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A decomposition theory for flowchart schemata is presented, and a series of algorithms for
implementing the nested decomposition is discussed. It is suggested that the utilisation of this
process as an initial phase of a flowchart structuring routine, will ensure the recognition and
preservation of a given flowchart’s inherent topology.

(Received October 1979)

1. Introduction

In recent years, there has been a considerable interest in the
development of methods for the restructuring of flowcharts.
This activity can all be traced to the paper by Bohm and
Jacopini (1966), in which it is shown that ‘corresponding to
each flowchart, there is an equivalent ‘structured’ flowchart’.
Even though the proof of this statement was constructive, in
that an algorithm was given for effecting the restructuring, a
flood of articles (e.g. Ashcroft and Manna, 1971; Wulf, 1972;
Williams, 1974) continued to appear, each claiming a superior
structuring technique. A more recent paper (Urschler, 1975)
provides a comprehensive summary of these contrasting
methods, and offers yet another approach.

In almost every instance where an improved restructuring
technique is cited, the authors claim to have preserved or
retained the topology of the original flowchart. There is no
doubt that such an aim is desirable, if we can only decide what
it means. In this paper, we seek to lend a more precise under-
standing to such a claim, and we then describe a flowchart
decomposition technique that will ensure that this goal is
achieved—at least, by any structuring method that derives this
decomposition as its initial phase. In retrospect, our flowchart
decomposition theory is seen to be of independent interest,
toward obtaining a flowchart canonical form, where a program’s
independent processes are most clearly delineated.

2. Flowchart schemata

Intuitively, a flowchart is a diagram of program flow. In giving
uninterpreted abstract names to the flowchart boxes, we speak
of a schema, and for convenience, we choose to indicate the
program flow in an assembly language style. Accordingly, we
define a flowchart schema F over X and Y to be an n-sequence
of labelled statements of the forms

i:x(j) or i: P(j, k)
there being one such statement for each i from 1 to n, having
1 <j k<n+1 )
xeX and PeY )

and, for each label i, at least one path
-n+1 A3)

] = cve o> e

in the relation — induced by F.

This relation admits 0 — 1 to designate the starting point, and
relations i — jfori:x(j),and i — j, k for i: P(j, k). It is quite
common to draw the statements of X as square or rectangular
boxes (representing elementary operations—of assignment,
input, output etc.) and to draw those of Y as diamond-shaped
boxes (signifying a program decision); this will be done in the
present examples. In the case of the latter, it is also quite
common to mark the two outgoing flowlines with distinct
symbols; + and — will be used for this purpose. With these
conventions, Fig. 1(a) shows flowchart schemata with the
associated flowchart [Fig. 1(b)]. Note the use of lower case

(@)
1:4(2,3)

2:a(4)
3:b(4)
4:¢c(5) |
5: d(6)
6: B(7,14) |
7. C98)
8: D(9,11)
9: £(10,13)
10: e(9)
11: £(12)
12: g(13)
13: h(4)
14: i(15)

Fig. 1 (a) Flowchart schemata and (b) the associated flowchart

letters for the operations of X and upper case letters for the
decisions of Y, another convention that will be followed.

Of primary concern in the sequel are those subsets of labelled
statements in a flowchart F, that exhibit some of the same
characteristics [i.e. properties (1)-(3) above] as do flowcharts
as a whole. Of course, property (2) is already inherited from the
overall flowchart. With this much in mind, it can be said that
a subset of statements G is a subflowchart of the flowchart F
if there are distinct labels

VeG A¢G
and
i»j=j=Y
i¢G,jeG
jeG k§¢G

and also each j e G lies on at least one path from V to A
and we write G = (¥, A). Note that except for renumbering,
G is a flowchart schema in its own right, and this fact alone
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Fig. 2 Three subflowcharts for the flowchart in Fig. 1

should justify our terminology. Moreover, F = (1, n + 1) in
viewing F as a subflowchart of itself.

In Fig. 2, three subflowcharts are depicted, for the flowchart
given in Fig. 1. With the notation just introduced, these would
be denoted as (7, 4), (4, 6), and (4, 5), respectively. In reference
to the latter, we note that every elementary flowchart box
(a member of X) can be viewed as a subflowchart. We call
these the elementary subflowcharts.

In the case of a general flowchart, it almost seems that there
could be little in the way of an underlying theory, something
that would be universally applicable. And yet, consider the
following relationship among the labelled statements of an
arbitrary flowchart (schema) F. We say that i is dominated by
J (and we write i < j) if every path from i to n + 1 includes j.
This is easily seen to be a partial order, and the resulting
poset is a tree rooted at n + 1, as can be seen in considering the
consequences of the following.

Proposition 1
If F is a flowchart and i € F, then there is a unique maximal
chain fromiton + 1.

Proof. Since i < n + 1 for every i € F, the existence of such a
maximal chain follows from finiteness considerations. Unique-
ness is shown by induction.

The tree rooted at n + 1 so obtained is called the dominance
tree (Tarjan, 1972) of the given flowchart F = (1, n + 1). For
the flowchart of Fig. 1, one obtains the dominance tree of
Fig. 3, by a method discussed in Section 4. In general, the
connection of these trees with the search for subflowcharts is
revealed in the following.

Immediate
Label gominator

Fig. 3 Dominance tree for Fig. 1
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Proposition 2
Let G = (V, A) be a subflowchart of F. Then V < A in
the dominance tree of F.

Proof. One must show that every path from ¥V to n + 1 includes
/. Such a path begins in G but ends outside G. According to
property (2) in the definition of a subflowchart, the first step
in this path to go outside G must be a flowline to A ; this
observation completes the proof.

By way of illustration, note that 7 < 4,4 < 6,and 4 < 5 in
Fig. 3, in accordance with the three subflowcharts of Fig. 2.
In order to obtain a partial converse to this proposition, the
introduction of the following definition is needed. If j < k in
the dominance tree of a flowchart F, the interval (j, k) is the
collection of labelled statements—excepting that labelled by k
itself—lying on paths from j to k. In general, these will not
constitute a subflowchart, as is seen by considering the interval
(8, 4) in the case of Fig. 1. But the condition that governs such
questions is provided in the following proposition, offered
without proof.

Proposition 3
Let j < k in the dominance tree of a flowchart F. Then the
interval I = (j, k) is a subflowchart of F if and only if
h—i = i=j
hélLiel
Note: Write j < k in such cases.

3. Decomposition theory
In order to facilitate the discussion of flowchart decomposition,
the schemata of Section 2 need to be generalised. Here, a
structured (flowchart) schema S over X and Y is introduced
which permits additional labelled statements of the form

i f(j)

where the fs are structured schemata, all over again. It is this
allowance for recursion that will permit the treatment of the
nested decomposition of flowcharts. When interpreting a
structured schema as a flowchart F, it is important to remember
that the entire flowchart for f is to be substituted at its point
of occurrence, with a single entry point i and exit point j. It
follows that the flowchart for f'is a subflowchart of F.

In general, there will be any number of subflowcharts f;,

f2, - . . fn s0 appearing in the representation of a structured
schema S; this decompositional structure can be denoted
F = S(fl!fZ’ .. fm)

Of particular interest is the case where the schema takes the
form

1:£/1(2)

2:£,(3)

m:fo(m + 1)

i.e. that of a sequential decomposition into a series of successive
subflowcharts. This can be written

F=fiof0.. fn
with the occasional use of the alternative form
VSiifs oo fmls
in order to call special attention to this important case. More-
over, a flowchart F that has no nontrivial sequential decomposi-
tions is said to be sequentially irreducible.

Theorem 1
Every flowchart F has a unique sequential decomposition

F=fiofso...fn
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into sequentially irreducible subflowcharts.

Proof. For any flowchart F = (1, n + 1), there will exist a
unique maximal chain

l=ig<iy<...i,=n+1
with the property that the only flowlines entering (i, i, ,) do
so in coming from (i, _,, ;). According to Proposition 3, each
of the intervals f, = (i,_,, ;) is a subflowchart of F. Moreover,

the f, are sequentially irreducible, or otherwise the maximality
of our chain would be contradicted.

With the flowchart of Fig. 1, in relation to the proof of Theorem
1, the maximal chain
1<4<14<15

is found, and accordingly, the flowchart has the sequential
decomposition

F=(1,4)0(4,14) 0 (14, 15
In the alternative form mentioned previously, we thus obtain
the structured schema

<l

tAQ2, 3)
:a(4)
:b(4);
:c(2)
:d(3)
:B(4, 11)
:C(6, 5)
: D(6, 8)
1E(7, 10)
:e(6)
8:1(9)
9:2(10)
10:h(1);
1:i(2)
A
representing the three sequential subflowcharts of Fig. 4.
Note that each of these subflowcharts has the property of
being properly contained in ‘a larger subflowchart. Thus,
(1, 4) is contained in (1, 14), (4, 14) is contained in (1, 14)
and (4, 15), etc. It is evident that a subflowchart of F is maximal

N AWV E W~ W —

(c)

D>~ {~}-<

Fig. 4 Three sequential subflowcharts for the maximal chain of
Fig. 1

260 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

if it is not properly contained in a larger subflowchart, other
than F itself. Moreover, F is maximally irreducible if the only
maximal subflowcharts are the elementary ones. In general,
the components of a sequential decomposition may be decom-
posed along the following lines.

Theorem 2
Let F be any sequentially irreducible flowchart. Then there are
unique maximal subflowcharts f; and a structured schema S,

such that

F=58(/» 10
Proof. The existence of maximal subflowcharts follows from
finiteness considerations. Since the elementary subflowcharts
are partitioned by the maximal ones, these maximal subflow-
charts are unique. Finally, the schema S is obtained by treating
the fs as if they were elementary flowchart boxes.

Corollary. Every flowchart F has a unique decomposition

F=S8(fisf12 - - -fln,) 0 S,(f21>f225 - - ~f2n;)°
O Sm(fmhfmb . 'fmu,,‘)

with each f;; maximal in S;. Since the same is true for the
subflowcharts f;, we are led to a unique nested or iterated
sequential-maximal decomposition of any flowchart F.

In the decomposition of Theorem 2 for the case of Fig. 4(b),
it is found that there are two maximal subflowcharts, namely
(1, 3) and (4, 1), as shown in Fig. 5. Accordingly, there is a
schema S corresponding to Fig. 5(a), and an overall structured
schema for representing our decomposition (that of Theorem
2) as

1:¢(2) 1:1:¢(2)
2:d(3) 2:d(3)(2)
3: B(4,11) 2: B(3,4)

4: C(6,5) 3:1: C3.2)
5: D(6,8) = 2: D(3.5)
6: E(7,10) 3: E@4,7)
7: e(6) 4: e(3)
8:7(9) 5:/(6)

9: g(10) 6:g(7)
10: A(1) 7: h(8) (1)

Note that the two maximal subflowcharts, in turn admit a
sequential decomposition, as mentioned in the corollary.
Consideration of such nested decomposition of the example,
however, is left for discussion in the next section.

4. Algorithmic considerations

The automatic and mechanical implementation of the decom-
position of the preceding section is a separate but equally
important question. It is not our intention to provide all the
details here, but only to identify the broad outlines of the
various algorithmic processes, relating to the given decom-
position theory. From all that has gone before, it is quite
apparent that the dominance tree of a flowchart will play a
central role in the implementation. Accordingly, its derivation
is the goal of the first of three algorithms to be discussed.

Algorithm 1

In the terminology of Proposition 1, the successor of / in the

unique maximal chain from i to n + 1 is called the immediate

dominator of i € F. Clearly, the dominance tree of a flowchart

F is completely determined by the list of all of the immediate

dominators. These are obtained as follows

(a) for i:x(j) the immediate dominator of i is j;

(b) for i:P(j, k) all cycle-free paths from i to n + | must be
considered, and the first junction common to all of them
is the immediate dominator of i.

Note, however, that a more efficient method for handling the
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Fig. 5 Two maximal subflowcharts from Fig. 4(b)

latter case has been given elsewhere (Tarjan, 1972). In any
event, the list shown at the left of Fig. 3, for our flowchart of
Fig. 1, leading to the dominance tree shown, would be obtained.

Algorithm 2
The idea here is to use the dominance tree, together with
Propositions 2 and 3, in searching for the sequential sub-
flowcharts f; to appear in the decomposition of Theorem 1.
According to Proposition 2, it is necessary only to find the
appropriate subchain

l =i, <ip <...
of the maximal chain

=jo<ih <...i=n+1

in the dominance tree. Take iy, = j, =1, and assume that i,
has been found, then search upward in the maximal chain, and
choose i, as the first point with i, < i,,, and the added
property that all flowlines entering (i}, i;,+4) do so in coming
from (i,_,, §). Stopping on reaching n + 1, the resulting
subchain provides the required series of sequential subflow-
charts, in setting fy = (ix— 1, i)

Iy =n + 1

Algorithm 3

Again the dominance tree and Propositions 2 and 3 are used,
in order to search for the maximal subflowcharts f; to appear
in the decomposition of Theorem 2. According to Proposition
2, only the intervals in the dominance tree need to be considered.
Moreover, intervals on the path from 1 ton + 1 can be ignored,
since we are now dealing with a sequentially irreducible
flowchart. From the remaining list of intervals, delete those
that fail the condition of Proposition 3. Of those that remain,
subflowcharts that are properly contained in others are
deleted ; finally the maximal subflowcharts remain. In collaps-
ing these to elementary flowchart boxes, we obtain the schema
S in the representation of Theorem 2. An alternate procedure
for finding the maximal subflowcharts would make use of
the fact that the elementary subflowcharts are partitioned by
the maximal ones, with the result that every elementary sub-
flowchart is contained in a unique maximal subflowchart.

© Heyden & Son Ltd, 1981

In order to obtain the full nested sequential-maximal
decomposition of a given flowchart, as described in the corollary,
Algorithms 2 and 3 must be called recursively, until all
subflowcharts are irreducible, both sequentially and maximally.
These two conditions of irreducibility are sufficient for the
termination of the recursion. By way of illustration, let us
return to the sample flowchart of Fig. 1. Recall that we have
already demonstrated its sequential decomposition, in con-
nection with Fig. 4. In addition, we have discussed the maximal
decomposition of one of the three subflowcharts, as summarised
in Fig. 5. The recursive application of Algorithms 2 and 3 will
finally yield the structured schema

v
11 A2, 3)
2: a4)
3: b(4);
1:'V
1:¢(2);
1:d(2)
A (2)
2: B(3,4)
3.V
1: C3, 2)
2: D@3, 4)
3:1: EQ2, 3)
1: e(1) (5)
4: Y
1: f(2);
1: g(2)
A (5);
1: A(2)
A 1);
1:i(2)
A

Note (parenthetically) that the pairs ¥V, A act as begin—-end
brackets, in the sense of an ALGOL or Pascal program. As a
matter of fact, that is how these will be translated in the
discussions of the next section.

5. Applications to the structuring problem

Most flowchart restructuring algorithms will include some form
of preprocessing. Thereafter, the restructuring will generally
proceed as a kind of induction on the size of the flowchart.
Here, we are recommending a more thorough preprocessing
phase, to ensure that any inherent structure in the original
flowchart will be recognised by the processes that follow. It
is our contention that this structure was quite possibly of the
utmost significance to the design and intent of the algorithm,
even though the original flowchart was not fully structured
in any strict sense.

Almost certainly, any subflowcharts that appear in an algor-
ithm’s formulation will have the meaning of some independent
processes, perhaps central to our understanding of the algor-
ithm as a whole. As the preprocessing phase, it is suggested
that the complete recursive sequential-maximal flowchart
decomposition be developed first, as described in the corollary.
Thereafter, the actual restructuring can begin on the nested
subflowcharts of the decomposition. In whatever way these are
restructured, their integrity as subflowcharts will remain intact,
all to the advantage of a better understanding of the restruc-
tured version of the algorithm.

An additional advantage in this approach should not be
overlooked. Most existing restructuring algorithms are quite
limited as to the size of flowchart that can be treated. This is
perfectly understandable, owing to the inherent complexity
of such algorithms. But if the complete flowchart decomposition
is first obtained, and only then are any of the structurisers
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applied to the embedded subflowcharts in turn, more flowcharts
must be considered; however, these are smaller in size. It is
expected that this feature will permit the consideration of input
flowcharts of a size that might otherwise be prohibitive.

By way of illustration, consider the sample flowchart of
Fig. 1 once again. Originally, there was a flowchart of 14
labelled statements. In applying the complete decomposition
algorithm, we are left to consider (sub)flowcharts of size at
most four, as is seen by reviewing the structured schema
concluding the last section. It could be argued that our example
has been contrived, in order to provide a dramatic illustration
of this point. But a more realistic appraisal would suggest
that such reductions are not atypical. If the algorithm was
designed in a rational manner, with today’s recognition of the
importance of structure, we would have to expect a fair
density of subflowcharts, and a corresponding reduction in
maximum flowchart size, after the decomposition routine had
been performed.

Suppose now, that we are operating in the context of a set
> of standard schemata, those at our disposal for restructuring
purposes. Typically, we might have

> = {whilePdo...,if Pthen...else...,...}
inaddition to the sequence construct (begin. .. ;... ;;...end),
itself not considered as a member of the set Y, but nevertheless
always available. Discounting the notation used here, the
members of Y are thought to be schemata, in the sense already

Fig. 6 The two remaining unstructured schemata after restructuring
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