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Classical game theory partitions the set of legal chess positions into three evaluative categories:
won, drawn and lost. Yet chess commentators employ a much larger repertoire of evaluative terms
than this, distinguishing (for example) a ‘drawn’ from a ‘balanced’ position, a ‘decisive’ from a
‘slight’ advantage, an ‘inaccuracy’ from a ‘mistake’ and a ‘mistake’ from a ‘blunder’. As an exten-
sion of the classical theory, a model of fallible play is developed. Using this, an additional quantity
can in principle be associated with each position, so that we have not only its ‘game-theoretic value’
but also its ‘expected utility’. A function of these two variables can be found which yields explications
for many evaluative terms used by chess commentators. The same model can be used as the basis of
computer play. It is shown to be easier to justify, and to adjust to realistic situations, than the
minimax model on which state of the art chess programs are based.

(Received June 1980)

Introduction
The game tree of chess contains about 10*¢ positions (Good,
1968) a substantial proportion of which are terminal. The rules
of the game assign a value to every terminal position, +1, 0 or
— 1 according to whether the position is won, drawn or lost for
White. These values can be backed up the game tree using the
minimax rule, so that in principle every position can be given a
value, including the initial position. This last is known as ‘the
value of the game’, and is widely conjectured to be O for chess.
If this conjecture is correct, and if both sides play faultlessly, i.e.
only execute value-preserving moves (it follows from the ‘back-
up’ method of assigning values that there is at least one such
move available from every non-terminal position), then the
game must end in a draw. A fragment of a hypothetical game
tree is depicted in Fig. 1. In Fig. 2 the method of attaching game-
theoretic values to positions is illustrated.
. An evaluation function could, in principle, map board posi-
tions into a larger set of values, making it possible to express a
distinction between positions which are ‘marginally’ won and
positions which are ‘overwhelmingly’ or ‘obviously’ won, or
between drawn positions in which White, or Black, ‘has the
edge’ and drawn positions which are ‘equally balanced’, and so
forth. Two circumstances suggest that a useful purpose might
be served by multi-valued functions.

(i) Chess Masters and commentators have developed a rich
descriptive language for the expression of such distinctions.

(ii) Computer chess programs employ real-valued functions for
evaluating terminal positions, not of the game tree which is
too large, but of the lookahead tree. Values backed up from
the lookahead horizon are used to select the next move. We
lack a formal basis for assigning definite interpretations to
such values.

There is thus a need for a stronger theory of position-evaluation.
Fhis paper discusses chess, but the treatment is general and
covers all two-person zero-sum games of perfect information
without chance moves.

Requirements of a theory

A good theory should explicate a variety of commentators’
concepts. Table 1 is a representative list. Where a conventional
symbol is available it precedes the verbal comment.

Main features of the theory
The game-theoretic model presupposes perfect play, whereas in
the real-life game of chess (whether human or computer) both

sides are susceptible to error. Our theory is based on this
distinction, and presents. the following main features:

(1) We follow Good (1968) and interpret the values of terminal
positions as utilities as though the game were played for a
unit stake. Values for preterminal positions are then
calculated as expected utilities. In order to avoid confusion
we shall refer to these throughout as ‘expected utilities’ or
‘scores’, never as ‘values’, reserving the latter term for game-
theoretic values.

(2) A model of imperfect but skilled play is developed. Chess
skill appears in this model as an adjustable parameter
running from 0 (random play) to oo (perfect play).

(3) In the new model the classical game-theoretic treatment
appears as a special case.

The calculation of expected utilities

Consider a state, s,, from which transitions to successor states
Sy, S, §3, . . . S, can occur with respective probabilities p,, p,,
P3, - - . P, Let us suppose that these successor states have
associated utilities u,, u,, us, . . . u,. Then the expected utility
associated with s, is

n
Z pi;
i=1
It follows trivially that if we interpret as utilities the values
attached by the rules of chess to the terminal positions then the
values assigned to the non-terminal positions by minimaxing
can be interpreted as expected utilities. In this special case the
ps associated with those arcs of the game tree which carry a
change of game-theoretic value are all 0. Consequently, the

evaluation of 3 pu; at each node reduces to obtaining the ‘min’
i=1

or the ‘max’ of the successor-values according to whether
White or Black has the move. The above specification is
ambiguous in the case when two or more of the moves applic-
able to a given board position are value-preserving. We can
either select one of these at random and assign a probability of
unity to it and zero probabilities to the rest, or we can divide
the unit probability equally among them. In the case of error-
free play, calculation of expected utilities according to either
procedure leads to the same result. As the basis of a model of
actual play we shall adopt the second alternative, which is
illustrated in Fig. 2.

We now relax the game-theoretic condition that at each
choice-point on the tree there is a probability of unity that a
value-preserving move (‘sound’ or ‘correct’ move) is chosen,
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Fig. 1 A game tree with its terminal nodes (shown as squares) labelled with outcome values from the set {+1, 0, —1}. Shading
of the remaining nodes (circles) indicates which player has the move

and we introduce the possibility of error. In constructing a
model of error, we express the relative probabilities of making
alternative moves from a given position as a monotonic
increasing function (decreasing function for Black, since all
utilities are expressed from White’s standpoint) of the expected
utilities of the corresponding successor positions. Thus the
move leading to the highest expected utility will be chosen with
highest probability (but not with probability 1 as in the game-
theoretic error-free model), the move leading to the next highest
expected utility with next highest probability and so on. We
thus envisage an idealised player whose statistical behaviour
reflects the rank-ordering of the expected utilities of chess
positions. Using such a model it is again possible to label all the
nodes of the tree, working upwards from the terminal nodes,
but by a procedure which differs from the minimax method.

The notion of discernibility

In order to carry out some illustrative computations based on
this idea, we now choose an actual monotonic function. No
significance is claimed for the particular choice, since the points
which we seek to establish are qualitative rather than quantita-
tive. Certain ideas must, however, be reflected in any such
function. A central one is that of discernibility. We conceive the
player as standing upon a given node of the game-tree and
looking towards its successors. These are labelled with their
expected utilities, but the labels are not fully discernible to him.
Discernibility is directly related to the strength of the player
(the labels are fully discernible to an infinitely strong player)

© Heyden & Son Ltd, 1981

and inversely related to the number of moves separating the
node from the end of the game: next-move mates and stalemates
are fully discernible even to the beginner, but next-move
expected utilities obtained by backing up are less so. Reflecting
these considerations, we shall define the discernibility from a
board state s, of the expected utility of a given successor state
s; as:

d=(M + 1)[3(r,+3)/(r,+¢)] 1))

where M is the merit of the player in kilopoints of the US
Chess Federation scale, so that 0 < M, and r; is the number of
moves that the value associated with s; has been backed up.
The symbol € denotes an arbitrarily small quantity introduced
to avoid the expression becoming infinite for r; = 0.

The expected utilities themselves are real numbers lying in the
range from — 1 through 0 to +1. They are interpreted as being
in logarithmic measure, to base d. Using this base, we take the
antilogarithms of the expected utilities associated with the n
successors of a given position as giving the relative probabilities
with which a player of merit M who has reached s, selects the
corresponding moves. Thus, for the transition 5o — s,

p; oc dv 2
Normalising these so as to obtain actual probabilities, p,, p,,
... P, the expected utility of a position is evaluated as'zn pi;,
where u; is the expected utility of the position generatecliﬂb;l the
ith member of the set of available moves. Starting at the
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Fig. 2 The game tree of Figure 1 with its non-terminal nodes labelled (underlined values) by minimax back-up. White’s best strategy
from B1 is drawn with a heavy line. Arcs are marked with the conditional move-probabilities corresponding to perfect play: since the
game-theoretic value of Bl is +1, Black chooses with probability 1 to move to B2

Table 1 A representative list of commentators’ comments

)

(12) ?
(13) 7?
(14) !
(s
(16) 17
a7
asg) M
(19)
(20
(21)

A dead draw (nothing that either players can do
can avert a draw)

A complicated position

A balanced position

White has a slight advantage

White has a clear advantage

White has a decisive advantage

A certain win for White

A difficult position for White

A losing move

An inaccurate move: White weakens his position
White strengthens his position

A mistake

A blunder

A strong move

A very strong or brilliant move

A brilliant but unsound move

Best move

Best move in difficult circumstances

A safe move

White should press home his advantage
Black should play for time

280 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

terminal positions, this gives a method for assigning expected
utilities to successively higher levels of the game tree until every
position has been labelled.

A sample computation

Consider the terminal fragment of game-tree shown in Fig. 1.
We shall illustiate step by step the calculation of expected
utilities so as to label every node in the diagram. First we make
assumptions for the playing strengths My, and My of White and
Black. respectively. If we are to extract examples of the broad
range of evaluative concepts from so ultra-simplified a game
tree we must set these strengths very low. Let us set My, = 0-2
and Mg = 1-4: White is thus an abject beginner and Black a
weak tournament player. In our model M = 0 implies random
play. The notation u(s) denotes the expected utility of
position s.

H4: All successors have the same value, +1:u(H4) = +1.

HS5: There is only one successor, so the move-probability is
unity: u(H5) = +1.

G1: Unique successor: u(Gl) = 0.

G2: Equivalued successors: u(G2) = —1.

G3: Equivalued successors: u(G3) = +1.

F9: From proportionality (2) we have
Move to G1: d° = 1 = relative probability.
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Fig. 3 The game tree of Figures 1 and 2 labelled with expected utilities calculated from a model of fallible play. White has been credited
with playing strength Mw = 0-2 and Black has Mg = 1-4. Conditional move-probabilities generated by this model are entered
against the corresponding arcs and are used to ‘back up’ expected utilities to successively higher levels. As before, backed up values are

underlined

Move to G2: r = 1, so, from Eqn (1), d = 1-2!2 = 8:915.
Relative probability = 1/8:915 = 0-1121.
Moveto G3:r = 2, s0d = 1275 = 3925 = relative
probability.
Normalised probabilities: G1, 0-1985; G2, 0-0222; G3,
0-7792.
u(F9) = (0-1985 x 0) + (0-0222 x —1) + (0:7792 x +1)
= +0-757.
El: Equivalued successors. #(E1) = —1.
E2: r = 0. u(E2) = —1, and similarly for #(E3) and u(E4).
E5: Unique successor. #(E5) = 0-757.
D9: Move to E1: r = 1. d = 1-2!2, Relative probability =
1/8-915 = 0-112 and similarly for moves to
E2, E3, and E4.
Move to E6: Relative probability = 1, and similarly for
move to E7.
MovetoE5: r = 4. d = 12%%
probability = 2-0640.
Normalised probabilities: E1, 0-025; E2, 0-025; E3, 0-025;
E4, 0-025; ES, 0-457; E6, 0-222;
E7, 0-222 (total 1-001).
u(D9) = (0457 x 0:757) — 0-100 = 0-246.
Cl: r=0.4(Cl1) = —1, and similarly for #(C2), #(C3) and u(C4).
C5: Unique successor. 4(CS5) = 0-246.
C6: Equivalued successors. #(C6) = 0, and similarly for 4(C7)
and u(C8).

= 2:604. Relative

© Heyden & Son Ltd, 1981

Bl: Moveto Cl: r = 1. d = 1-2!2, Relative probability =
1/8:915 = 0-112 and similarly for moves to
C2, C3 and C4.
Move to C5: r = 6.d = 125 = 2:272. Relative proba-
bility = 1-2240.
Normalised probabilities: C1, 0-06703; C2, 0-06703; C3,
0-06703; C4, 0-06703; CS,
0:73190 (total 1-00002).
u(B1) = (0-7319 x 0-246) — 0-2681 = —0-088.
B2: Equivalued successors. #(B2) = 0.
A: Move to Bl: r = 7.d = 2:4*285_Relative probability =
1-391.
Move to B2: Relative probability = d° = 1.
Normalised probabilities: B1, 0-582; B2, 0-418.
u(A) = (0-582 x —0-088) + (0-418 x 0) = —0-051.

In Fig. 3 the tree of Fig. 1 is shown with expected utilities,
calculated as above, attached to the nodes. The expected utility
of the root node, A, turns out to be one twentieth of a unit in
Black’s favour—a ‘slight plus’ for Black. The analysis of
Black’s ‘plus’ is worth pursuing, for it illustrates certain
fundamental concepts to which our theory is directed, in
particular the idea that a losing move (in the game-theoretic
sense of a transition for White to value — 1 or for Black to value
+1) can also be the ‘best’ move against a fallible opponent.

Note that Black can secure a certain draw by moving to B2.
Note also that the move to Bl is a losing move in the game-
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Fig. 4 Expected utilities backed up the game tree using a different assumption about the strengths of the players, namely Mw = Mg = 1:4;
i.e. both players are of weak club standard. The expected utility associated with the root node now favours White, and the model
of Black’s play shows a 40:1 preference at this choice-point for the ‘safe draw’

theoretic sense, for White can then win by the sequence
Bl - C5 - D9 - E5 — F9 — G3, as shown by the heavy line
in Fig. 2. Yet the expected utility of the move, —0-088, is
marginally better for Black than that of the ‘correct’ move
(expected utility zero), and our model of Black, possessed of a
weak tournament player’s discernment, shows a 589, preference
for the move. The statistical advantage arises, as can be seen by
inspecting the diagram, from the fact that play is switched into
a subtree where the error-prone White has numerous oppor-
tunities for error presented to him. He has to find the needle of
sound play in a haystack of hazards. In such a situation we
sometimes say that Black sets ‘traps’ for his opponent. If the
aesthetic features of the move to Bl appeal to the commentator,
he may even use the annotation ‘!?’, which we take to mean
‘brilliant but unsound’. A sufficient increase in the strength of
White could give cause to remove the ‘!’ or even to convert it
into a second  ?°. To illustrate this point we have recalculated the
entire diagram after setting My, = My = 1-4, shown in Fig. 4.
Here the move to Bl does not appear as ‘best’, nor even as a
mistake, but as a blunder, and correspondingly our model of
Black shows a preference of approximately 40:1 for B2.
Returning to the list of specimen evaluative comments in
Table 1, we can now derive explications for them (Table 2).
Wherever possible, an explication is expressed in terms of two
functions of a board position, namely its game-theoretic value v
and its expected utility . Where a move, rather than a position,

282 THE COMPUTER JOURNAL, VOL 24, NO. 3, 1981

is described, we use the notation Av and 4u to denote the
changes in the corresponding quantities affected by the move.
We denote by s, the position from which the move is made and
by s, the position which it generates. Some items of the
original list have for completeness been differentiated into sub-
concepts. Some of these would never appear in a chess book
although under assumptions of very low playing strength they
are generated by our model. Case 2 of (6) is an example of this:
a ‘decisive advantage’ of this kind would characterise, for
example, the initial position if Bobby Fischer gave Queen odds
to a beginner.

We exhibit systematically in Table 3 various combinations of u
and v, entering in each case the evaluative comment which
seems most appropriate.

‘Tension’
The minimax value of s can be regarded as in some sense
summarising the values of the terminal nodes of the tree rooted
in s. More obviously, the expected utility of s, which has the
form of a weighted mean, constitutes a summary of a different
kind of this same set of quantities. It seems natural to proceed
to statistics of higher order, i.e. from representative values and
means to variances. Might such second-moment statistics also
possess recognisable meaning in terms of the chess com-
mentator’s vocabulary ?

Good (1968) discusses a property of chess positions which he

© Heyden & Son Ltd, 1981
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Table 2 Explication of the evaluative comments of Table 1

Comment
6)) A dead draw
2 s is complicated
(3) =, sis balanced

Case 1: s is lifeless

Case 2: s has high tension
(4) £, White has a slight advantage
o)+,
(6) + —, White has a decisive advantage

Case 1: White has excellent winning chances

White has a clear advantage (good winning chances)

Explication
v = 0 for all terminal descendants of s

The first few levels of the tree rooted
in s have high branching ratios

v=0andu ~0
z:: 83 > 8}see text
v=0andu >0
v=0andu >0
u~ +1
v=0andu ~ +1

Case 2: Although White’s game is theoretically lost, he is almost bound to

win
Case 3: An easy win for White
©) A certain win for White
®) s is difficult
Case 1: White needs accuracy to secure the draw
Case 2: White needs accuracy to secure the win

—landu ~ +1
+landu ~ +1

+landu = +1

u
Oandu <0
+land0 < u < 1

c e e @ oo
nhnv

Case 3: Although theoretically won, White’s position is so difficult for him

that he should offer a draw
) A losing move

(10) An inaccuracy: White’s move weakens his position
(11) White’s move strengthens his position
(12) 7, A mistake

(13) 77, A blunder

(14) !, A strong move .
(15) !!, A very strong or brilliant move
(16) !?, A brilliant but unsound move

17) Best move
(18) (1), Best move in difficult circumstances
19) A safe move

v=+landu <0

v(s;) = —1land v(s;) > —1
4v = 0and du < 0

4v = 0and 4u > 0

4v = —1 and not (4u < 0)
dv < O0and Au < 0

Av = 0 and Au > 0 and s, is difficult
4v = 0and Au > 0

4v < Oand du > 0

Au is max

Au is max and s, is difficult
Av = 0 and s, is lifeless

(20)

@n

‘White should press home his advantage.” The rationale for trying to shorten
the game when ahead can be understood by noting in Fig. 3 how the advantage
decays as we move backwards from the terminal positions. In Fig. 5 White, in
moving from B1, has been given an additional option in the form of a move to
C5-1, from which Black is forced to move directly to F9 (S-shaped arc in Fig.
5). Game-theoretically the choice between moving to C5 and moving to C5-1

is equally balanced since they are both ‘won’ positions for White. But the
expected utilities, +0-246 against +0-757, tell the true story, that if he incurs
needless delay in a won position, especially if it is a complicated position (high
branching ratio of immediately dependent tree), he multiplies his chances of
error. Our model selects the move to C5:1 with 1-7 times the frequency of CS5,
with a corresponding increase of u(B1) (see Fig. 5).

‘Black should play for time’ is the complementary advice one should give to the

other player in the foregoing situation. If our hypothetical node C51 had 3
second branch leading to D9 (shown as a broken line in Fig. 5), then Black

should prefer it to F9.

calls ‘agitation’. He defines it by considering how sharply the
estimated utility of a position is changed by investing a further
unit of work in deepening the forward analysis. This quantity
will necessarily be positively related to the variance of the
distribution of u values over the dependent sub-tree, and hence
to the measure which we develop below for the ‘tension’ of a
position. The former British Champion, Alexander, uses this
term in an introductory chapter to Fischer v. Spassky, Reykjavik
1972, Alexander (1972) writes (see Fig. 6),

‘Let me illustrate (a little crudely) this question of tension by

comparing two openings:

A. (Giuoco Pianissimo) 1. P-K4, P-K4; 2. Kt-KB3, Kt-

© Heyden & Son Ltd, 1981

QB3; 3. B-B4, B-B4; 4. P-Q3, P-Q3; 5. Kt-B3, Kt-B3.

B. (Gruenfeld Defence: see the Siegen game Spassky v.
Fischer) 1. P-Q4, Kt-KB3; 2. P-QB4, P-KKt3; 3. Kt-QB3,
P-Q4;4. P x P, Kt x P; 5. P-K4, Kt x Kt; 6. P x Kt,
B-Kt2; 7. B-QB4, P-QB4. The moves in example A are
perfectly correct—but after five moves the game is as dead as
mutton; it is too simple, too balanced, and is almost certain
to lead to an early and dull draw. The moves in example B
are objectively no better—but the position is full of tension;
White has a powerful Pawn centre but Black can exert pres-
sure on it and, if he survives the middle game, may stand
better in the ending—the players are already committed to a

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 283

20z udy 01 U0 188nB Aq 0GHEEE/8/Z/E/PZ/10M4E/|UlLO0/WO0d"dNO" oIS PEDE//:SARY W) PAPEOUMOQ



Q 35,
Y %
7 &
- 4
Q N 2p
C1 @ % C8
() 2 .
§0_°’§0%~.
o oOf/T\e o7\
\ U \ Ui \
] o~ ] o) o

O 2 )

-1 +1

25
p=09

—o0P v
?7 g3

o .
S
0 +1 o7 I\
// S \ @
Q S ‘)%o
Gl G2 G3i@ .
0 -1 &/ 18
o e ~8 |2
A Q3 o
) ) A T
Q Q
0 -1 o B B
/Q“ﬁ”’ Q'.‘?’ 2 I
z 7
oyl =
11 12 13 14
+1 +1 +1 +1

Fig. 5 A modified version of Figure 3 in which a new node, C5-1, has been added leading to F9 (the broken line represents a hypothetical
delaying move for Black, see text). Although without effect on the game-theoretic values of nodes lying above it in the tree, interpolation
of this short-cut option tips the balance of expected utilities, so that at the root the move to B2 becomes ‘best’
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Fig. 6 Positions of low and high ‘tension’ (from Alexander, 1972)
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Table 3 Evaluative comments on positions (comments on moves are not shown here) corresponding to various combinations of
- expected utility, u, and game theoretic value, v

lL.u=0

u= -1
+1
0

AW
b

=
@ |

-1

O
=
R

6. u~ +1

7. -1 <u<0

8 +1>u>0

9. -1 <u<0

10. +1 >u>0

v = —1

s is virtually impossible (because
of the unlikelihood that u should
be identically zero).

s is a certain win for Black.

s is impossible.

White has excellent drawing
chances. Black needs accuracy
to ensure his win.

An easy win for Black (decisive
advantage).

Black has a theoretical win but
is almost bound to lose.

Black has a mildly difficult win.

Black needs extreme accuracy
to make sure of his win (a very
difficult win for Black).

Black has a clear advantage.

Black has a theoretical win but
is likely to lose.

v=20
s is a certain draw (‘dead draw’).

s is impossible.
s Is impossible.
s is a balanced position.

Black has excellent winning
chances. White needs accuracy
to make sure of the draw.
White has excellent winning
chances. Black needs great
accuracy to make sure of the
draw.

Black has a slight advantage.
White needs care to make sure
of the draw.

White has a slight advantage.
Black needs care to make sure
of the draw.

Black has good winning chances.
White needs accuracy to make
sure of the draw.

White has good winning chances.

Black needs accuracy to make

v=+1

s is virtually impossible (because
of the unlikelihood that » should
be identically zero).

s is impossible.

s is a certain win for White.
Black has excellent drawing
chances. White needs accuracy to
ensure his win.

White has a theoretical win but is
almost bound to lose.

An easy win for White (decisive
advantage).

White needs extreme accuracy to
make sure of his win (a very
difficult win for White).

White has a mildly difficult win.

White has a theoretical win but is
likely to lose.

White has a clear advantage.

sure of the draw.

difficult and complex struggle in which a draw is not very
likely.
A simple way of capturing the spirit of Alexander’s definition
within the framework of our theory is to use the weighted mean
square of the terminal values of the tree rooted in s, i.e.

var(v,) = 2 plvlz
teT

where T is the set of terminal positions and p, is the probability
of arriving at the /th member of this set starting at 5. A value of
unity corresponds to maximal tension and a zero value to
minimal tension (the latter can only be attained by a ‘dead
draw’). The tension of the root node of Fig. 3 is estimated by
this method at 0-559. Referring to comment No. (3) above we
assign this root node to Case 2 rather than to Case 1 of the
category ‘balanced’. Note that although ‘tension’ is calculated
from game-theoretic values, v,, use is made of the u,s in the
calculation of the probabilities, p,, and hence the measure is
affected by variation of the merit parameters My, and M. As
soon as we postulate greater playing strength on the part of
White some of the tension of the position is reduced. The
tension of node A in Fig. 4 is only 0-024, reflecting the fact that
the Black is almost certain to steer play into the ‘dead draw’
sub-tree.

Note that 3" p,v,? is equal simply to the probability of a non-
teT
drawn outcome. But we have preferred to formulate the

expression explicitly as a variance, since in realistic cases game-

theoretic values are not likely to be available, or calculable in

practice. The approximating formula ¥ p,y,?> may then prove
telU

useful, where the y,s have been assigned by some evaluation
function (or by human intuition) to the members of U, the set
of states on the lookahead horizon.

Summary of ideas so far
We have extended the strict game-theoretic model of chess,
which assigns to board positions only three values: +1, 0 and

—1. A good model should do justice to the profusion of chess
commentators’ evaluations. Specimen evaluative comments
have been displayed as benchmarks against which to assess the
extended theory. We have illustrated with worked examples a
simple model based on the notions of utility and statistical
expectation. Our model finds no particular difficulty in expli-
cating the specimen evaluative comments. It also reduces to the
game-theoretic model in the special case of error-free play.

Application to computer chess

A worthwhile study would be to explore parts of a non-trivial
sub-game of chess of which complete game-theoretic knowledge
exists, as in K + N versus K + R (Bratko and Michie, 1980;
Kopec and Niblett, 1980). The program’s own comments on
sample end-game play could be compared with the intuitions of
experienced players.

A more satisfying use of the model would be for generating
computer play. The procedure exhibited earlier for calculating
scores by backwards iteration from the terminal nodes of the
game tree was derived from classical decision theory. State of
the art tournament programs also use ‘backed-up’ scores and
they base move-selection on them. But they follow the mini-
max model. Might not such programs benefit from using
expected utilities rather than minimax? After all, the near-
universal adoption of the minimax rule in computer game-
playing rests on no theoretical foundation.*

Minimaxing for purposes of computer play originated from
the intuitions of Shannon (1950) and Turing (1953), neither of
whom offered explicit justification. The rule’s empirical record
has done the rest.

When lookahead is conducted to the end of the game, the
validity of minimaxing rests on its built-in guarantee against
selecting a game-theoretically ‘losing move’. The reader can
remind himself of this by inspecting Fig. 2: the constant-value
subtree rooted in a given node defines a value-preserving
strategy for all play ensuing from that node, provided that we

*Beale and Bratho have, however, recently established a sufficient condition (in Advances in Computer Chess, Vol. 3, forthcoming. Pergamon).
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Fig. 7. Terminal positions are shown as boxes in this lookahead tree, in which the nodes are marked with ‘face scores’ (bars over negative).
Boxed figures are values backed up from the lookahead horizon. If move-selection were decided by face scores then move
A would be chosen, but if backed-up scores then move B. What is the rationale for B?

have some rule for tie-breaking among a node’s equivalued
successors. But Fig. 3 shows that against a fallible opponent,
this concept of ‘validity’ is harmful, for here a ‘losing move’ is
Black’s decision-theoretically best choice.

A further difficulty arises when computational resources do
not permit complete lookahead. For this Shannon and Turing
independently prescribed that the program should look ahead
to some limited depth, and then assign to the terminal nodes of
the lookahead tree estimates of their game-theoretic values
supplied by an ‘evaluation function’—typically a linear
combination of terms corresponding to measurable features of
the position (piece advantage, mobility etc.). These scores are
then backed up by the minimax rule to the current position’s
immediate successors, in place of the desired but inaccessible
game-theoretic values. The rule of play selects the successor
with the most favourable backed-up score (move B in Fig. 7).

Except in the (unrealistic and uninteresting) case that the
evaluation function approximates the game-theoretic value so
closely that the decisions given by the rule are invariant with
respect to the depth of lookahead, this rule has lacked formal
justification.* We are thus free to attribute its empirical success
to the fact that it can be regarded as an approximation to a
decision-theoretically correct rule of the kind developed earlier.
Note that the larger are the values of My, and My, the closer is
the approximation; in the limit the two models coincide.

The new model raises a point of particular relevance to the
present situation in computer chess. Fast, partly parallel,
special-purpose chess machines have recently been developed
and interfaced to powerful computers (see for example
Moussouris et al., 1979). Chess programs of conventional type
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interfaced to such machines become capable of searching to an
average depth in excess of 9-ply, almost twice that attained by
chess masters (see de Groot, 1965; note that we are speaking of
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Concluding remarks

An objection to the theory here developed is that the opponent

model is arbitrary. Two comments are in order.

(1) Itis of no theoretical consequence what particular opponent
model is used for illustration, provided only that it has the
right overall properties. The reader is free to use the theory
with any opponent model he pleases.

(2) No choice of opponent model is as arbitrary, or as inflex-
ible, as minimax. Moreover, even on the basis of complete
lookahead to the end of the game, minimax back-up does
not yield the best strategy against a fallible opponent.
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