TRANSPLINE—A system for representing curves using
transformations among four spline formulations
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Various techniques of curve representation have been developed and each has properties that make
it more appropriate in certain situations than in others. Thus, it is very beneficial to be able to
transform between formulations in order to invoke the one which is best suited to any particular
instance. This concept has been applied to a set of four parametric spline curve formulations and is
demonstrated in the TRANSPLINE interactive curve representation system. The available
formulations are the interpolatory spline, uniform B-spline, spline under tension, and v-spline.
The mathematical theory of each formulation is briefly reviewed, the transformations between
them are derived, and the system implementation is described.

(Received August 1980)

1. Introduction

Various mathematical techniques of curve representation have
been proposed, and each one has advantages and drawbacks
which make it more suitable for certain purposes than for
others. For this reason it would be very desirable to have the
capability of transforming between formulations so as to be
able to exploit the particular advantages of one formulation
when they are most needed (Barsky, 1979).

The TRANSPLINE interactive curve representation system
demonstrates the application of this concept to a set of four
parametric spline curve formulations, each of which was
selected on the basis of its appropriateness to a different phase
of design. The interpolatory spline is ideal for initial data entry
since it is much easier to establish a rough approximation of a
desired curve shape by specifying points which lie on the curve,
rather than points which lie near the curve. The uniform
B-spline is well suited to the modification of already entered
data because the local nature of a B-spline allows a change to
be made to one portion of the curve without altering the re-
mainder of the curve, as would be the case if an interpolatory
spline formulation were modified. The spline under tension
and v-spline are appropriate for the final shape definition
because of the capability of the former to flarten spline
segments which may have too great a curvature, and of the
latter to sharpen corners while maintaining the desired con-
tinuity properties of the spline.

Complete explanations of the parametric representation and
the mathematical theory of the formulations can be found in
Barsky (1981a; 1981b); a brief review will now be provided
and the transformations among the formulations will be
derived. Finally, the system implementation will be described;
a more detailed presentation is given in Barsky and Thomas
(1980).

2. The formulations

2.1 Interpolatory spline

2.1.1 Explanation. A cubic interpolatory spline (Rogers and
Adams, 1976; Schultz, 1973) is a piecewise function, composed
of polynomials of degree not exceeding three, called spline
curve segments. 1t interpolates a set of points and satisfies the
constraints of positional continuity along with continuity of
the first and second parametric derivative vectors.

A spline segment can be defined by specifying the position of
each endpoint along with the corresponding value of the
first derivative vector. This specifies cubic Hermite inter-
polation (Schultz, 1973) which has continuity of position and

the first derivative vector trivially guaranteed by their specifi-
cation at each interior point. In cubic spline interpolation,
continuity of the second derivative vector is achieved at the
expense of the freedom of choosing the value of the first
derivative vector at each interior point.

There exists a special set of values of the first derivative
vector with the property that the resulting piecewise cubic
Hermite curve has a continuous second derivative vector.
Thus, the cubic interpolatory spline can be constructed by first
determining this set of values and then invoking cubic
Hermite interpolation using these values of the first derivative
vector at the interior points.

2.1.2 Hermite interpolation. As explained above, each curve
segment in cubic Hermite interpolation is specified by defining
the position of each endpoint as well as the correspond-
ing value of the first derivative vector. Specifically, let
{Py,P,, . ..P,} beaset of m + 1 points to be interpolated
and {P}, P!, ... PL} be the set of corresponding values of
the first derivative vector. Parametrically, the ith curve segment
is described as the parameter u varies from a value of u;_ at
the beginning of the segment to a value of u; at the end. In
particular, this curve segment can be written as

1 1
Qi(u) = Z > gj,k(ui—bui;u) P{:-1+k 4))
ji=0 k=0

for
Uiy S u<u; i=1,...m
The functions g;(u;—,, u;;u) are the generalised cubic
Hermite basis functions and can be written in matrix form as
[go,0(ui— 1sui3u) Lo, (Ui 1suisu) 8y 0(Ui—y,Uiu)
gl,l(ui—hui;")]

- 2 -2 1 1 1
=[wwwll| -3 3 -2 —] 1
0O 0 1 O Au )
1 0 0 O Au
where
w=li_T::;‘ Au; = u; — u;_,

2.1.3 Determining the set of values of the first derivative vector.
The process of determining the set of values of the first deriv-
ative vector at the interior points that guarantees continuity of
the second derivative vector requires the formulation and sub-
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sequent solution of a system of simultaneous linear equations.
Differentiating the expression for the ith cubic Hermite
curve segment given in Eqns (1) and (2) twice with respect to
u results in

1 1 .
QP(u) = ‘Zo kZO gfk)(“i—p uiu) Pio gy 3
Jj= =
where

da
Q(e)= —, Qu)
du u=c
for
U <u<uy i=1,...m
where the functions g ,(u;_,, u;;u) can be written in matrix
form as
. . 2 .
[gf,f& (= g5 w3 ) 8F Wiy, usu) 83 (uimy, uisu)

8&21) (Ui, us;u)]
_[r =iy 2-2 3 3
- Au,- _1 l —2 _‘1

Au; = u; — u;_,y
Using Eqns (3) and (4), the continuity of the second derivative
vector, at each of the m — 1 interior points, can be represented
by the equation:
Au,y Py + 2(Au; + Auyy )P + AuPly

6/A%u;

6/A%u;

2/Au; @
2/Au;

and

Auyy Ay,
= . —P._ U P. — P U
3 {(Pl P; 1) Aui + ( i+1 l) Au‘+1} (5)
for
i=1...m-1

This is a system of m — 1 linear equations for the m + 1
unknown values of the first derivative vector. In order to
obtain a unique solution, two more equations are needed. This
can be fulfilled by specifying an end condition at both P, and
P,,; various such end conditions are discussed in (Barsky,
1981b).

2.2 B-spline curve

2.2.1 Explanation. An overview of the B-spline curve represen-
tation will now be presented; a more complete explanation can
be found in Barsky (1981a) and Riesenfeld (1973). A B-spline
curve approximates, but does not interpolate, an ordered
sequence of points, called control vertices, which are connected
in succession to form a control polygon. The B-spline curve
smooths out or mimics the shape of this control polygon.

The major advantage of the B-spline formulation is that it is
a local representation. Each cubic B-spline curve segment is
controlled by only four of the control vertices and is completely
unaffected by all other control vertices. Equivalently, a given
control vertex only influences four B-spline curve segments
and has no effect whatsoever on the remaining segments.
This means that the effects of moving a control vertex are
confined to four segments (Fig. 1).

Since each cubic B-spline curve segment is completely
controlled by only four of the control vertices, a point on this
segment can be regarded as a weighted average of these four
control vertices. Associated with each control vertex is a
weighting factor which is a scalar function evaluated at some
parametric value. For a uniform B-spline curve segment, this
parameter indicates the location in the segment as it varies
from a value of zero at the beginning of the segment to a value
of unity at the end.

2.2.2 Mathematical expression. In particular, let the control
polygon be composed of the set of control vertices
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CUBIC RESOLUTION MOVE
B-SPLINE 9 POINT
(a)
CuBIC RESOLUTION MOVE
B-SPLINE 9 POINT
(W]
. delete move
add point point point smooth
. delete change auto
add spline spline tension | compute
quit select type read write

Fig. 1 Local control of B-splines. The menu is shown at the foot

{V_1, Vo, . . . Vi1 }. The coordinates of the point Q,(u) on
the ith uniform cubic B-spline curve segment are then given by

Q) = 3 b, () Vi,

r= -2

o<u<l (6)

The weighting factors are the four scalar functions b_,(u),
b_ (1), bo(u), and b, (u), evaluated at some value of the para-
meter u. A detailed derivation of these wunivariate uniform
cubic B-spline basis functions and efficient algorithms for their
evaluation are presented in Barsky (1981a). They can be
written in matrix form as

[b-2(u) b_,(«) bo(u) b, (u)]

-1 3 -3 1

= Ty32 3-6 3 O (7
[w’u*ul] (1/6) 3 0 3 o0
1 4 1 O

2.3 Spline under tension
2.3.1 Explanation. The cubic spline sometimes exhibits un-
necessary oscillations due to ‘extraneous’ inflection points.
In order to eliminate them, it is desirable to intuitively ‘pull
out’ these points by increasing tension. This concept was first
analytically modelled by Schweikert (1966) and an alternative
development was given in Cline (1974) and generalised in
Pilcher (1973). A detailed derivation of the generalised form
based on a variational principle is given in Barsky (1981b).
Continuity of position and the second derivative vector are
trivially achieved by their specification at each interior point
and continuity of the first derivative vector is achieved by
solving a system of equations for the set of values of the second
derivative vector. In particular, let {PZ, P2, ... P2} be the
set of values of the second derivative vector corresponding to
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the set of points given in Section 2.1.2. Denoting the tension
over the ith curve segment as s;, the ith curve segment can be
written as

Q) = P?_ sinh[s;(u; — u)'] + P?sinh[s(u — u,_,)]
s2sinh(s;Au;)
4 P, —P*_\u—u + P, —P\u-—u,_,
s? Au; s? Au;
(®)
where
Au; = u; — u;_,

for

Uy S U<y
2.3.2 Determining the set of values of the second derivative
vector. The continuity requirement of the first derivative
vector at the interior point P; is represented by

PPy + (i +n )P+ L, P, =Ry — R

®
where
I = v ! — cosechv;
i s‘
cothv; — v/t
”i = —
§;
P,—-P
R, = ¢ i-1
! Au;
v, = 5;Au; i=1,...m-1

This is a system of m — 1 linear equations for the m + 1
unknown values of the second derivative vector. To find a
unique solution, two more equations are needed, and this can
be fulfilled by specifying an end condition at both P, and P,,.
The complete system of equations for both the first derivative
vector specification end condition and the natural spline end
condition are given in Barsky (1981b).

2.4 v-spline

2.4.1 Explanation. An objection to the spline under tension
is that it is expressed in terms of exponential functions rather
than polynomials, which is a major impediment to efficient
evaluation. To circumvent this problem, a polynomial alter-
native to the spline under tension was developed by Nielson
(1974a; 1974b) which he called the v-spline. It is derived in
detail in Barsky (1981b) using the cubic Hermite basis functions
approach, thereby emphasising its relation to the conventional
cubic interpolatory spline.

It is important to note that each tension value for a
v-spline is associated with a point to be interpolated, not a
spline curve segment as is the case with a spline under tension.
A curve segment does, however, converge to a straight line
segment as the tension values at both endpoints are increased.
In addition, the number of tension values for a v-spline is
therefore one more than that for a spline under tension.

Unlike the spline under tension, the v-spline does not have
continuity of the second parametric derivative vector when
the tension values are nonzero. The discontinuity in the second
parametric derivative vector at an interior point to be inter-
polated is parallel to the corresponding first derivative vector,
and the ratio of the respective magnitudes is the tension
value there. Specifically,

Do) — QPwy) =1, QW () = 1; Q)  (10)
where ¢; is the tension value on the point P; for
i =1,...m— 1. Note that the magnitude of this disconti-
nuity reduces to zero for a zero tension value, corresponding to
the continuous second parametric derivative vector of the cubic
interpolatory spline. However, the v-spline does have geometric
second derivative continuity; that is, dzyo/dx(z) is continuous
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where x§'(4) is nonzero, and similarly d?xq/d y3 is continuous
where yg’(u) is nonzero. This implies that the curvature of
a v-spline is also continuous (Barsky, 1981c; Nielson, 1974b).

2.4.2 Determining the set of values of the first derivative vector.
Since each v-spline curve segment is a cubic polynomial,
the spline can be represented by cubic Hermite interpolation
(see Section 2.1.2). Now the set of values of the first derivative
vector are determined such that the resulting cubic Hermite
curve is a v-spline.

Recall that for the interpolatory spline, the values of the
first derivative vector at the interior points were determined by
solving a system of equations representing the continuity of the
second derivative vector. Although the v-spline does not
generally have continuity of the second parametric derivative
vector, the amount of discontinuity at an interior point to be
interpolated is given by Eqn (10); therefore, this equation can
be used to determine the values of the first derivative at the
interior points. Using Eqns (3) and (4) to evaluate both terms
on the left hand side of Eqn (10), and performing some
algebraic simplification results in:

L

Aug Py + [2(A“i + Augyy) + 2

] P! + AuP},,

_ _ Ay, _p. Ay,
=3 P T s @ -Ry g

i=1,...m-—1
This is a system of m — 1 equations for the m + 1 unknown
values of the first derivative vector. To find a unique solution,
two more equations are needed, and this can be fulfilled by
specifying an end condition at both P, and P,,. The complete
system of equations for two different end conditions are
provided in Barsky (1981b).

3. Transformations

3.1 B-spline to interpolatory spline

The transformation from a B-spline to interpolatory spline
formulation can be accomplished by determining a set of
points on the curve and the value of the first derivative vector
at the beginning and end of the B-spline.

In order to find the identical curve, the set of points to be
input to the interpolatory spline formulation must be the
endpoints of the B-spline curve segments. Specifically,

P, = Q,(0) fori =0
P, = Q1) fori=1,...m
Explicit expressions for these points in terms of the known
control vertices can be derived by evaluating the right hand side
of each equation using Eqn (6) at extreme values of the para-
meter u. In particular,
P,=(V,_y +4V, + V., )6 fori =0,...m (13)
The value of the first derivative vector at the beginning and
end of the B-spline is
Py = Q°(0) P, = Q(1) (14)
Differentiating Eqn (6) with respect to u, evaluating at the
beginning and end of the B-spline, and substituting into the
right hand side of each equation yields the following explicit
expressions for the first derivative vector:

P{ =(V, — V_)2 P! = (V..

(12)

= Va2 (15

3.2 Interpolatory spline to B-spline

This transformation reduces to determining an appropriate set
of B-spline control vertices which must be supplied to the
B-spline formulation to generate an interpolating curve. The
theory for accomplishing this for a surface was originally
developed by Barsky (1979) and Barsky and Greenberg
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(1980). The identical notation is used in the following results
which can be derived as the simplified case of a curve.
The interpolation conditions can be represented by the
following m + 1 equations:
Q,(0) =P, for l =0 16)
Q1) =P, fori=1,...m
Evaluating Eqn (6) at extreme values of the parameter u,
substituting the resulting expression into the left hand sides of
Eqn (16), and multiplying by 6 yields:

Vioy +4V, + V., = 6P; (17
This is a system of m + 1 equations for the m + 3 unknown
control vertices in terms of the known points to be interpolated.
In order to completely determine the vertices, an additional
two equations are required. The derivation of these equations
is dependent upon the choice of end conditions.

fori=0,...m

3.2.1 First derivative vector specification end condition. The
value of the first derivative vector at the beginning and end of
the B-spline is now specified. That is,
Q0) =Py  Q(1) =P, (18)
Evaluating the left hand side of each equation using Eqn (6)
and multiplying by 2 results in:
V,-V_, =2P} Voii — Vo =2PL  (19)
This pair of equations with Eqn (17) form a system of m + 3
equations for the m + 3 unknown control vertices. Although
the matrix for this system is not precisely tridiagonal, it can
be made symmetric, tridiazonal, strictly diagonally dominant,
and smaller in rank by matrix manipulation, resulting in:

1 Vo 3P, + P}
L4 v, 6P,
' = . (20)
14 1| v, 6P,_,
1 2] v, 3P, — P},

and
V., =V, —2P}
Vm+1 = Vm—l + 2Pr:|

3.2.2 Natural spline end condition. The value of the second
derivative vector at the beginning and end of the B-spline is
now set to zero.
Q20) =0 Q1) =0 (21
Evaluating the left hand side of each equation using Eqn (6)
yields:
Vo, -2V +V, =0 Vot =2V, + Vo =0
Combining these two equations with Eqn (17) yields another
system of m + 3 equations for the m + 3 unknown control
vertices. This system can be written with a matrix which is
not only symmetric, tridiagonal, and strictly diagonally
dominant, but has the desirable 1-4-1 structure and is of even
smaller rank.

Vo =Py

Vo =P,

4 1 v, 6P, — V,

I 4 1 v, 6P,

= |. 23)
14 1|V, 6P, _,
1 4]lv._, 6P —V,

and
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V_, =2V, -V,
Vm+l = 2vm - vm—l

3.3. Interpolatory spline to tensed spline

The transformation from an interpolatory spline to a tensed
spline is trivial since the former is a special case of the latter
with all the tension values set to zero.

3.4 Tensed spline to interpolatory spline

If the tension values are zero, this transformation is trivial
since the tensed spline and interpolatory spline are identical
in this case. Otherwise, this transformation is nonsensical
since an interpolatory spline is simply a tensed spline with all
the tension values equal to zero; thus, it is not possible to
perform this transformation and maintain the same curve
shape. In this case the interpolatory spline can be generated
from the same information which defines the tensed spline
with tension values ignored, although this will not define the
same curve shape.

3.5 Tensed splines

Since the two forms of tensed splines, the spline under tension
and the v-spline, are expressed in terms of exponential
functions and polynomials, respectively, it is not possible
to transform between them and retain the identical curve
shape in the case where the tension values are nonzero. If
the tension values are zero, both splines are identical to the
cubic interpolatory spline and hence to each other. Further-
more, for a spline under tension, each tension value corre-
sponds to a spline segment, whereas it corresponds to a
point to be interpolated for a v-spline, and the numerical range
of the tension values is different for each of the two types
of tensed splines.

4. The implementation

4.1 Introduction

The four types of spline curve formulations described in the
first part of this paper have been implemented by the authors
in a single system utilising an Evans and Sutherland Picture
System. The initial implementation was under the RT-11
operating system on a DEC PDP-11/05 minicomputer using a
Picture System I. The program has since been transported to a
DEC PDP-11/34, and a Norsk Data NORD-10 under the
SINTRAN III operating system using a Picture System II.
It is currently in the process of being implemented under the
UNIX operating system. The implementation provides for the
interactive entry and modification of the four types of spline
curves, as well as for the transformations among them, as
explained in Section 3. The system implementation will now
be described; further details of the TRANSPLINE system
can be found in Barsky and Thomas (1980).

The system consists of two major divisions: spline type
selection and transformation, and spline entry and modifi-
cation. Interaction with each division is through a digitising
tablet and a corresponding menu shown on the display. A
menu button may be selected or ‘picked’ by positioning the
cursor within the box and depressing the tablet pen. Certain
buttons (for example, quit) cause an immediate action to occur;
while others (for example, add spline) merely determine a
mode, in which case the desired action is subsequently ini-
tiated by depressing the pen with the cursor outside the menu
area (within the picture area). A ‘mode line’ is displayed at the
top of the screen at all times, informing the user of the exact
state of the system. The first (leftmost) field of the mode line
contains the name of the type of spline currently selected.
The second (centre) field displays the ‘resolution’ value; that
is, the number of line segments to be drawn for each splint
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segment; this is set by a ‘graphical potentiometer’ utilising the
tablet pen. The third (rightmost) field always describes the
action which would occur if the tablet pen were depressed
with the cursor outside the menu area.

4.2 Sample design session

This section presents a sample design session using the
TRANSPLINE system. The sequence followed here is initial
curve entry using interpolatory splines, curve modification
to more closely approximate the desired shape using B-splines,
and final shape definition using splines under tension and
v-splines. The selection of a new type of spline automatically
transforms previously entered splines to the selected type. This
is performed with as little loss of information as possible. For
example, when transforming from a tensed spline (spline
under tension or v-spline) to an untensed spline, tension
information is ignored, although it will be regained if a
tensed spline type is again selected.

Points are entered by placing the cursor at the desired location
and depressing the pen which causes a cross to appear marking
the position of the point (Fig. 2). The curve can now be
displayed by picking the manual compute button, causing the
system to compute the interpolatory spline passing through
the points which have been entered (Fig. 3).

In order to avoid continually selecting the manual compute
button to see the effect of each change to the splines, the system
can be put into auto compute mode. Any subsequent changes to
the curves will be immediately reflected in the display by
automatically recomputing the splines after each action
which modifies one of them. This is generally the preferred
mode of operation, but the manual compute option is offered
for cases where the recomputation time becomes unreasonably
long. This choice of modes is unnecessary for B-splines
which are always in auto compute mode, since they can be re-
computed rapidly.

After entering this spline, it is observed that it does not yet

INTER- RESOLUTION ADD
POLATORY 5 SPLINE
add point delete move th
poin point point Smoo
. delete change manual
add spline| ;0 tension | compute
quit select type read write

Fig. 2 After entering a few points

INTER- RESOLUTION ADD
POLATORY 9 SPLINE

— O

. delete move
add point point point smooth
. delete change manual
add spline spline tension | compute
quit select type read write

Fig. 3 A computed spline

INTER- RESOLUTION ADD
POLATORY 9 SPLINE
(@)
. delete move
add point point point smooth
. delete change auto
add spline spline tension | compute
quit select type read write
INTER- RESOLUTION MOVE
POLATORY 9 POINT
()
X
. delete move
add point point point smooth
. delete change manual
add spline spline tension | compute
quit select type read write

Fig. 4 Modifying the spline by moving some points

offer a sufficiently close approximation to the desired shape;
thus, it is modified by moving some points (Fig:- 4). The
move point function can be used to modify the position of an
interpolated point or B-spline control vertex, or the value of the
first derivative vector at either endpoint. The point or vertex
which is to be moved is picked by depressing the pen near it,
and it then tracks the motion of the cursor until the pen is
depressed again. The action is thus that of picking up the point,
moving it, and setting it down again. A first derivative vector
handle is picked by depressing the pen near either of its
endpoints, and it is then moved in the same manner as was
described for points.

The shape modification procedure is continued by trans-
forming to a B-spline formulation and moving some of the
B-spline control vertices (Fig. 5). This process is facilitated by
two properties of the B-spline formulation. First, the local
control inherent in B-splines restricts the effects of modifying
the position of a single control vertex to a small, predeter-

CcuBIC RESOLUTION MOVE
B-SPLINE 9 POINT
add poi delete move th
point point point Smoo!
. delete change manual
add spline spline tension ocompute
quit select type read write

Fig. 5 The spline as a B-spline
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Fig. 6 A smoothly displayed B-spline curve

TENSION RESOLUTION CHANGE

SPLINE (N) 9 TENSION
(a)
X
—_— S—
20 4 8 12 16
TENSION RESOLUTION CHANGE
SPLINE (N) 9 TENSION
(b)
add point | delete | move |
po point point
. delete change manual
add spline spline tension | compute
quit select type read write

Fig. 7 Changing the tension of a spline under tension: straightening
the front of the rear wheel well. (a) Changing the tension;
(b) the resulting spline

mined portion of the curve (Fig. 1). Second, the B-splines are
dynamically modified as the control vertex is moved, whereas
all the other types of splines are not recomputed until at
least the conclusion of the move operation. B-spline modifi-
cation in realtime is achieved by exploiting several properties
of the B-spline formulation so as to avoid a complete recom-
putation of the curve. The new curve resulting from the move-
ment of a single control vertex can be computed using a
‘perturbation’ algorithm designed by Barsky (1981a).

To establish a better perception of the exact shape of the
spline curve, it can be displayed as a smooth curve using a

v-SPLINE  RESOLUTION

(N) 9
. multiple main
zoom | resolution tension menu
inter- cubic tension enlt
polatory | B-spline | spline v-spline
Fig. 8 Changing to a v-spline
v-SPLINE  RESOLUTION
(N) 2
multiple main
zoom | resolution | yoion ! menu
inter- cubic tension .
polatory | B-spline | spline v-spline

Fig. 9 Changing the resolution value

recursive subdivision algorithm (Fig. 6). The subdivision is
performed by the Lane and Riesenfeld (1980) B-spline sub-
division algorithm applied to each spline segment. An inter-
polatory spline can also be subdivided by first transforming
to the B-spline formulation, which is done automatically.
Transforming to a spline under tension, the spline segment
whose tension value is to be modified is picked. This is done
by placing the cursor on the desired segment and depressing
the pen. The selected segment is illuminated for identification
while a scale with a sliding pointer is displayed at the bottom
of the screen Fig. 7(a). The system sets the pointer to the
current value of the tension, and it can then be moved by
positioning the cursor within the ‘V’ of the pointer. When the
pen is depressed, the tension value is set and the menu

v-S(l;%l NE RESOLUTION CHANGE

9 TENSION
Gﬂ% h
\
o — n \ 1
—250 -125 [} 125 250

CHANGE

v-SPLINE RESOLUTION
(N) 9 TENSION

(b)

r I

delete |

1
L move ‘
add point | point point | smooth 1
il 1
. delete change | manual \
add spline spline tension ; compute |
[ . |
quit  |select type read | write {
I | _

Fig. 10 Changing the tension of a v-spline: sharpening the lower front corner of the rear wheel well. (a) changing the tension; (b) the result of

the change
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reappears [Fig. 7 (b)]. If the system had been in single tension
mode (a single tension value over the entire curve), then the
entire spline would have been picked and modified, rather
than only one segment.

Since each tension value in a spline under tension is applied
over a spline segment, increasing a tension value tends to
‘flatten’ the segment. This differs from a v-spline, for which
an increased tension has the effect of ‘sharpening’ a corner.

The spline is now transformed to a v-spline with zero
tension values [Fig. 8]. The number of line segments used
to display each curve segment can be adjusted in order to
provide either a faster display update, by using a smaller
number of line segments, or a more accurate display, with
more line segments. The resolution is changed by moving the
cursor from left to right across the screen, until the desired
resolution value is shown in the mode line (Fig. 9). Since
the tension values for the v-spline are associated.with the
interpolated points rather than the spline segments, the point
at which the tension is to be changed is selected, and it is
illuminated while the tension modification is in progress
(Fig. 10).

A v-spline is allowed to have negative tension values,
which can generate some interesting curves [Fig. 11(a)].

v-SPLINE RESOLUTION CHANGE
(N) 9 TENSION
() /
-260 125 6 125 250

(b)

Fig. 11 (a) Negative tension on a v-spline; (b) smoothly displayed
y-spline

References

Although the numerical ranges of the tensions are quite
different for the two tensed spline formulations, the effects of
the maximum values of each are quite similar. In general, a
v-spline does not have the second derivative continuity
which is required for transformation to a B-spline for the
subdivision process. However, it can still be displayed by
this technique by applying the subdivision to one segment
at a time, and each v-spline segment can be expressed as a

B-spline because it is a cubic polynomial [Fig. 11(b)].

The system has the capability of displaying and modifying
several splines at once; thus, it can be used to form images of
greater complexity than would be possible with a single
spline. In Fig. 12 several splines have been added to the
original automobile profile to create the final image.

7z )

—

Fig. 12 Final automobile profile consisting of several splines

5. Conclusion

Each of the various techniques of curve representation which
have been developed in the field of computer aided geometric
design has properties which are more useful in certain phases
of the design process than in others. It is therefore very useful
to be able to transform, with as little loss of shape information
as possible, between the different formulations in order to
select the one most appropriate to the situation at hand.

The TRANSPLINE system is an interactive curve representa-
tion system which implements this concept with a set of four
parametric spline curve formulations. Each member of this
set was selected on the basis of its appropriateness to a different
design phase; thus, some are better suited to initial data entry,
while others are ideal for modification of already entered
data, and others are able to supply a particular curve property
which the remaining formulations lack. The result is a system
which is quite versatile and capable of representing complex
shapes, while remaining fairly simple and easy to use.
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