The set selection
clauses used there are drawn basically from the provision of
the CODASYL subschema facility (with reduced verbosity);
but the database key (that is surrogate of the owner) option
which we have retained as a useful facility is no longer available
in the CODASYL model.

PRECI supports all the variations permitted in the CODASYL
model between schema and subschema except that each sub-
schema record is required to contain the EID of the global
record. In addition, the application programmer is free to
define any record key for record selection format 1 and 2 and
set order criteria for format 4 as necessary (the CODASYL
model permits only search keys for format 7 to be so defined
—Deen, 1980). However, the present version of PRECI does
not allow record types with repeating groups or multi-
membered set types in the CODASYL subschema.

Relational interface
The relational subschema is a logical subset of the canonical

© Heyden & Son Ltd, 1981

20z udy 01 U0 188nB Aq ZZEEEE/00Z/E/PZ/310M4e/|u00/W0d"dNo" oIS PEDE//:SARY W) PAPEO|UMOQ

schema with the following permitted variations:
(a) format of an attribute can be different and attributes can
be presented in a different order;

(b) a local relation need not have all the attributes of the
global relation, but the EID must be included in the local
schema;

(c) the user may declare only those relations that are needed;

(d) attributes and relations can be renamed (alias column);

(e) additional usage constraints can be imposed (but not yet
specified).

A sample relational schema is given in Fig. 5.

4. Languages

PRECI supports CODASYL DM commands and a relational
algebra for FORTRAN programs. Here, only the relational
algebra is described (Szymanski, 1978); the operations sup-
ported in order of decreasing precedence are given in Table 1.

Table 1

Conditions for selection
Comparison operators = <> < > £ 2
Boolean operator NOT

Boolean operator OR

Boolean operator AND

selection

division

join

projection
intersection

union and difference

- ..

+ and —

Commands at the same level of precedence are evaluated from left
to right unless interrupted by brackets.

The particular precedence sequence in Table 1 encourages the
formulation of relational expressions in an optimal manner in
terms of execution efficiency. The syntax chosen yields compact
expressions without unnecessary brackets and permits queries
to be formulated either as a series of simple expressions (for
beginners) or as a single complex expression (for the more
experienced) as can be seen from the examples given below. In
these examples domains are identified by attribute names. In
the equi-join operation the common domain (possibly com-
posite) is enclosed within brackets e.g.

R3 := RI(Al) * (BI)R2
R4 := R1(A1,A2,A3) * (B1,B2)R2

In the first case, the equi-join of R1 and R2—with common
domains A1 and BI respectively—is to be evaluated, the result
being stored in R3. In the second case the common domain is
the concatenation of three domains Al, A2 and A3 for Rl
and of two domains Bl and B2 for R2. In division, the dividend
relation must be effectively binary, and the divisor relation
unary, through concatenations if necessary; the uncommon
and common domains being separated by | in the dividend
relation, e.g.

R3 := R1(A1|A2) / (BI)R2

R4 := R1(A1,A2|A6,A7,A8) / (B5,B2)R2

Any other domains of relations R1 and R2 will be ignored in
the evaluation of the division. Attribute names and relation
names can be redefined; and redefinition can be used to con-
catenate, e.g.

R(A1)

A
B R(A1,A2)

© Heyden & Son Ltd, 1981

A is an alternative name for attribute Al, and B for the con-
catenated attribute (A1)(A2) of relation R. The original
names Al and A2 can also be used along with A and B. In
the examples given below it is assumed that a relation SCR with
attributes course number (CNM), student number (SNM) and
examination marks (MK) also exists in the subschema of
Fig. 5.

(1) Extract the names of the first year students older than 20
SNAMEZ£STD : YEAR = | AND AGE > 20
(the £ symbol can be read as of or from and the :

where or such that.)
(2) Find the name of Bob’s regent
PK == TCR(DNO,TNO)
RG := RGT£STD : SNAME = “BOB”

symbol as

TNAME£LTCR : PK = RG

Alternatively, in a single step

TNAMEELTCR : (DNO,TNO) = RGT£STD : SNAME=
“BOB”

(where RGT£STD : SNAME=“BOB” is a condition which
includes another condition SNAME =*“BOB”)

(3) Find the names of all students who took all the other
courses
ALLIST := SCR(SNM|CNM) / (CNM)SCR
SNAME£STD(SNO) * (SNM)ALLIST

Alternatively

SNAME£STD(SNO) * (SNM)SCR(SNM|CNM) /

(CNM) SCR
(4) Find the names and marks of all first year students who
scored more than 60 in course Cl

(SNAME,MK) £ STD(SNO) * (SNM)SCR:CNM = “C1”
AND MK > 60
(The selection on SCR will be carried out before the join is
evaluated.)

Other commands
Other important commands available in the relational interface
are:

HOLDS i to hold the surrogate of a selected tuple in
position 7 in the surrogate buffer

RELE { to free position i

GETS i to get a tuple directly by surrogate (retained
in position i by a HOLDS command)

GET{F/N/P} to get the first, next or prior tuple in surrogate
order

REPL to store (replace) an amended tuple
(Note that a primary key cannot be replaced)

DELE to delete a tuple

INSE to insert a new tuple

OPEN rel. to open a named relation

CLOSE rel. to close a named relation

Commands for accessing records sequentially in primary and
other key orders will be implemented in the future. Note that
surrogates are not visible to users, but can be used in the same
run-unit for direct access if retained earlier by a HOLDS
command. Integrity commands such as CHECKPOINT,
ROLLBACK etc. are also supported.

5. Storage structure

As indicated earlier the storage schema basically contains the
specifications for data storage and access paths. For each record
type the user is required to specify the following entries:

(1) record description (including data items and their physical
size);

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 203

20z udy 01 U0 188nB Aq ZZEEEE/00Z/E/PZ/310M4e/|u00/W0d"dNo" oIS PEDE//:SARY W) PAPEO|UMOQ

RECORD SECTION

COPY ALL (to copy the jlobal scnhema description of

records for tne storaje schema)

KEY SECTION

12 BELNAYE QBRER CONSIITUENI-DOMALINS
PKEY DEPARTMENT ASC >

PKEY TEACHER ASC } not needed for primary keys
PKEY STUDENT ASC >
AREA SECTION

10 NAME AREA-NAME BAGES UnNlI
REL STUDENT ST-AREA 1000

REL TEACHER TC-AREA 150

REL DEPARTMENT DT=AREA 5 1
PINDEX STUDENT PAREA1 25

PINDEX TEACHER PAREA2 10

PINDEX DEPARTMENT PAREA3 1 1
SET CROWD SAREA1 S 1
SET REGENT ~ SAREA2 5 1
SET ADVISOR SAREA3 S 1
SET STAFF SAREAL 3 1
SET HEAD SAREAS 1 1

SURROGATE SECTION

BELNAME QPILIQN WH 40 HCOQRE CCQQE IED NHS NOS
STUDENT 1 20 10 DEF DEF 70 700 500
TEACHER 1 10 5 DEF DEF 890 100 100
DEPARTMENT 1 30 10 DEF DEF 100 100 100

PINDEX SECTION

BELNAME QBPILON WH W2 HCOQRE CCODE IBR CKSIZE LQY GOY
STUDENT H=TREE 10 S DEF DEF 70 4 25 30
TEACHER H-TREE 10 S DEF DEF 75 4 20 30
DEPARTMENT H=-TREE 10 H DEF DEF 80 4 20 25

(If no set keys are specified a system-default option
for order is invoked in the key section.]

Fig. 6 A section of a storage schema

(2) specification of the primary, secondary and set keys along
with index descriptions;

(3) data areas with page size and overflow strategy for entity
records;

(4) surrogate allocation

directory;

strategy specified in surrogate

(5) index areas with page size and overflow strategy separately
for each of the following indexes: (a¢) PINDEX area for
the primary key (see EID). Besides PINDEX, this area
also holds as part of the header the general information
on the relation and an optional surrogate directory (see
later); (b) set areas for set indexes; (c¢) key areas for the
indexes of secondary keys (only if secondary keys are
specified);

(6) hashing technique including a key compression code for

the surrogates, primary keys and other keys (if relevant).
A sample storage schema is shown in Fig. 6 where
UNIT defines the page size in terms of the basic

operating-system unit of data transfer

HCODE/CCODE hash/compression code for keys

WH/WO home/overflow hash width

DEF system default option for hash codes and
compression codes

NHS/NOS number of home/overflow slots.

IPD initial population density of home slots

CKSIZE compressed key size in bytes

LOV percentage of space reserved in each home
page of PINDEX for local overflows

GOV percentage of PINDEX pages reserved

for global overflows

For many entries default and alternative options exist. In
cases of alternatives, guidance as regards their effectiveness
is also given to the user. It is possible for records of different
types to share the same data area.

A surrogate is constructed by concatenating an internal
relation number and an effective key obtained by applying a
suitable hashing algorithm on the primary key. Effective keys
are derived in such a way that they largely maintain the primary

204 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

Date Time Page no. Page
Surrogate | 5516tsTT7, 20116, 0] header
directory
Slot 5

96 97 98 99 100

101 102 | 103 104 105

106 107 | 108 109 110
Slot 6

112|113 114 115

Fig. 7 Data page with W=20 for a relation (entries showing
effective keys)

key sequence (Deen, to be published). The hashing technique
gives a set of hash values or hash slots—each for a group of
tuples—with an average distribution W (hash width). The
effective keys are assigned sequentially within a hash slot, all
keys with hash slot I having the effective keys in the range
[(T—1)*W]+1 to I«xW. If the position of a tuple in a hash slot
1is P, then its effective key is [(1—1)*W]+P (see Fig. 7). It is
possible to restrict the initial allocation of surrogates to only a
defined percentage of the hash width. Overflow hash slots are
also used.

To minimise the standard deviation of W, the primary keys
are compressed before hashing is applied. The compression
algorithm used produces a more uniform distribution but
retains the primary key order (see Fig. 8). The surrogates
generated during the initial loading of a relation follow strictly
the primary key order which may partially break down due
to subsequent insertions and deletions; the effect of this
breakdown is mitigated by allocating overflow hash slots of
reduced width dynamically on an exclusive basis. As a result,
the tuples of a given range of primary keys group together into
one or more exclusive hash slots, and therefore relatively fewer

Ordinary primary key distribution

s

|
! I
! 1

\ ! / 4 -7
Ly / 4 -7
N W / Pid

§ 4~ 7 Primary
g Compressed key keys
g'| (smoother distribution) | Compressed
T keys
u‘ 7

‘ -

L

Hashing

(exclusive overflow

slots provide even

smoother Effective

distribution) keys

Fig. 8 Effect of data compression and hashing on primary key
distribution

© Heyden & Son Ltd, 1981

20z udy 01 U0 188nB Aq ZZEEEE/00Z/E/PZ/310M4e/|u00/W0d"dNo" oIS PEDE//:SARY W) PAPEO|UMOQ

numbers of disc-accesses are required to access the tuples in
primary key order than would otherwise be the case.

The shaded areas in Fig. 7 represent empty positions on a
data page. As the surrogate directory shows (see also later)
there are two slots, of which slot 5 has 17 tuples and its
associated overflow hash slot is slot 201 ; slot 6 has 16 tuples
but no overflow slot. Note that

(surrogate) ::= (rel. no) {effective key);

entries there show only the effective keys. The size and layout
of home and overflow data pages are identical except that an
overflow data page would contain more hash slots if the
overflow hash width is smaller. Apart from this width there
is also no distinction in the surrogate directory for the two cases.

Tuples are assigned to logical pages in surrogate sequence,
each page having a fixed number of surrogates belonging to
one or more hash slots of the same relation; a given hash slot,
but not tuple, may straddle a page boundary. The logical
pages are then mapped on to data pages (physical pages) in
sequence on a one to one basis. The current implementation
does not permit non-contiguous allocation of hash slots to
logical pages, and of logical pages to data pages, but this
restriction can easily be removed if need be.

On each data page, space is reserved for all the tuples it is
expected to hold. If a surrogate is not allocated or deleted, the
position for the corresponding tuple remains empty ; the deleted
surrogates are reallocated to new tuples only after a suitable
integrity check by the system. Since tuples are stored in
surrogate sequence, access in that sequence is very fast. Given a
primary key value, its surrogate and hence the ‘tuple can be
found from the data page directly by an estimated 1.33 disc-
accesses for 309, overflows, using surrogate hashing on the
primary key.

Surrogate directory
For surrogate hashing the user must specify home hash width
WH, overflow hash width WO, number of home hash slots
NHS and the number of overflow hash slots NOS, thus
allowing WH * NHS tuples in the home data area and
WO * NOS tuples in the overflow data area; default options
are available for data compression and hashing techniques.
Percentage of tuple density in the home hash slot during the
initial loading can be controlled either by choosing a suitable
value of WH * NHS or by declaration in the storage schema
for IPD (Fig. 6); it can also be controlled by specific program
instructions in the routine for hash code.

A surrogate directory (SD) containing for each hash slot the
current number of tuples (C) and a pointer to its overflow
slot (OS) is maintained by the system. Clearly

0<C<< W

where W = WH or W = WO as the case may be, and OS = 0
if no overflow slot is assigned. If option 1 is specified this direc-
tory is stored on each data page as part of a fixed length page
header for the number of hash slots starting on this data page
(as explained above; see also Fig. 7). Alternatively if option 2
is specified, the directory is stored in a compact. form as part
of the header in the PINDEX and contains the value
(C+W+1)*0S for each slot (see Fig. 9). The whole of this
compact directory is intended to be held in the memory during
run-time for fast processing and therefore option 2 should be
specified only if the expected memory available in the projected
run-time environment is large enough for the purpose. For a
relation of 1000 tuples the size of this compact directory is
under 80 bytes and therefore option 2 would be a reasonable
specification for it; on the other hand for a relation of a
million tuples, option 1 would be preferable. In the examples
given in this paper, option 1 is assumed unless otherwise
qualified.

© Heyden & Son Ltd, 1981

[PRIMARYKEY | wri o woo—4
NH =10 NO =10

| COMPRESSED KEY |
hashingi — 3 |
Surrogate 59X29><18/ 31210l0
directory +8 | +7 ‘
foroption2 1 2 3 4 NH 1 2 3 4 NO(=10)

Horrlle hash Islots'L (=10) Ollveirﬂc:)wlhash slots
I8

PAGE ALLOCATOR
/ (sequential allocation assumed)

Page header

Page header Page header

i
| I

Overflow
page 1

Home
page 2

Home
page 1

Fig. 9 Surrogate allocation

The surrogate directory is used for insertion (to get a sur-
rogate) and deletion (to update the directory) of tuples. To
insert a tuple, the compressed primary key is first hashed to
find its home hash slot, the corresponding data page is then
entered. If C < WH the portion of the page reserved for the
tuples of this hash slot is searched (even if it has an overflow
slot assigned), and the first empty tuple position found is used
for the tuple. If C = WH and OS = 0, an overflow hash slot
is assigned and the tuple is stored on the appropriate overflow
data page in the first position of this hash slot which also
determines the surrogate. If C = WH and an overflow hash
slot has already been allocated, then the first available position
of this overflow hash slot is used for the tuple, unless C of this
overflow slot is equal to WO, in which case the process is
repeated until an empty position is found (Fig. 9). For 309}
overflows, an average 1-3 disc-accesses are required to find a
vacancy; but if a compact directory is used, only 1 disc-access
is necessary to insert a tuple, since the directory is searched in
the memory before a slot with C < W is found. For deletion
the surrogate of the tuple concerned is extracted from the
PINDEX (described below) in order to locate the tuple on
its data page (to write a deletion flag) and to find its hash slot
(to update C). If C becomes zero as a result of this deletion
then this hash slot is released for subsequent assignment as
overflow to another hash slot (unless it is a home hash slot).

Primary key index

The primary key index (one for each relation) is basically an
index of primary keys and surrogates held in the ascending
or descending order of the primary key as per specification.
It is used to find the surrogate of a given primary key or to
access tuples in primary key sequence. The index can be
designed as a B-tree (balanced tree) (Knuth, 1973, p. 473) but
our standard option is what we call a hash tree (Deen, to be
published). To construct a hash tree, the primary keys are
distributed in their own sequence into hash slots of specified
width using techniques similar to the one employed for
surrogates. Each primary key index (PINDEX) page contains
a prespecified mix of home and overflow (called local overflow)

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 205

20z udy 01 U0 188nB Aq ZZEEEE/00Z/E/PZ/310M4e/|u00/W0d"dNo" oIS PEDE//:SARY W) PAPEO|UMOQ

hash slots, the latter being reserved for allocation to the hash
slots of this PINDEX page only. Separate overflow pages
(global overflows) are also maintained. All overflow hash
slots are allocated to other hash slots dynamically, no two
hash slots pointing to the same overflow slot.

In the storage schema the user declares a PINDEX area and
its page size. This area holds what is known as the relation
information table (RIT) in which the PINDEX constitutes
the major part (see also Section 9). The area available for the
PINDEX proper is used for home hash slots, local overflows
and global overflows. In the storage schema of Fig. 6, 309, of
the available PINDEX area is reserved for global overflows, the
remaining 709, being home pages with 25% of the space in
each home page being reserved for local overflows; during the
initial allocation only 70%, of space in each home slot is to be
filled. The sizes of the home and global overflow pages are the
same. The user must also specify WH and WO (same for local
and global overflows), and hashing and key compression
techniques (default procedures exist).

Each hash slot of the PINDEX contains C (current number
of entries in this slot), P (pointer to prior hash slot) and N
(pointer to next hash slot), followed by C number of entries in
order of their primary keys; C < W where W = WH or
W = WO, depending on the hash slots. Each of these C entries
consists of a triplet Ki, Si, Mi where Ki is the ith primary key
(held in compressed form) in this slot, Si its surrogate, and
Mi the current number of members in the database owned by
the tuple belonging to this primary key. If this tuple is not an
owner of any set in the database, then Mi = 0. Normally,
this tuple can be deleted from the database only if Mi = 0,
thereby protecting owner tuples from deletion in the presence
of any member. An example of the content of a PINDEX
hash slot is given below.

C,P.N ||K1,S1,M1|K2,S2, M2 | ... Kc,Sc,Mc |unused

To store a tuple, its home hash slot is derived first by applying
hashing on the compressed key. If this slot is full and if it
has no overflow slot, then an overflow slot is assigned—from
the global overflows if a local overflow slot is not available
(Fig. 10). Some of the entries from the original slot are moved

[PRIMARYKEY |

[COMPRESSED KEY |
'\\Hashjng
8102 @s71]3 [2]flome
71217 B]61715 [4]
6ial6] _— Dlsisin (6]
= 3 T HE Local
3;314 Lll H | L8] lil I ;] moverﬂow
/\
716117 I 7 hon 13 2]
6112018y [6 11978 [14) Home
7114116 15] 6 {15} 207 ~_ 16
3 {1110 17) 3113}19]\\1|_8|3/}a§14/h_9_|13§16§21[29 Local
N S
2717 [oaf 102} 103 [i04]
105] | 106 107 108| Global
' overflow
[109] ! [110] 111 112| page 1
VK 114 115 116

Fig. 10 PINDEX

to this newly added overflow slot in order to make the density
of entries in the two slots uniform which minimises the number
of disc-accesses. The new key is then placed in the correct slot
position in primary key sequence irrespective of whether this
position is in the original or the overflow slot. The process is
reversed during deletion, removing an overflow slot if the
number of entries there falls below a preset value and if there
is space in the prior slot.

Using hash trees, we can find the surrogate of a given primary
key by about 1-1 disc-accesses for 309, overflows; even further
improvement can be achieved by reorganising the index.
Since surrogates are largely in primary key order, sequential
access to tuples in primary key order is fast.

Other indexes
The following three options for set and secondary key indexes
are planned:

(a) unsorted index (kept in surrogate order except for the
changes since last reorganisation; the index is intended to
be reorganised periodically by a utility to provide fast
access in surrogate sequence);

(b) B-trees (balanced trees);
(c¢) hash trees.

6. Storage usage and access speed

The data storage technique used in PRECI assumes a certain
amount of storage wastage. If the distribution of primary keys
is random within the range, then the storage wastage varies
inversely with hash width W; and directly, but much less
steeply, with the total number of tuples (NT). Fig. 11 shows
that the wastage is under 99 for 200000 tuples with
W = 20. As the graph flattens for high NT, the increase in
percentage wastage becomes negligible for a higher number
of tuples. However, in practice the distribution of keys is
more often clustered than random and therefore wastage can
be a little higher than that shown by the graph; on the
other hand our compression and hashing techniques should
offset some of the worst effects of clusters and gaps, and
provide a more uniform distribution with less wastage. We

30
20 No of slots = 100
10
:
> O 1 | |
0 35 10 20
[Slot width
3 Q
(5] 7
g g
Q
A 6L
4 Slot width = 20
2_
(1]

1 1 1
0 100 1000 10000
Number of slots

Fig. 11 Storage wastage

206 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

© Heyden & Son Ltd, 1981

20z udy 01 U0 188nB Aq ZZEEEE/00Z/E/PZ/310M4e/|u00/W0d"dNo" oIS PEDE//:SARY W) PAPEO|UMOQ

estimate an average storage wastage of 10-15% for PRECI in
normal usage. This level of wastage appears to be acceptable
to many commercial database systems, for instance IDMS
(undated) wastes nearly 30 %, storage (the fastest direct access
it provides is by location mode CALC with 1-3 disc-accesses
for 309 overflows).

However, if reduction in storage wastage is a major require-
ment, then this can be achieved in PRECI by using the total
number of home hash slots NHS = 1 which eliminates all
wastage but affects the efficiency of access by primary key
(see below). If the tuple population of a relation is expected
to be static (retrieval oriented system), then one should make
WH such that WH « tuple size is equal to 1 data page and
NHS * WH is equal to NT (the total number of tuples in the
relation), which guarantees fast access with zero wastage.
However, if the population is expected to be volatile, with
many insertions and deletions, then reliance has to be placed
on the overflow pages; reduction in the size of the home data
area decreases storage wastage but increases number of
disc-accesses to the database. In PRECI the DBA can choose.

We have quoted earlier (Section 5) some access speeds for 30 %,
overflows, meaning 30 % of the tuples physically stored in the
overflow data pages. This spread is, however, unrelated to
whether 309, of the tuples are added later; for if 309 of the
tuples are to be inserted later, then the DBA could reserve
space for most of them in the home data area, reducing over-
flows to 10-159;. In Table 2 some estimated access speeds are
given in terms of disc-access for 10 and 30% overflows
(ignoring external overheads such as those due to privacy and
integrity constraints, concurrency controls etc). We assume
WH = 20, WO = 10 for the data pages (not every home slot
has an overflow slot) and 100 primary keys in the home slots
of a PINDEX page. At worst, one disc-access is required per
overflow hash slot of the data page, but in practice it is less,
since once accessed, the overflow data page is retained in the
buffer (in preference to home data pages) for further use, unless
the system runs out of memory. We have, however, used the
average worst case here. The figures given are in units of
disc-accesses. These figures should be compared with the
conventional techniques employed in most database systems
which permit either random access (through hashing) or
sequential access (through' sequential organisation)—but
unlike PRECI not both for the same group of records with
such high access speed. As indicated earlier, 10-159% of storage
wastage would normally be required to sustain this access
performance; and we feel this wastage is a small price to pay—

Table 2 Overflow (%)
Access 10 30
Random (single tuples)

By surrogate 1 1

By primary key? 1-11 1-33
Sequential [per group of 20 surrogates (tuples)]
By surrogate 1 1

By primary key 1-29 1-45

aUsing surrogate hashing on the primary key.

Table 3 Overflow (%)
Access 0 10 30
Random (via PINDEX) 20 20 20
Sequential [for 10 293 614

20 surrogates (worst case))

© Heyden & Son Ltd, 1981

particularly if judged against the figure of up to 309, wastage
in commercial systems with less efficient access.

As discussed earlier, storage wastage is eliminated virtually
completely if NHS = 1 (and NOS = 1) is used for the sur-
rogate directory. This strategy leaves the speed of random and
sequential access by surrogate unchanged, but affects the
access by primary keys adversely depending on the level of
overflow supported. The estimates given in Table 3 assume
that the PINDEX is reasonably organised with many hash
slots per PINDEX page (reorganisation of PINDEX is easy).
These figures would be quite typical for any system committed
to 1009 storage utilisation. Since most accesses and join
operations are likely to be performed via surrogate or primary
keys, PRECI clearly provides a basis for efficient processing
giving users the flexibility to strike a balance between storage
wastage and efficiency.

7. Data independence, restructuring and reorganisation

PRECI is intended to provide maximal data independence in
order to facilitate restructuring of the schemas and the reorgan-
isation of the database as needed, to incorporate new data
types or to improve performance. The data independence
available can be summarised as:

(1) Local schemas can be changed without requiring any
changes or recompilations of the global and storage
schemas.

(2) Access paths can be declared in the local schemas irrespec-
tive of whether they are actually specified in the storage
schema.

(3) The storage schema can be changed without requiring any
alterations or recompilation of the local and global
schemas.

(4) Insertions and deletions of data items, record types or
set types in the global schema do not require any changes
or recompilations of the existing programs, local schemas
or storage schema not referencing these items. If new
additions in the global schema are not implemented in the
storage schema, null values for them would be returned
to the users referencing them. If any global items are
deleted, the programs and local schemas using them are
automatically disabled and cannot be used until recompiled.

In addition, all the data independence facilities of the
CODASYL model are available as mentioned earlier.

A precompiler converts DM commands into CALL state-
ments, and generates a tree for relational expressions (if
any); this tree is subsequently used for optimisation. All data
item names, record names and set names in the global schema
are replaced by the compiler with unique internal identifiers
which never change during the lifetime of these global objects.
If a global object is deleted, its identifier will not normally be
reallocated. The compiled versions of both local and storage
schemas use these global identifiers, thus simplifying the
conversion problem encountered during the binding of these
two schemas which takes place during run-time, providing
maximal data independence at very little extra cost.

All entries in the storage schema, with the exception of the
surrogate directory, can be altered easily. For instance the
reorganisation of a PINDEX need not involve any more
disc-accesses than those required for the dumping of the
PINDEX area to another disc. All page sizes can be altered,
and new pages added. The additions or deletions of attributes,
as a result of changes in the global schema, can be effected very
fast by simply copying the old data pages sequentially to the
new pages with the same or different page sizes; no major
changes in the indexes are required. New relations and set
types can also be inserted without difficulty.

The reorganisation of surrogates however is a more drastic

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 207

20z udy 01 U0 188nB Aq ZZEEEE/00Z/E/PZ/310M4e/|u00/W0d"dNo" oIS PEDE//:SARY W) PAPEO|UMOQ

step, as they are used as internal identifiers. In this respect
PRECI is not different from other models, except that reorgan-
isation is probably slightly easier in PRECI because of its
modular structure and the exclusiveness of the range of
surrogates assigned to a relation. This permits the change of the
surrogates in one relation without impinging on the data
pages of the others.

If surrogates are reorganised then all old surrogates must be
replaced by new ones wherever they are referenced: PINDEX,
secondary key and set indexes. Also tuples have to be rewritten
in their data area according to the new effective key order. A
utility for surrogate reorganisation is expected to be imple-
mented at a later stage.

8. Optimisation facility

Optimisation in PRECI is expected to proceed in five stages:
(1) selection of an optimal query expression,

(2) selection of an optimal access path,

(3) deferred evaluation,

(4) indexing strategy, and

(5) buffer management.

Stages (1) and (2) are relevant to relational algebra and other
very high level languages. We intend to optimise relational
expressions, largely following the pioneering techniques used
in PRTV (Verhofstad, 1976). Stage (2) in optimisation is the
selection of an optimal access path out of those that are
specified in the storage schema: SYSTEM R uses such an
optimisation (Astrahan et al., 1976), and we have a similar
plan. We also delay the evaluation of expressions (deferred
binding) until the results are actually required, thus reducing
the need for intermediate storage and processing. Stage (4)
provides efficient indexing facilities with options to suit
differing processing requirements. Stage (5) aims at optimal
buffer management during run-time with reduction in disc
transfers through a flexible and efficient page swopping
strategy and economic use of primary and secondary buffers
(Smith, 1978).

9. Run-time system

The run-time system is being written in reentrant code to

facilitate concurrent usage in the future. The system starts with

the loading of the database when the database control system

(DBCS) calls the initialiser to set up buffers and temporary

tables and to read permanent tables from the data dictionary.

Buffer space is allocated for major items:

(1) permanent tables;

(2) temporary tables;

(3) frequently used items and information;

(4) global workspace (might use secondary memory if needed);

(5) temporary indexes (partly in secondary memory);

(6) input/output area;

(7) buffers reserved for application programs (which include
the subschema tables); and

(8) image buffer (mainly on secondary storage).

The system monitors the buffer usage and redistributes buffer
space if necessary. Input/output is carried out in a suitable
unit of buckets consisting of one or more pages. When the
I/O buffer is full, the DBCS invokes a page swopping strategy.
The main permanent tables used are:

(a) The master table which contains information about other
tables. (Information about temporary tables is appended to
the copy of the master table in core).

(b) The area table which contains the details of areas. The copy
in core holds also additional information such as the status
of an area (opened, closed etc).

208 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

(¢) The set tables with summary information on all set types.

(d) The relation information table (RIT)—one for each relation,
which contains in the header: (1) the storage information of
the relation (number of attributes, their sizes, cardinality, tuple
size, keys, owner sets etc); (2) compact surrogate directory if
specified; and (3) the control information on the PINDEX
proper. (Home and global overflow pages of the PINDEX
form the rest of the RIT.)

(e) The set and secondary key indexes.

Tables (a)—(c) are held permanently in memory, but (d) and
(e) are read as necessary. Once read, the header information
of RIT is usually kept in memory until this relation is CLOSEd;
the pages containing detailed information are swopped more
frequently.

The main temporary tables are the core table (information on
disc pages held in the memory), usage table (a group of tables
to hold usage statistics needed for page-swopping, integrity
checking, optimisation etc.).

Temporary indexes might be created if the local access paths
are not supported by the storage schema, and once created they
are retained on secondary storage for the duration of the run.
If changes occur to these indexes during the run, then these
changes are simply appended at the end (without ordering).
Work spaces are used to hold data and intermediate results
for the evaluation of DM commands, particularly relational
expressions. The buffer manager handles both permanent and
temporary relations in a unified manner to simplify processing.

When a subschema is invoked by an application program the
following entries are made in the buffer spaces allocated:

(1) subschema tables (small);
(2) header table for temporary relations (small);
(3) temporary relations (mainly on secondary devices); and

(4) system locations for currency indicators, surrogates and
error status.

The currency indicators contain the current of the record type,
set type etc. The programmer can also retain surrogates by a
HOLDS command for using them in the same run later (see
also Section 4.) Any error detected during the execution of a
DM command is flagged by the database control system with
its error code in the error status indicator which the programmer
can check.

The areas associated with each relation are opened and closed
by an explicit OPEN/CLOSE relation name command issued
from the application program. When a CLOSE command is
encountered, the areas are checked for integrity and all the
relevant buffers (after images) are written out as necessary.
In the current version only an elementary backup/recovery
facility—with after images, checkpoints and dumping—is
provided. During an update all after images are written out;
the user may request for checkpoints during run-time, but
database archiving is carried out only by special runs. A
trace facility can be invoked for debugging.

During run-time the deleted tuples are flagged, but the surro-
gates released are not immediately reallocated. This ensures
that other users (in a concurrent environment) requesting a
deleted tuple get an appropriate error message, rather than a
newly inserted wrong tuple in the same position.

No distinction is made by the run-time system between the
various interfacing models except at the DM command level.
If an algebraic command is encountered, the relevant DM
tree is read and the optimisation facilities (1)-(3) are invoked
(Section 8). For a CODASYL FIND command, optimisation
(2) is used. Format conversion between the subschema and
storage schema is carried out in both directions as and when
necessary.

© Heyden & Son Ltd, 1981

20z udy 01 U0 188nB Aq ZZEEEE/00Z/E/PZ/310M4e/|u00/W0d"dNo" oIS PEDE//:SARY W) PAPEO|UMOQ

