Principles of descriptors

J. M. Bishop* and D. W. Barront

Descriptors are a popular feature in the design of new computer architectures but little has been
written about the principles and pitfalls involved. Experience with writing and investigating
compilers for two structured architectures, the Burroughs B6700 and the ICL2900, has shown that
the terms used in relation to descriptors often have contradictory meanings. Descriptors as imple-
mented on these machines are often not the blessing they were made out to be. This paper seeks to
enumerate and explain the operational function of descriptors; to define their area of application;
to give evidence of the unwieldy aspects in current implementations; and to suggest how these may

be improved.
(Received March 1980)

1. The operation of a descriptor

1.1 Definitions

There is no widely accepted definition of a descriptor but that
of Creech (1970) comes closest to expressing the common view:
‘A descriptor is a control word used to locate and describe
areas of data or program storage.’ This definition also serves to
establish what a descriptor is not. It is not just any data word:
it is a control word and is usually embodied in the architecture
of the computer. It is not very easy or profitable to simulate
descriptors on a machine which does not have them. The
emphasis on control word rules out dope vectors as descriptors,
although they are sometimes referred to as such (IBM). A
descriptor is also more than an indirect address, since its
function is to both locate and describe. A key word is areas: a
descriptor should not normally be employed in conjunction
with simple, primitive items. Its function is clearly associated
with aggregates. Finally, the areas may contain program or
data: this implies that descriptors are found not only in user-
level compiled code, but also at operating system level, this
being where areas of program are manipulated.

Associated with a descriptor is a descriptor program which
interprets and acts upon its contents. This ‘program’ is an
integral part of the machine’s instruction execution hardware
(or microprogram) but it is possible to isolate and examine it.
The descriptor itself is divided up into fields, each of which
contributes towards describing or locating the specified area.
Terminology here is very confusing and therefore instead of
using any particular manufacturer’s terms, an ‘everyman’s’ set
has been devised for use in this paper.

ORIGIN
BOUND

The address of the first item in an area
The ordinal number of the last item in the area,
numbering from OFFSET
DISP The displacement from the first item in an area to
a required item
LENGTH The ordinal number of the last item of an area,
numbering from 0
OFFSET The ordinal number of the first item in the area
SIZE An indication of the number of bits in an item
(usually a code for one of a small number of
options e.g. bit, byte or word)
A broad classification of the kind of items in the
area, unrelated to size (usually a code for one of

a small number of options e.g. code, data or
string)

TYPE

In addition to these fields, the terms area, item and subscript
will be used consistently, to avoid confusing the issue with
terms such as block, element, index etc. Without preempting
what follows, Fig. 1 provides an illustration of a typical
descriptor.

Two further terms need definition: user’s units are those in
which subscripts are expressed (e.g. the items are numbered 1
to 10 in the above example); machine units are those in which
machine addresses are expressed (e.g. words are numbered 0 to
19 in the above example). The descriptor field ORIGIN will
always be in machine units, as will DISP (except in a few
variations). OFFSET and BOUND should be in user’s units.

1.2 Layout of a descriptor

If all of the five fields ORIGIN through to SIZE were potentially
able to contain integer values, a descriptor would be well on the
way to being six words long. As Creech’s definition suggests,
this is not permissible and so some means must be found of
fitting all the necessary information into one or maybe two
words, i.e. between 24 and 64 bits, depending on the machine.
As each function of a descriptor is discussed, the optimum field
widths and types will be developed. These will be expressed
precisely as fields of a Pascal packed record definition. One
predefined subrange will be used i.e. the addressing range of the
machine or

type addressrange = 0..maxaddress
The memory is then regarded as

var memory:array [addressrange] of word
where word is some packed array of bits.

In the same way, the instructions that activate the descriptor
program will be described by Pascal procedures. These
procedures can be regarded as the microcode versions of
machine instructions. For simplicity’s sake, a stack machine is
assumed for the illustrative examples. This machine uses the
following instructions.

TYPE SIZE OFFSET BOUND DISP _ORIGIN
[data [double] 1 [10 [7

area of 10
double word
data items
with subscripts
110

Fig. 1 A typical descriptor

*Computer Science Division, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2001, South Africa.
tMathematics Department, The University, Southampton SO9 5NH, UK.

CCC-0010-4620/81/0024-0210 $06.00

210 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

© Heyden & Son Ltd, 1981

20z udy 01 U0 188n6 Aq BZEEEE/01Z/E/PZ/B10M4E/|UfLO0/WO0d"dNO OIS PEDE//:SARY W) PAPEOUMOQ

LOAD «x Loads the value of x on to the stack

NAME x Loads the address (or ‘name’) of x on to the
stack
COMP n Compares the value in ros to n and replaces tos

by a condition code

If the condition code in tos corresponds to the
relation r, control is transferred to label. r may
be EQ, GT, NE, LE etc

JUMPr label

UP n Adds the constant n to fos

DOWN n Subtracts the constant n from fos

SCALE n Multiplies tos by the constant n

ADD Adds the top two elements of the stack,

replacing them by the sum

The stack is regarded as being prefaced by the two registers
tos and tos2 in which most operations are performed. Notice
that the above instructions maintain the distinction between
the binary stack operations such as ADD and those involving
tos and a constant specified as an immediate operand such as
UP.

1.3 The descriptor program
The operation of a descriptor program can be summed up by
the acronym COSA (check, offset, scale and add). This is
embodied in the instruction INDEX which takes a descriptor
to an area (in fos) and a subscript (in tos2) and produces an
indexed descriptor in their place. INDEX first checks the
subscript against the offset and bounds and rejects it if it is
outside them. It offsets the subscript to obtain a subscript
relative to zero. This is then scaled by the size of the items. The
adjusted subscript, now called DISP, combines with the
ORIGIN to provide access to the required item. This sequence
is exactly that which is produced as inline code for array
accesses by many compilers. Consider the difference in length
of code and complexity for accessing a[i] by descriptors:
a[il] = LOAD I

NAME 4

INDEX
and by inline code:
ali] = LOAD 1[I

COMP 1

JUMPLT error (check i = 1)

COMP 10

JUMPGT error (check i < 10)

DOWN 1 (offset by 1)

SCALE 2 (scale for double words)
NAME 4 (add on the origin)
ADD

1.4 Check and offset

This is the most valuable operation that a descriptor performs,
partly because it does perform it, whereas checking is often
omitted in inline code because of the expense involved. The
check takes two forms. First, the type of access is checked
against the type of the descriptor and second, the subscript is
checked against the stored bounds. The type check can require
the following descriptor fields

kind: (data, code, string);

readonly, presentincore: boolean;
Data descriptors permit access by most data movement oper-
ations whereas string descriptors only allow their structures
(which contain text) to be accessed by special string operations.
A code descriptor gives right of access only to a code execution
module. Readonly and presentincore are examples of flags that
can be included to control the mode of access within the
various kinds.

Having passed the access method as valid, the kind field is then

used to define the layout and interpretation of the rest of the

© Heyden & Son Ltd, 1981

descriptor, both of which may vary for the three kinds.

The simplest bound check is one against an upper limit, offset
from zero, with the BOUND field being of type addressrange.
However, many arrays do not naturally start at zero which
leads to a call for two bounds, both potentially of type integer.
This would make a descriptor untenably large. A more
practical solution is to use an upper bound only, but augment
it with a single one-bit field which specifies whether the bound
is assumed to be offset from zero or from one. This is a neat
compromise, not yet implemented in any system, which takes
care of the vast majority of subscript ranges at small cost. Let
these fields be added i.e.

bound: addressrange;
offset: 0..1;

If the area has a lower bound other than O or 1, e.g.
var history: array[— 54..1914] of dates;

then the offsetting will have to be done explicitly before
INDEX is entered. Thus we have:

history [year] = LOAD year
UP 54
NAME 4
INDEX

The descriptor for history would have OFFSET = 0 and
BOUND = 1968. (Note: UP is used instead of ADD which is
a pure stack instruction with no arguments.)

A further field is sometimes found in descriptors which
enables the bound check to be omitted. The reason why the
ICL2900, for one, includes this switch is discussed later, but it
does have a valuable application in accessing items via constant
subscripts e.g. A[7]. The problem is how to switch the field on
and off. Several solutions present themselves:

(1) Dynamically control the switch with ordinary masking
instructions. This is far more trouble than the small saving
in speed warrants, and could even be as longwinded as

LOAD ACC descriptor
AND ACC descriptor copy with bit set (or unset)
STORE ACC descriptor

(2) Keep two copies of the descriptor at the outset and let the
code generators select whichever is appropriate. This is
fairly acceptable for declared structures where only one
descriptor exists, but is certainly not for those that are
components of another structure. Two arrays of descriptors
for the same array row is not a fair price to pay for inhibit-
ing a bound check.

(3) Have two versions of the INDEX instruction. One would
perform the check and the other would omit it. The
compiler knows which is needed at each access. This is a
solution which has no space or time overheads and even
renders the switch in the descriptor redundant. Strangely,
no existing machine has taken this approach.

Given a SAFEINDEX (offset, scale and add only) instruction,
access to A[7] becomes
A[7] = CONST 7
NAME 4
SAFEINDEX
If the instruction is going to be used often with constant
indices, it might be better to split it into two and have a version,
CONSTINDEX, which takes a constant argument thus giving
A[7] = NAME A
CONSTINDEX 7
SAFEINDEX would then be used when a variable subscript
has been verified by other means. For example, in

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 211

20z udy 01 U0 188n6 Aq BZEEEE/01Z/E/PZ/B10M4E/|UfLO0/WO0d"dNO OIS PEDE//:SARY W) PAPEOUMOQ

var i:1..10; a:array [1..10] of real;
fori:= 1to 10 do a[i] := 0;

the accesses to a[i] cannot possibly go wrong. Knowing this,
the compiler would generate SAFEINDEX rather than
INDEX.

1.5 Scaling
At this point, the checked and offset subscript is in user’s units.
The next step is to convert it to machine units, which may be
bigger or smaller than the user’s. For example, a subscript for
an array of two-word reals must be doubled before becoming
the effective index. A general size field might be
size:(bit, halfbyte, char, byte, halfword, word, double, quad)
though few machines would need such a range.

The first three functions of the descriptor program can now be
incorporated in a definition of INDEX.

procedure index; {descr. in tos, subscript in tos2}
begin
check (subscript, {between} tos.offset, {and} tos.bound);
subscript := subscript-tos. offset;
subscript := scaled (subscript, {by} tos.size);
end;

The way in which the function scaled is defined depends on
which of the size options is the basic machine unit. For example,
if the machine addresses by words then scaling for doubles will
multiply by 2, scaling for bytes will divide by 4 (say).

There is one serious problem, however, that does not seem to
be appreciated in machine design except at the latter stage when
a ‘fix’ is employed to get around it. If the machine unit is not a
multiple or factor of all possible sizes, the scaled index cannot
be sensibly added to the start address.

For example, if the machine unit is a word, a subscript that is
presented in bytes will produce a byte index which is incom-
patible with the address. The obvious solution is to store all
addresses at the bit level but this would not meet with much
acceptance in the real world. Other more practical solutions are
discussed in Section 3.4.

Another disadvantage of this size definition is that it assumes
that all the elements are the same. In modern languages and
systems, the elements of an array are not restricted to
FORTRAN:-like integers and reals and might well be records

TYPE SIZE OFFSET BOUND ORIGIN
[data] 3 [O | 99 | ‘ area of 100

triple word
items with

subscripts

0..99

(a)

[data] 0 | ©

l 299] area of 300

single word
items with
subscripts
0..299

(b)

Fig. 2 Descriptors for arrays of records. (a) Lower bound of 0 is
accommodated in user’s units; (b) lower bound of 1 causes
descriptor fields to be in machine units

212 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

of considerable size. Now, it is tempting to include a generalised
scale factor of type addressrange. The difficulty comes in
inserting the field selection between the scaling and adding.
Assume

var coords:array [0..99] of record
x:integer;
y:real
end;

Such an array of records would be represented as in Fig. 2(a).
(The following discussion assumes that the size of the operand
to be loaded by a descriptor is defined by the loading instruction
—not the descriptor—see Section 3.2.)

When accessing coords[i].y, INDEX needs both a subscript
and a field selector. There are three ways of achieving this.

(1) Use the idea of CONSTINDEX to perform the selection
after the subscripting. The trouble is that scaling would
then be done twice. Another instruction might be designed
which will omit scaling and checking and simply add the
given constant to the ORIGIN. If the offset is non-zero, it
must only be subtracted once, so SELECT ignores the
offset as well. Access now becomes

coords[i].y == LOAD |
NAME 4
INDEX (check, offset, scale x 3 and
add)

SELECT 1 (add field offset for y).

There is a danger with any of the non-checking instructions,
and compilers must be very reliable before using them.

(2) Without these variations of INDEX, the offset and scale
operations have to be removed and done explicitly before-
hand. The descriptor is also affected and all fields must be
in machine units because that is how the subscript will come
in. For example

var coords| :array [1..100] of record etc

would be represented as in Fig. 2(b) and becomes
coordsl[i].y == LOAD 1

DOWN 1 (offset)

SCALE 3 (scale)

UP 1 (field selection)
NAME coordsl

INDEX (check and add)

A compiler could usually reduce this sequence by remember-
ing the offset and combining it with the field selection i.e.

coords1[i].y = LOAD 1

SCALE 3

DOWN 2 (ie. =3+ 1)
NAME coordsl

INDEX

This is only one instruction more than the first approach
and has the advantage that every access via the descriptor
is thoroughly checked. Its disadvantage is that the descriptor
must be in machine units.

1.6 Adding the origin

It is not generally realised that there are two distinct ways of
combining the calculated index with the origin of the structure
as given in the descriptor. The principle common to both is
that the descriptor should be left in a state that will either for-
bid further accesses or will allow them on the same controlled
basis as before. The two approaches are:

© Heyden & Son Ltd, 1981

20z udy 01 U0 188n6 Aq BZEEEE/01Z/E/PZ/B10M4E/|UfLO0/WO0d"dNO OIS PEDE//:SARY W) PAPEOUMOQ

C D SIZE OFFSET BOUND ORIGIN
Wno[double[one] 10 I 634

634

Before

Fo]noldouble] one [10 [

Iyeslyesldouble[one I 4 I
INDEX
(a)
[doubte one | 10 | 634
Before
‘double‘ one l 8 l 648
(b)

Fig. 3 Two methods of indexing a[i] where i = 3. (a) Indexing by
replacement ; (b) indexing by balancing

(1) Indexing by replacement. The descriptor is copied, the
bound field is replaced by the index and the change is
indicated by setting an ‘indexed’ flag. Access is made via the
copied descriptor which can be stored and reused for further
accesses to the identical element.

(2) Indexing by balancing. The index is added into the origin
field and simultaneously subtracted from the bound.
Subsequently, access can only be made to elements further
on in the structure.

These methods are illustrated in Fig. 3. Both yield a descriptor
that is susceptible to automatic index checking and that cannot
be indexed to point outside its original bounds. Their advan-
tages and disadvantages are:

(1) Replacement prevents reindexing from the current position,
thus forcing an Iliffe vector scheme for multidimensional
arrays. This indexing method is the one that is used in a
‘segments on demand’ system (see Section 2.2). Balancing
alters the address field which renders the descriptor
unusable for segmenting purposes.

(2) Balancing alters the original descriptor, which means that,
either copies must be kept, or the indexing must be done ‘on
the fly’ as part of an operand rather than an operation in
itself. Balancing allows reindexing and hence favours a
linear representation for multidimensional arrays.

1.7 Ideal descriptor

Given all these factors, it is obvious that deciding on a de-
scriptor and its program is a matter of compromise. The
authors’ suggestion is:

© Heyden & Son Ltd, 1981

type descriptor = packed record Bits

kind:(data, code, string, descr); 2
size: (bit, byte, word, double), 2
offset:0..1; 1
bound: segmentrange; 16
address:addressrange 20
indexed, copy:boolean 2
other: bits 5
end; —
Total 48

with

procedure index;
begin
check (tos2, tos.offset, tos.bound);
tos2 := tos2 — tos.offset;

tos2 := scale (tos2, tos.size),
tos.bound .= tos2;
tos.indexed := true;

tos2 := tos,

pop(tos)

end;

In conjunction the three variations of INDEX are essential. In
summary, these are:

SAFEINDEX As for INDEX but without the bound check

CONSTINDEX As for SAFEINDEX but with the subscript
as an immediate operand

As for CONSTINDEX but without any
scaling or offsetting.

SELECT

2. The application of descriptors

2.1 Name and addresses

A stack consisting of data frames and accessed by means of a
display or group of name bases is now the accepted means of
representing a procedural high level language. In this repre-
sentation, the name of an item is considered to correspond to
its ordinal position within the declarations for a particular
level. There are distinct advantages to keeping this corre-
spondence one to one:

(1) The maximum offset in a stack frame will be comparable to
the maximum number of names that are declared at any one
level rather than the length of storage their items occupy.
This reduces the demands on operand size for stack
instructions, 10 bits being quite reasonable.

(2) If the length of structured item is not known at compile
time, this does not affect the binding of names for subse-
quent declarations.

In other words, one machine unit (or word) will be allocated to
each variable. If the variable requires more, this word will
contain a descriptor pointing to the complete area allocated to
the structure.

Names and addresses are therefore assigned as follows:

Names
(1) If an item is declared, its name is defined by its level of
declaration and its ordinal position within that level.

(2) If the item is a component of a structure, the name is
deduced either at compile time (field selection) or run-time.

Addresses

(3) If the item is simple, its address is transparent and its name
indicates the contents directly.

(4) If the item is structured, the name indicates the address of
the start of the contents, this address being part of the
descriptor associated with the structure.

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 213

20z udy 01 U0 188n6 Aq BZEEEE/01Z/E/PZ/B10M4E/|UfLO0/WO0d"dNO OIS PEDE//:SARY W) PAPEOUMOQ

Table 1 The relationship between names and addresses

Type
Var Simple Structured
NAME NAME [address }—
Declared contents

NAME | contents NAME | address -

Component

contents

These rules are summarised in Table 1.

The advantage of this approach is that, once a name is found,
access depends only on its type, that is, simple or structured.
However, there is a conflict between the source and machine
levels as to how to classify items into these basic types. Several
criteria might apply, such as what the syntax says, whether an
indirect access method is required and even whether an item
can fit in one word. For example, in Pascal, a record is struc-
tured according to the syntax but does not need indirect access.
Another anomaly is a pointer which has its own class in the
syntax (i.e. reference), fits in a single word when implemented,
but definitely implies indirect access.

It is obvious that these ambiguities must be settled, not by the
language designer, who has already stated his position, but by
the compiler writer and machine designer. The following
interpretations will maintain the integrity of a uniform name
and address system.

(1) Records. The offset of a field in a record can be computed at
compile time. Since this is the expressed intention of the
language designer (Jensen and Wirth, 1972, p. 42), repre-
senting a record with a descriptor is inappropriate. The
solution is to ‘flatten’ a record and treat each field as a
variable in its own right, as in

NAME | contents
NAME | contents
NAME | contents
NAME | contents

This flattening holds for both declared and component
records. Moving a sequence of fields could be done by
naming each field, or the MOVE instruction can be
defined to accept the first name and number of names.

(2) Reals. Following on from records, the solution for reals is
simple. A real is regarded as (some version of)

type real = packed record
mantissa:somerange;,
exponent :someotherrange
end;
Then
var x:real

can occupy one, two or as many words as dictated by the
hardware and the implementor. The operative name as far
as the programmer is concerned is that of the record, but it
might be a useful trade-off to allow access to its fields. The
benefit of this scheme is that reals do not become a special
case if they are represented in more than one word. The
operations peculiar to reals, as opposed to any other
records, are introduced by the appropriate syntax, which is
not valid for any other type.

214 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

(3) Pointers. If a pointer is considered structured, then the
referenced variable might be allocated individually off-
stack. Since such variables are typically small records, this
might introduce considerable inefficiency at operating
system level in recording their whereabouts in actual or
virtual store. A neat solution which puts the heap under
program control defines

type heaprange = 0. .heapmax;

var heap:array [heaprange] of word,
and a pointer as a simple integer variable. A call to create a
new variable on the heap is handled by the program’s run-
time support package. Likewise, disposing such variables
and garbage collection will be left to the compiler writer to
implement or not. The operation P1 is therefore semantically
equivalent to heap[P]. The nil pointer can be set to a
large negative number so that accesses to heap[nil + any
field] will be trapped by the INDEX operation on the heap.
In addition, arrays inside a heap variable will have their
indices subject to the bound checking of their own descrip-
tors.

In summary therefore, it is only for arrays that descriptors
should be used; these require the full facilities of bound check-
ing, indirect access, and subscript scaling.

2.2 Segments

Descriptors are not confined to use by user programs alone:
they can form part of the operating system’s housekeeping.
Here the idea of a segment is introduced. A program logically
consists of several segments: some for code, some for data, one
for the heap and a special one for the stack. The name and
address of a segment depend on the way in which the segment
is handled at operating system level. There are two approaches:

(1) Segments on demand. A segment is an exact equivalent of a
variable sized program structure. The name of the segment
is that of the code procedure or data structure which needs
it. When the program first accesses the code or data, it asks
the operating system for a specified number of words
(BOUND — OFFSET + 1) and receives in reply a linear
address. This is then placed in the descriptor. (e.g.
Burroughs B6700).

(2) Segments in virtual memory. The program specifies at the
outset how many code and data segments it requires and
what their sizes are. This information is recorded in a
segment table and constitutes the virtual memory for the
program. The segment table contains an appropriate
mapping of each segment on to the real linear memory, thus
obviating the program from retaining the master descriptor
for each segment. This, coupled with the implied need to
keep the table to manageable proportions, encourages a
compiler writer to put several program structures in one
segment (for example, all the arrays in a FORTRAN
COMMON block). A descriptor can therefore describe
any portion of a segment (e.g. ICL2900).

From the operating system point of view, there is not much to
choose between these two approaches. Virtual memory assists
in protecting programs from each other at the expense of a
table look-up for actual addresses (although associative mem-
ories and slave stores reduce this). The demand system is fast,
but relies on the system software to handle descriptors respon-
sibly; protection could be enhanced by capabilities in the
segments themselves. For both approaches, information
pertaining to multiprogramming such as dirty bits, presence
bits, copy bits etc. can be kept in the descriptor or the segment
table, but these are transparent to a running program and are

© Heyden & Son Ltd, 1981

20z udy 01 U0 188n6 Aq BZEEEE/01Z/E/PZ/B10M4E/|UfLO0/WO0d"dNO OIS PEDE//:SARY W) PAPEOUMOQ

maintained entirely by the operating software and hardware.
Bauerle (1974) gives a most readable account of the overlaying
of segments on demand and Tanenbaum (1975) discusses
fully the virtual memory approach to segmentation.

The difference between the two methods comes in the way they
adapt to indexing by replacement or balancing. As mentioned
in Section 1.6, balancing cannot be used with segments on
demand. Replacement favours Iliffe vectors and therefore
might not dovetail well with the segment table approach.

3. A critique
3.1 Two descriptor implementations

‘A descriptor is a control word used to locate and
describe areas of data or program storage.’
(Creech, 1970).

‘A descriptor is a 64-bit entity which formally
describes an item of information in the store.’
(ICL, 1976).

Though superficially the same, there is a subtle difference
between the above two definitions. The B6700 has one word
describing an area; the 2900 thinks in terms of two words
describing an item. The preceding sentence of the 2900 defini-
tion, ‘The instruction code makes extensive use of descriptors
for indirect addressing’, strengthens the impression that the
item will more often than not be simply one word.

For a compiler writer, the impact of descriptors is second only
to that of a stack in governing the design of the object code and
the choice of strategies to generate it. It is accepted that
descriptors mean more data space but it is expected that there
will be a corresponding reduction in code size. Creech (1970)

adds to the above description: ‘One does not have to stretch the
imagination too far to view the descriptor as a 51-bit code
sequence which is executed when encountered during [normal]
accessing.” However, if the ‘program’ in a descriptor digresses
even slightly from the needs of a particular high level language,
then corrective action might have to be taken in the object code
—the descriptor may even become a liability. In this situation,
the language implementor will investigate whether the de-
scriptor mechanism can be bypassed. This will only be possible
if general purpose index registers (i.e. modifiers) are provided
for addressing arrays. If there are no such index registers, then
descriptors must be regarded as central to the architecture and
the principal, if not only, means of accessing and moving
structures.

On the other hand, descriptors should not be mandatory for
indirect access to simple items. It is not sufficient for the name
to be available as an operand; it must also be possible to store
it and to access the item indirectly, for example as a var
parameter. The B6700 carefully distinguishes between direct
and indirect addressing for both simple items and structures,
but the 2900 has made the mistake of providing only rudi-
mentary direct addressing and having no way of storing an
address for indirect access except in a descriptor. This aside,
the definition and operation of both descriptor designs leave
something to be desired. Three of the problem areas are now
discussed with reference to the descriptor formats given in the
Appendix. [The MUS5 descriptors are those of the original
machine design. Recently, the descriptors have been altered to
resemble those of the ICL2900 (Morris and Ibbett, 1979). The
older version is retained in this paper because it provides a
contrast.]

Table 2 Access to mixed type records via a descriptor

(a) 2900 with inline SIZE alteration (b) 2900 with copy descriptors

(¢) 2900 with string descriptors (d) B6700 with

string
descriptors
C TYPE vector TYPE vector TYPE string TYPE data
SIZE word SIZE word SIZE byte SIZE word
BOUND 303 BOUND 303 LENGTH 4 BOUND 303
SCALED SCALED
CHECKED CHECKED
vector, double, 0 vector, double, 303 NOTE: No bound
UNSCALED, UNCHECKED UNSCALED, CHECKED check done
LOAD.MOD 1 LOAD.MOD 1 LOAD.MOD I VALC 1
MULT.MOD 3 MULT.MOD 3 MULT.MOD 12 NAMC C
STORE.ACC (C) + MOD STORE.ACC (C) + MOD STORE.ACC (C) + MOD INDX
3:8 3:8 3:8 STOD 3:5
LOAD.MOD 1 LOAD.MOD 1 LOAD.MOD I VALC 1
MULT.MOD 3 MULT.MOD 3 MULT.MOD 12 NAMC C
ADD.MOD 1 ADD.MOD 1 ADD.MOD 14 INDX
LOAD.DR C STORE.ACC (Q) + MOD LOAD.DR C BSET 42
INDEX.DR MOD LOADBD.DR 8 LIT8 2
LTYBD.DR Q STORE.ACC DR + MOD o
STORE.ACC (DR) TWSD
7:16 4:10 6:12 6:10

(1) The record is
var coords:array [0..100] of
record
Xx:integer,
y:.real
end;

(2) Each sequence stores the number currently in ACC (2900) or on the top of the stack (B6700) into the given field.

(3) Measurements are in instructions and bytes (i : b).

© Heyden & Son Ltd, 1981

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 215

20z udy 01 U0 188n6 Aq BZEEEE/01Z/E/PZ/B10M4E/|UfLO0/WO0d"dNO OIS PEDE//:SARY W) PAPEOUMOQ

3.2 Conflicts between lengths and sizes
Consider the general instruction:

STORE REG via DR into a destination

The number of bits that are stored could be governed by the
instruction, by the size of the register, by the SIZE or LENGTH
in the descriptor register, DR, or by the tag of the destination.
There is no consensus among machines as to which part of the
instruction has the final say; indeed there is considerable
confusion in the machine specifications themselves. On the
whole, there is a tendency for the descriptor to dominate both
tags and register size, with the instruction remaining neutral.
This is an unfortunate choice. Consider the definition of coords
given earlier and how it would be accessed on an ICL2900.

Because scaling by three is not part of the descriptor ‘program’,
and SELECT is unavailable, the SIZE of the descriptor is set to
a single word and scaling is done by inline code. This is quite
acceptable. However, because the SIZE governs the length of
the operand, every time y is accessed, SIZE will have to be
changed to double and scaling inhibited. This is inconvenient in
principle and in practice. If the designers of the 2900 had
genuinely taken high level languages into account, they could
have anticipated this case and provided a streamlined instruc-
tion for resetting the control information in the upper byte of a
descriptor. As it is, the descriptor must first be indexed, then
the new type and a dummy bound loaded from the constant
area [Table 2(a)]. It is therefore more efficient to set up
duplicate copies of the descriptor initially, as in Table 2(b).
As mentioned earlier, this would then discourage rows of
descriptors.

A third possibility might be to set the size as a factor of both
fields and make use of the LENGTH facility. Although ‘word’
is a factor for the representation of both x and y, LENGTH,
on the 2900, works only in bytes. The advantage is that
LENGTH can be altered in one short instruction. Although
there is a major complication in that scaling must be done in
machine units [Table 2(c)], this is an attractive compromise.
Unfortunately, it is not acceptable because using the LENGTH
field eliminates bound checking.

In comparison, the descriptors in the original MUS5 retain the
BOUND in conjunction with the LENGTH and, furthermore,
permit SIZE to vary from bits to words. Thus scaling can be
done in user units (in this case, 32-bit half words). While one
may argue that addressing at the bit level, which is the basis for
this flexibility, is downright inefficient, this is one of those cases
where the architecture is helpful and should be used. The in-
efficiencies are confined to the hardware and it can be expected
that they will be reduced as new technology is developed.

On the B6700, 48-bit reals are adequate, which is just as well
because an array of mixed records is virtually impossible to
implement. Making use of copies of the descriptors, as in
Table 2(a) and (b), is not useful because scaling cannot be
switched off. Keeping the SIZE as one word, two words can be
moved by setting the descriptor type to string and using a
‘transfer words’ instruction as in Table 2(d). The tag, set to
double by the ‘extend’ instruction, is copied as well.

On an ideal architecture, the problem of mixed types could be
confined by setting the basic address unit large enough for all

types and providing partword accessing by descriptors and
instructions (Mullins, 1978). Two word reals, rarely needed,
will be treated as multiwords, as previously stated.

3.3 Moving structures

Since descriptors describe areas, it is reasonable to expect that
moving structures will be simple. The simplicity depends on the
definition of the MOVE instruction. Both the 2900 and the
B6700 require two string descriptors for this process, leading to
the same switching problems of the previous example. Whereas
the B6700 has instructions to transfer words, bytes, characters
or digits, the 2900 MOVE instruction refers to bytes only.
More serious than the units is the fact that descriptors are
mandatory for a MOVE. Even on the B6700, a simple name is
not an acceptable operand. On the 2900 this means that a
descriptor must be created from a stored upper half and an
offset; on the B6700 it has the drastic effect of forcing all
structures off-stack.

On an ideal architecture, the MOVE count would refer to
names and each element be handled by STORE. Thus, for
example, an array of bytes could be correctly transferred to an
array of words and be unpacked in the process. Of more value
is the freedom to specify the source or destination as a stack
address or descriptor, indexed or not.

3.4 Partword addresses

An interesting characteristic of the B6700 string descriptor and
the 2900 and MUS vector descriptors is that some or all of the
user’s units available through SIZE are at a finer resolution
than the machine units possible through ORIGIN. Table 3
highlights these relationships.

There are two ways of handling the case where U < M.

(1) The 2900 and MUS rely on the finer index being provided
by a subscript in an explicit modifier (register or store
location). For example, if the descriptor register contains a
bit vector descriptor, access via (DR + MOD) would scale
the value in MOD down by three bits and then use these for
the bit index. If no modifier is specified, then the zeroth (or
leftmost) partword is accessed. However, if scaling is
inhibited, the bit index is undefined.

(2) The B6700 interprets the INDEX field according to the size
at the time of access. In effect, this is an in situ version of the
first, with the advantage that there is only one way of
accessing the zeroth partword and less chance of an error.

There seem to be two reasons for having special string
descriptors: to obtain a finer address resolution and to define
an operand length that is independent of the bound. By
providing a different descriptor ‘program’ where finer addresses
are most needed (i.e. in text processing), the B6700 and MUS5
do not hamper normal access to vectors of words; on the 2900
a ‘scale by 4’ must be tolerated for every integer item accessed.
A LENGTH can be used by sophisticated store to store
instructions on MUS and the 2900 but it has to be put into the
descriptor and this is not always possible at compile time.

Table 3 Relationship between units in descriptors

Machine Vector sizes String sizes

B6700 Mword < Uword. .double Udigit. .word < Mword

2900 Ubit < Mbyte < Ubyte. .quad Mbyte = Ubyte

MUS Ubyte. .word < Mword Mbit < Ubit. .word
Mx x is the machine unit used in ORIGIN

Ux..y x..yis the range of user’s units in SIZE.

216 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

© Heyden & Son Ltd, 1981

20z udy 01 U0 188n6 Aq BZEEEE/01Z/E/PZ/B10M4E/|UfLO0/WO0d"dNO OIS PEDE//:SARY W) PAPEOUMOQ

Table 4 Comparison of array accesses using descriptors. Measurements are in instructions and bytes @:b)

B6700 2900

Al := X VALC I LOAD.ACC X

NAMC 4 LOAD.DR A

INDX STORE.ACC DR + (1)

VALC X

STO 5:8 3:8
A[I] := A[J] VALC I LOAD.MOD I

NAMC 4 LOAD.ACC (4) + MOD

INDX LOAD.MOD J

VALC J STORE.ACC (A4) + MOD

NAMC 4

NXLV

STO 7:11 4:12

The B6700 approach is to specify the length as an operand to
the transfer or compare instruction, thus avoiding the des-
criptor set-up and any possible conflicts. Notice that the 2900
string descriptor is deficient in that the BOUND is missing
and the LENGTH can only be specified in bytes The need for
lengths defined in bits has only recently been acknowledged
by a second major change to the 2900 hardware.

3.5 Improving descriptor programs

Before discussing alternative means of implementing arrays,
possible ways of improving the descriptor access are examined.
On the B6700, descriptors are so integrated into the design that
alternative methods are impossible. There is no indexing
possible on the stack and all off-stack segments are accessed via
descriptors. Because of the problem of doing a field selection
after an INDEX (the B6700 has no SELECT or SAFEINDEX
instructions), Sale (1976) flattened all structures so that an
array of arrays or an array of records is held in one segment
with one descriptor. The 2900 descriptors are not as central to
program structure as the B6700’s but one cannot get away from
them because they provide the only means of doing indirect
addressing. There are two indirect operand forms which
enable most instructions to reference descriptors. The first is
‘descriptor in store’ with an optional subscript in the modifier
register (MOD) and the second is ‘descriptor in DR’ with the
optional subscript in store. The use of the B6700 and 1CL2900
instructions is shown in Table 4.

Notice that the 2900’s ‘descriptor in DR’ form could be
used to optimise A[/] := A[J] because any indirect access
places the resultant descriptor in DR. The code size is
then (3:10).

To obtain the advantages of automatic bound checking and
scaling, descriptors must first be set up. It is strange that in both
machines, the sequences to do this could be considerably
improved by the definition of special purpose instructions. A
descriptor for a simple vector in the local data frame is
constructed on the B6700 in two instructions.

CONST48 type, size, bound
SETTAG datadescriptor 2:9

The origin does not appear at this stage since space is only
allocated for the array when it is first used. Recognising this and
the fact that the tag is a fixed code leads to the following
instruction:

MAKEDD type, size, bound = creates a word on the top of
the stack containing the information supplied as
the four bytes, zero in the last two and the tag set

for a data descriptor. 1:5

This is achieved in 5 bytes, as opposed to the 9 on existing
B6700s.

© Heyden & Son Ltd, 1981

The 2900 sequence for constructing a single descriptor is

STORE.LNB MOD [Get local name base

LOAD.DR MOD [into DR, via MOD

LTYBD.DR w [Set up type and dummy
bound]

LBOUND.DR bound [Insert actual bound

INCADDR.DR address [Add the origin

STORE.DR TO0S 6:14

where W is a constant, prestored by the compiler, containing
an appropriate type and size and a dummy bound. The type,
size and bound cannot appear as an immediate operand in the
LTYBD instruction because it is more than 18 bits long. This
sequence could be considerably improved by recognising the
need to load type and size information separately from the
bound. Let DESCR be defined as

DESCR.reg type, size, scaling, checking = creates a de-
scriptor in DR with the information supplied in
the 7 control bits, a bound of zero and the
contents of the base register (one of LNB,

XNB or CTB) in the origin.

The choice of registers allows for descriptors based in any of
the three name spaces to be created with this instruction,
followed by two more to add in the relevant bound and
address. Since only seven bits are relevant in the control
information byte, DESCR will always be a short instruction.
The set up sequence becomes

DESCR.LNB type, size, scaling, checking
LBOUND.DR bound

INCADDR.DR address

STORE.DR T0S 4:8

Two words of set up code, with no subsidiary constants, is a
reasonable price to pay for descriptor access.

An alternative way of reducing the overhead is to adopt the
policy of base descriptors for local arrays (Rees et al., 1981).
Sharing descriptors in this way means that the BOUND field
must be empty and bound checking inhibited, which (a)
defeats most of the object of having descriptors and (b) means
that the checking has to be reinstated as inline code. Bearing in
mind that there is a precedent for introducing new instructions
on the 2900 there is more to be gained in the long run by using
the structured features than by designing code and compilers as
if the 2900 were a linear machine.

3.6 Alternative methods for accessing arrays

Up till now, it has been assumed that the natural way to store
matrices and higher order arrays is with Iliffe vectors. Like the
substantive descriptor, these cannot be set up as constants
since a new address will be assigned for each activation of the

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 217

20z udy 01 U0 188n6 Aq BZEEEE/01Z/E/PZ/B10M4E/|UfLO0/WO0d"dNO OIS PEDE//:SARY W) PAPEOUMOQ

matrix. There is a persistent feeling among compiler writers
that Iliffe vectors are not worth the additional data space and
the overhead involved in setting them up. On a linear machine
this is true, since the addresses would be merely an expansion
of the mapping function. With hardware descriptors, a
different picture emerges.

Because it allocates segments only on demand, the B6700
provides operating system support for setting up Iliffe vectors.
The number of dimensions and upper bound (offset to zero) for
each are sent to an operating system procedure, arraydec, which
returns the substantive descriptor. This points to a table in the
operating system containing the details of the array. As soon
as the descriptor is used, the hardware and operating system
combine to set up the portion of the structure required
(Bauerle, 1974). The setting up of the call to arraydec for a
matrix takes (11 instructions, 18 bytes).

On a 2900 suitably endowed with the suggested DESCR
instruction row descriptors are set up with an explicit sequence
taking (8 instructions, 20 bytes) i.e.

DESCR.LNB control information
LBOUND.DR U2 - 12 +1
INCADDR.DR address plus (Ul — L1 + 1)
minus (U2 — L2 + 1)
LOAD.MOD —(Ul - L))
LAB: INCADDR.DR (U2 -L2+ 1)
STORE.DR TOS
COMPINC.MOD 0
JUMPNE LAB 8:20

(Without DESCR, the sequence takes 10 instructions, 26 bytes.)

The inner loop contains 4 instructions in 10 bytes. Having
executed this sequence, access to any element in a matrix is
given by

LOAD.MOD subscriptl
LOAD.DR (address) + MOD
LOAD.ACC DR + subscript2

Higher order arrays would repeat the second instruction. If the
lower bound is not zero, an explicit adjustment must be made
at run-time, as shown in the examples of Table 5(a) anc (b).
Since neither a lower bound or a lower bound bit is provided in
the 2900, there should be a more efficient way of achieving
this adjustment, such as instructions to subtract one from a
store location.

Without Iliffe vectors, a matrix is represented linearly and the
index computed by multiplication and addition of the sub-
scripts. This can be combined with the necessary bound check-
ing and lower bound subtraction by operating in a uniform
way on a dope vector. For the example in Table 5, a suitable
dope vector and access sequence would be:

B[I1[J/]—> LOAD.DR BDOPE BDOPE 4 | upper
LOAD.MOD O 0 | lower
COSA 1 13 | size
COSA J 6
LOAD.ACC (B) + MOD -6
5:2

COSA stands for check, offset, scale and add—in that order.
Mindful of the hardware realisation of the instruction, it is
defined so that the lower bound is checked immediately before
being subtracted as an offset and index is accumulated in
MOD. [This instruction is very similar to the SUB2 instruction
described by Ibbett and Capon (1978) for the MUS.]
Foreseeing the need for such an instruction, ICL provided
VMY —vector multiply. VMY is an awkward version of the
hypothetical COSA. In the first place, offset and scaling are

Table 5 Various methods of accessing arrays

(a) B6700 Iliffe (b) 2900 Iliffe vector (c) 2900 Dope vector (d) 2900 inline checks (e) 2900 Total check only
vector
B has B has B has B has B has
TYPE data TYPE descriptor TYPE vector TYPE vector TYPE vector
SIZE word SIZE double SIZE word SIZE word SIZE word
BOUND 5 BOUND 5 BOUND — BOUND — BOUND 65
SCALED SCALED SCALED SCALED
CHECKED UNCHECKED UNCHECKED CHECKED
ORIGIN of B + 6 ORIGIN of B + 6
rows have rows have BDOPE has
TYPE data TYPE vector TYPE vector 0
SIZE word SIZE word SIZE word 13 NOTE: Total subscript check
BOUND 13 BOUND 13 BOUND 6 52 only
ORIGINs SCALED SCALED -6
set by the OS CHECKED CHECKED 1
on demand ORIGIN of B[/] ORIGIN 12
VALC 1 LOAD.MOD [LOAD.DR BDOPE LOAD.ACC 1 LOAD.MOD J
NAMC B LOAD.DR (B) + MOD VMY 1 JLTZERO - error STKLOAD.MOD [/
NXLN LOAD.MOD J STORE.MOD T0S COMP.ACC 4 MULT.MOD 13
VALC J ADD.MOD 6 VMY J JGT error ADD.MOD T0S
LIT8 6 LOAD.ACC DR + MOD ADD.MOD T0S STKLOAD.ACC J LOAD.ACC (B) + MOD
ADD LOAD.ACC (B)+ MOD COMP.ACC -6
NXLV JLT error
COMP.ACC 6
JGT error
STORE.ACC MOD
STKLOAD.MOD T0S
MULT.MOD 13
ADD.MOD T0S
LOAD.ACC (B) + MOD
7:11 5:12 6:16 14:38 5:12

(1) The array is

var B:array [0..4] of array [— 6. .6] of integer;
(2) Access is to B[I][J];
(3) Measurements are in instructions and bytes (i:b)

218 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

© Heyden & Son Ltd, 1981

20z udy 01 U0 188n6 Aq BZEEEE/01Z/E/PZ/B10M4E/|UfLO0/WO0d"dNO OIS PEDE//:SARY W) PAPEOUMOQ

done before the upper bound check. Thus the lower bound is in
user units but the upper bound is in machine units! Second,
MOD is used by the instructions as a working register so that
subscripts cannot be accumulated there in a natural way. Third,
the definition is incompatible with the descriptor bound
checking mechanism in that the scaled subscript must be
<BOUND (descriptors) and <BOUND (VMY). The actual
2900 code for using VMY is given in Table 5(c).

From the byte counts in Table 5, it can be seen that after four
references to the matrix in a program, the Iliffe vector method
will have recouped the size of the code for setting up the row
descriptors, compared to VMY. As regards speed of access,
even without going as far as to time the sequences, it is obvious
that VMY is a lengthy operation—three store accesses, two
comparisons, a multiplication and a subtraction.

A third option is to linearise the array and do the checking,
scaling and row mapping inline as shown in Table 5(d). It is
obvious from the size of the code that the 2900 does not provide
any instructions to assist this time-honoured method and that
Iliffe or dope vectors are far more efficiently implemented.
Timing figures indicate that VMY is at present slower than the
equivalent inline sequence. While VMY could be improved in
the future, the explicit JUMPs in the inline code will always
disturb the pipeline.

These results indicate that in terms of code size and speed, the
investment in Iliffe vectors is worthwhile. The justification for
the additional data space can only be subjective. First, the
occurrence of two dimensional arrays in student and scientific
programs is between 9-5 % (Knuth, 1971) and 14-1 %, (Robinson
and Torsun, 1976) of all variables declared. They do not, there-
fore, represent a significant portion of the entire data space and
the increase caused by row descriptors can be absorbed.
Second, for a very large (say 100 x 100) matrix, the increase
would be 100 descriptors in 10000 elements—once again, this is
tolerable when viewed against the speed of access achieved by
virture of these 100 descriptors. Third, an explosion of row
vectors in three and higher dimensional arrays would be very
rare—Robinson and Torsun report only one three-dimensional
array and Knuth measured 129 of accesses to arrays or
functions as having three arguments. Finally, higher dimensions
in FORTRAN programs are used to hold what are very likely
record structures and would be represented as such in a modern
language.

Table 5 gives rise to two further observations.

(1) A second non-zero lower bound will increase the Iliffe
vector code by two bytes for making the adjustment. The
dope vector sequence is unaffected. The inline code remains
the same because the address in the descriptor can be
suitably offset at compile time. It is important to realise that
this can only be done if the descriptor bound checking is
inhibited.

(2) With delayed indexing employed on linearised arrays, the
subscripts will be stacked in order of appearance and need
to be reordered for a row storage mapping function. In
Table 5(c), I and J (which could have been expressions) are
loaded, checked and stacked, whereupon they must be
swopped because / is needed for the initial multiplication.
The instruction STACKLOAD.MOD TOS does this
neatly, but the sequence becomes more complicated with
more than two subscripts. On a linear machine, the sub-
scripts would be stored in named temporary locations and
the question of order does not arise. This illustrates that,
with a push-down store, delayed evaluation cannot be
carried to any length without causing difficulties which
were not inherent in the original operation.

3.7 Descriptors and optimisation

Descriptors are themselves an optimisation: they represent the
factoring out into hardware of the common operations of
scaling and checking subscripts. Of the immediate optimisations
commonly used in compilers, one has relevance here, namely
constant folding. Descriptor access leaves two operations to
inline code—lower bound subtraction and scaling for multi-
words. If the subscript is a constant then these operations can be
done at compile time. The saving is two or three bytes in each
case on the B6700 and 2900 and is simple to include in the
compiler.

Of course, the bound checking done automatically by the
descriptor is then superfluous and instructions such as
CONSTINDEX should always be provided. If descriptors are
not used for access to arrays, the equivalent inline bound check
takes 12 bytes (or 10 if a bound is zero) as shown in Table 5(d).
In this situation, the recognition of constant subscripts will
result in considerable savings. Following on from this idea,
Welsh (1981) developed a technique for checking well defined
subscripts at compile time. This is an admirable aid to program
development and, on a linear machine such as the 1900, can
certainly reduce the overhead of bound checking. It could
therefore be argued that because checking is not required in a
large number of cases, more efficient code can be obtained
without descriptors. As shown in Table 6 this is only true for a
simple vector without checking. Since this is a common case,
the descriptor method can match that of the inline code by
providing a copy descriptor with bound checking off and the
address suitably offset. The compiler can then choose the
appropriate ‘program’ at each access. However, for matrix
access there is nothing to be gained by avoiding descriptors for
Iliffe vectors.

Given this evidence, it is surprising that the 2900 Pascal
compiler does not use descriptors until forced to do so for the
final access to a subscripted item. The reason is a combination
of misplaced faith in compile time range checking as an aid to

Table 6 The effect of compile time subscript checking on the 2900

Access to Using descriptors Inline code
Instr Bytes Instr Bytes
AlI] 3 8 7 20
A[I] no check 3 8 2 6
B[I][J] 5 12 14 38
B[I][J] one check 5 12 8 22
B[I][J] no checks 5 12 5 12

(1) The arrays are
var A:array [1..10] of integer;
B:array [0..4, —6..6] of integer;
(2) Measurements are in instructions and bytes (i:b)

© Heyden & Son Ltd, 1981

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 219

20z udy 01 U0 188n6 Aq BZEEEE/01Z/E/PZ/B10M4E/|UfLO0/WO0d"dNO OIS PEDE//:SARY W) PAPEOUMOQ

reducing code (as distinct from its role in compile time error
detection) and a largely unwarranted fear of set-up overheads.
For uniform treatment inside the compiler, entire and com-
ponent arrays are bereft of descriptors, leading to the base
descriptor mechanisms described earlier. While it is true that
setting up descriptors in a virtual machine is more visibly time
consuming than in a demand segment system, it is only by
exercising the structured features of a machine like the 2900
that designers and engineers will be encouraged to improve
them. The basic philosophy of the 2900 is sound: it is unfor-
tunate that tradition and certain unwieldy aspects of the
machine have so far resulted in it being treated as an old-
fashioned linear model.

3.8 Future possibilities

Although descriptors, as discussed above, are only suitable for
aggregate structures, the idea of storing information about data
with the data could be extended to scalars. In particular, the
bounds of a variable declared on a specific subrange could be
stored with it and used by the hardware to validate any
attempt to store a value there. For example,

var daysofweek:1..7,
colours:(red, blue, indigo, yellow, green, orange, violet);

could be represented as bounded scalars as follows

IJ l 7 I valuew
LO l 6 I value]

This is the ideal, but the same considerations concerning
bounds that were discussed in Section 1.4 are relevant here, i.e.
how to reconcile the field width of a bound with the possible

values one would want to put in there. These ideas have been
explored in Bishop (1980).

4. Conclusions

Descriptors are a powerful tool and provide for easier code
generation for high level languages as well as increased security
in data handling. Current hardware implementations of
descriptors are not easily used by modern high level languages,
but could be enhanced by the introduction of additional
instructions, particularly to facilitate setting up descriptors
dynamically. For future machine designs, the principles
developed and discussed in this paper, if adhered to, will make
descriptors a truly usable facility. In summary, these are

(1) A descriptor should occupy no more space than the normal
basic machine unit e.g. one word (Section 1.1).

(2) To save space, a lower bound can be replaced by a one bit
offset, for use by aggregates starting at 0 or 1. Any other
starting point will be represented as offset from zero
(Section 1.4).

(3) Index instructions which omit bound checking and/or
scaling are essential for implementing field selection, as well
as for access to arrays with constant subscripts. These
facilities should not be controlled by the descriptor
(Sections 1.4, 1.5).

(4) If the machine is a stack machine, instructions to add,
subtract and multiply by a constant should be available.
That is SCALE 3, rather than CONST 3; MULT. These
instructions could also set overflow when addressrange is
reached, rather than the machine’s integer limit (Section
1.4).

(5) When choosing to implement indexing by replacement or
balancing, the effect of these on segmentation and on the
methods of storing arrays must be borne in mind. That is,

220 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

replacement favours segments on demand and Iliffe
vectors; balancing favours segment tables and a linear
representation for arrays (Section 1.6).

(6) A descriptor should not control the sizes of items fetched or
stored in its area because these could well vary. Store and
move instructions should be provided with adequate count
facilities for this purpose (Sections 3.2, 3.3).

(7) The units in which users may specify items must always be
either a multiple of the machine units or an integral factor
of them, otherwise additional indexing facilities will crop
up on the side (Section 3.4).

(8) Instructions to set up descriptors should be definite and
concise. If certain fields of descriptors can be changed at run-
time then instructions should be provided to do this
(Section 3.5).

Acknowledgements

The assistance and advice of Arthur Sale, University of
Tasmania, and David Messham, ICL (Kidsgrove) is gratefully
acknowledged.

Appendix

Examples of descriptor formats from the Burroughs B6700,
the ICL2900 and the original version of MUS5 the Manchester
University MUS are given. The current MUS descriptors
resemble those of the ICL2900.

t [o. BOUND/INDEX ORIGIN
a
i'g S., word word
INDEXED FLAG
SIZE = (word, double) [word has 48 bits]
(a) TYPE = data
tTo. BOUND/INDEX ORIGIN
19| S.| 4 hbyte word word
INDEXED FLAG
SIZE = (digit, char, byte, word)
(b) TYPE = string
BOUND ORIGIN E+ INDEX ;
segment . word !
byte
BOUND CHECK INHIBIT FLAG
UNSCALED FLAG
SIZE = (bit, byte, word, double, quad) [word has 32 bits]
(c) TYPE = (vector, descriptor) [if descriptor, SIZE = double]
N LENGTH ORIGIN E+ INDEX
) segment . word '
L size = byte byte
(d) —— TYPE = string
LOWER B UPPER B. [ORIGIN + INDEX
l segm.. word
SIZE = (byte, quarter, half, word) [word has 64 bits]
(e) TYPE = (vector, descriptor)
LENG
BOUND |ORIGIN + INDEX '
N segm.. word ' bit
i: SIZE = (bit, byte, quarter, half, word)
f) TYPE = string

Fig. A1 Descriptor formats. (a) B6700 dara descriptor; B6700 string
descriptor; (c) 2900 vector descriptor; (d) 2900 string
descriptor; (e) MUS vector descriptor (outline); (f) MUS
string descriptor (outline)

© Heyden & Son Ltd, 1981

202 udy 01 U0 188nB AQ BZEEEE/01LZ/E/PZ/B10M4E/|UfLO0/WO0d"dNO" oIS PEDE//:SARY W) PAPEOUMOQ

References

BAUERLE, D. A. (1974). The Organisation of Fast Store in the B6700, in Computer Design, Series 3 (17), pp. 387-398, Infotech.
BisHop, J. M. (1980). Effective Machine Descriptors for Ada, SIGPLAN Notices, Vol. 15 No. 11, pp. 235-242.

CREECH, B. A. (1970).
ICL (1976).
IBBETT, R. N. and CaPpoN, P. C. (1978).
JENsSEN, K. and WIRTH, N. (1972).
KnNuth, D. E. (1971).
Morris, D. and IBBeTT, R. N. (1979).
MuLLINS, J. M. (1978).
REEs, M. J. et al. (1981).
275. Wiley, Chichester.

Architecture of the B6500, in Software Engineering, Vol. 1, pp. 29-43, ed. J. T. Tou, Academic Press, New York.
2900 Primitive Level Interface, Product Specification Document 2.5.1, Issue 5/1, May.
The Development of the MUS5 Computer System, CACM, Vol. 21 No. 1, pp. 13-24.
Pascal User Manual and Report, Springer, Berlin.
An Empirical Study of FORTRAN Programs, Software—Practice and Experience, Vol. 1 No. 2, pp. 105-133.
The MU5 Computer System, Macmillan, London.
Code Generation and Structured Architectures, Ph.D. Thesis, University of Southampton.
Pascal on an Advanced Architecture, in Pascal—the Language and its Implementation,ed. D. W. Barron, pp. 261-

RoBinsoN, S. K. and Torsun, 1. S. (1976). An Empirical Analysis of FORTRAN programs, Computer Journal, Vol. 7 No. 7, pp. 56-62.

SALE, A. H. J. (1976). Private correspondence, 15 September.

TANENBAUM, A. S. (1975).

WELSH, J. (1981).
Chichester.

Structured Computer Organisation, Prentice Hall, New Jersey. _
Two 1900 Pascal Compilers, in Pascal—the Language and its Implementation, ed. D. W. Barron, pp. 171-179. Wiley,

Book reviews

Cobol Programming, by Peter Abel, 1980; 408 pages. (Prentice
Hall, £8-40)

Although this book is subtitled A4 Structured Approach, the structure
of the book leaves something to be desired. The first chapter, as an
introduction to computers, is redundant. If the reader needs this
information he will almost certainly not be able to profit from the
rest of the book.

The book is based on IBM implementations of COBOL, which
makes some of it of limited value. This is, sadly, especially true of
the chapters on file organisation methods: sequential files are
adequately covered; indexed files are described including much of
the gory detail of overflow records; relative files receive only a
sketchy treatment; one chapter describes IBM’s VSAM files but
with no discussion of when such organisation is appropriate.

A major criticism, which is often applied to such books, is the use
of the flowchart as a design tool. Structured analysis and design
are not mentioned at all, and the flowcharts incorrectly map the
PERFORM ... UNTIL ... format. Since the programs are correct,
they do not implement the given flowcharts; this is confusing to
the novice and irritating to the informed.

Several criticisms of detail will suffice to give a flavour of the style.
A section is devoted to describing buffers on p. 105, and the only
other reference to this topic is a single paragraph on p. 302.
REDEFINES is used in example programs before its effect is
explained. MOVE CORRESPONDING, whose use can be a major
aid in a well organised COBOL program, is described with three
short paragraphs and a 16 line listing; the data movements which
occur as a result of the example are not disclosed!

Use of the standard COBOL syntax notation is somewhat sporadic,
and a summary in an appendix would have been a useful adjunct.
The typographical layout of the book could be better: all COBOL
is reproduced from chain-printer output, which is occasionally
illegible. The author’s narrative style is on the whole clear, but his
objectives would have been better met by choosing a more limited
language subset and giving it fuller treatment. In short, there are
better books on COBOL. They are, however, often more expensive.

S. C. HoLpeN (Manchester)

© Heyden & Son Ltd, 1981

More Chess and Computers, by D. Levy and M. Newborn, 1980;
177 pages. (Computer Science Press, $12-95)

This book analyses a number of chess games involving computers
played in the years 1975-1978. It starts by outlining the bet made by
David Levy in 1968 that no computer would beat him in a match
within 10 years. Several challenges were made and most of the
resulting games are analysed in the book. The second chapter
“The State of the Art” describes several of the games involving the
strongest computer chess program CHESS 4, plus one game involv-
ing a purely positional program from Germany. The third chapter,

-on Blitz play, analyses the defeat by CHESS 4.6 of various chess

Masters and one Grand Master (Michael Stean) at Blitz chess.
Chapter 4 discusses two tournaments which took place in 1977,
The Second World Computer Championship in Toronto and The
Eighth ACM Computer Championship in Seattle.

Perhaps the most interesting part of the book is Chapter 5 which
describes the relatively new field of microcomputers and chess.
This is the commercial end of computer chess and inevitably financial
considerations place very tight restraints on the program designer.
Chapter 6, “Computer Chess Miscellany” is followed by Appendices
on an unsolved problem and a listing of over 50 games played in
computer tournaments in 1977. Finally there is a bibliography on
computer chess.

The book is unfortunately marred by numerous errors. One might
expect a few errors of chess notation involving ambiguous moves or
erroneous use of the + symbol for check, but not the large percentage
of errors in the illustrated board positions. As none of the illustrations
have any indication of their location in a game, the reader must
assume that they are positioned correctly in the text. In fact six of
the illustrated positions were in the wrong place in the text and in
addition seven illustrations had pieces missing, wrongly positioned
on the board or transformed to a different piece type.

In summary, the book gives a good description of the state of the
art up to 1978, but the reader should ignore the illustrations and
play the games through with a chess set.

P. Kent (Didcot)

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 221

20z udy 01 U0 188n6 Aq BZEEEE/01Z/E/PZ/B10M4E/|UfLO0/WO0d"dNO OIS PEDE//:SARY W) PAPEOUMOQ

