Data structures and descriptors in the ICL 2900 series

and beyond

W. T. lzattt and E. A. Schmitz}

This paper studies descriptors and their use as a technique for the implementation of data
structures, especially Pascal data structures. After presenting the basic notions of descriptors and
types we examine the case of the descriptor on the ICL 2900 series computer, its use and
problems for the mapping of Pascal data types. A solution for the problems posed by the ICL
2900-type of descriptor is then proposed. The solution makes use of a more extensive set of
descriptors, basically one for each of the Pascal types, and a set of primitive operations on this
set enabling the descriptors to be computed and manipulated at run time. This facility is
designed to cope with the recursive character of Pascal data types. The resulting scheme is
general and simplifies the work needed by the compiler in the translation of names.

(Received March 1980)

1. Introduction

In most computer architectures the semantic information
about a type or variable is embedded within the code, without
any structure. Information about an array, for example, is
distributed in instructions like ‘compare bounds’ or ‘load an
element of size x*. An organised technique would have data
about bounds and element type stored in a special position
which is read each time an access to the array is executed.
This position is here called the (array) descriptor.

Since all accesses to data structures of the same kind require
the same set of operations, it seems natural to associate with
the descriptor some implementation of the primitive access
operations required for the particular structure. In the case
above, the instruction ‘compare bounds’ is a primitive of all
array access therefore it can be merged in a more general
operation ‘access array through descriptor’ which would
execute this checking automatically, so when talking about
descriptors it is useful to remember that the term connotes,
with its semantic data, a set of basic operations used in data
structure access.

In the implementation of language data structures using
descriptors, the latter will act as a bridge connecting abstract
data structures to concrete computer memory. Since the terms
type, data structure and descriptor are very frequent in this
report, we start by stating their definition and associated
symbols.

Type determines the class of values that may be assumed by
a variable or expression. Structured type is a type defined in
terms of other types. Data structure is a structured type
together with some operations on that data type (Coleman,
1978).

Descriptor is a data object containing the semantic specifi-
cation of a type or variable. We refer to a descriptor field
using the same dot notation as in the reference to a Pascal
record item.

Descriptor template defines the class of values that may be
assumed by the descriptor. The template acts as ‘type’ for
the descriptor. The definition of a descripter template is made
using the same notation used for Pascal records. When defining
physical fields

bit [n] = array [1 .. n] of boolean

is used.
Descriptor operations are the set of basic addressing and
type evaluating primitives working on descriptors. The descrip-

tion of these operations will be made using the same form as a
Pascal function.

2. Pascal data structures and the ICL 2900 descriptor
2.1 The ICL 2900 descriptor
The ICL 2900 was designed originally to act as a target
language machine, i.e. to match the needs of the intermediate
forms of various compilers. The ICL 2900 descriptor is the
mechanism designed to handle data structures and pointer
variables (Buckle, 1978). There are several types of descriptors
in the ICL 2900 (ICL, 1976) but for our present discussion we
need only consider the vector descriptor.

The vector descriptor template has the following format:

vector-descriptor-template = record

tag: bit [2];
size: bit [3];
s:bit[1];

usc: bit [1];
bei: bit [1];
bound : bit [24];
address : bit [32]

end

All descriptors are 64 bits in length. The fields of the vector
descriptor have the following significance
tag identifies the type of descriptor and hence is common to all
descriptors. It is O for a vector descriptor.
size identifies the size of the elements of the vector described.
The size in bits of the element is given by the formula 2 to the
power size’. The field either does not exist or is not significant
in other types of descriptor.
s is ignored. In future machines it will select the extension and
truncation rules mentioned in Section 2.2.
usc (unscaled) specifies whether or not any offset applied to the
address field should be multiplied by the byte size of the element
of the vector. A value of 1 denotes that the scaling should not
take place.
bci (bound check inhibit) specifies whether any offset to be
applied to the address field should be checked against the
bound field to detect an address exception. The offset is never
scaled before checking and will be treated as an unsigned
integer.
bound contains an unsigned integer which, if the bci bit is
zero, should be larger by the value of one than the largest
permitted modifier.
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address is the byte address of the vector’s first element.

The operation of the descriptor can be described briefly as
the following function, where D is the descriptor and B is
some modifying field.
function address-via-descriptor : addresstype ;

{defines the ICL 2900 descriptor operation}
begin

if D.usc

then scalefactor : =1

else scalefactor := D.size,

if ( not D.bci ) and ( not(B < D.bound))

then error

else address-via-descriptor := D.address + Bxscalefactor
end

In the above function the returned value is the resulting
memory position of the accessed element.

2.2 The ICL 2900 addressing modes

The ICL 2900 instruction set is orthogonal, which is to say
that the addressing mode of an instruction may be considered
independently of its function.

The ICL 2900 primary instruction set is a set of register
operations with the register defined by the function part, but
with the associated item specified by the address part.

The size of item loaded into a register is defined by the size
of the register. The size fetched from store will be the same
size except when it is fetched via a descriptor when it will be
the size specified in the descriptor. Then on loading into the
register it will be extended or truncated as necessary according
to defined rules. The same applies for transfers from a register
to main store.

The machine has an accumulator A which can take, from
time to time, several sizes and performs normal arithmetic.
A 32 bit (i.e. full addressing range) modifier register B and a
64 bit descriptor register D are provided for indirect addressing.
Various pointer registers, which we shall group together under
the letter P are available for direct addressing. In addition
there is a conceptual location T, the top of stack. It can be
considered as the first free address above the stack front for
transfers to the stack or as the top element (of the size specified
as above) for transfers from the stack.

The fetched value is specified in Table 1, where brackets mean
‘contents of the location evaluated’ and b means the contents
of B etc. N is the operand field of the instruction.

Table 2 gives the corresponding mnemonics used in the
address part of the instruction.

When descriptors are used in addressing, the descriptor may
be in main memory or in the special descriptor register D. If
it is in main memory the first action of the addressing operation
is to store it in the descriptor register. The addressing operation
can locate the descriptor by the value in one of the pointer

Table 1
Immediate Via address Via descriptor
InD In store In store
(d)
n (n) (d+n)
(p+n) (d+(p+n)) ((p+n)) ((p+n)+b)
t (d+1) (1) (t+b)
b (b) (d+b)
Table 2
Immediate Via address Via descriptor
IB D In store In store
N G N D N
P N .DP N IP N .MIP N
.T .DT T MIT
B .G

.MD
{P=PorXorLorC}
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registers P modified by the instruction’s operand field N, or
by the top of the stack T. If this is not possible, the descriptor
must be preloaded into D using the ‘load D’ instruction LD.
The location obtained is that specified in the address field
of the descriptor, possibly modified by the contents of the
modifier register B or, where the descriptor is held in the
descriptor register by an offset held in main memory or in
the operand field N of the instruction.

2.3 Use of the descriptors in array access

Since arrays are collections of homogeneous items which are
typically accessed by a varying and calculated offset, addressing
of items is most conveniently achieved by modified addressing
via descriptors (columns 3 and 5 of Table 2).

Therefore it is obvious to represent arrays as items addressed
by Iliffe vectors, which are the descriptors, modified by the
calculated value of the offset. This is all the more true as there
are ‘move’ and ‘compare’ instructions which operate on whole
vectors specified by descriptors.

One dimension of an array can therefore be represented as a
vector of elements pointed to and described as to size and
number of elements by a descriptor. This arrangement allows
automatic scaling and bound checking of the index, so reducing
the size of the generated code and simplifying compilation.

2.4 Use of the descriptors in record access

Records are collections of non-homogeneous items, which
items (in a language like Pascal) are accessed by a fixed
identifier. Hence scaling and bound checking are not required
and the fetch rules of descriptor access make it impossible
for a descriptor to locate and describe a record.

The solution is to reverse the significance of the descriptor
and modifier. Then each named field of the record has a
descriptor in which the address field now contains the offset
in bytes of the item from the beginning of the record.

The record is then located by the modifier and described by
a record template which is an array of descriptors of its fields
in order. This template is common to all records of the same
type. It is in fact the description of the type (cf. the descriptor
template) and is set up at type declaration time and not at
variable declaration time. The actual instruction generated
will be the same as for the array case. It is the semantics held
in the descriptor and modifier which change.

Since the modifier in fact contains the actual address of the
record, a template descriptor (unlike an array descriptor) will
not scale the modification, nor will it check it against the
bound field. To distinguish this new purpose of the modifier
register B we will, in the context of record access, call it the
base register and refer to the 32 bit addresses suitable for
loading into it as record bases.

Case variants are considered as separate named items, each
with its descriptor in the template. The offsets of these descrip-
tors may, or may not, hold the same values. Pascal does not
define which case applies.

2.5 Use of the descriptors as pointer variables

Pointer variables are, in this scheme, descriptors. The character-
istics of the descriptor depend on the type to which the pointer
is bound, as is discussed further in Section 2.8.

2.6 Use of the descriptors in complex data structures

It is not possible in the ICL 2900 series to have two modifier/
base fields, so that elements of arrays embedded in records
would not be accessible without extra coding to manipulate
record base and array index offset. To allow descriptors to
give automatic memory access we further structure the types
such that the record is the record base and the template of
descriptors and its items whilst an array is the Iliffe vector
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descriptors and the elements of the array.

Then when we say that a named item is an array we refer
in the first instance to its first Iliffe vector descriptor. When
we say ‘record’ we refer in the first instance to its base. Hence
when an array appears in a record, it is its first descriptor
which appears physically in the record.

Similarly, when one has an array of records, the items of
the array are the bases of the records. This is just as well since
descriptors, the array access mechanism, only access primitive
data items of bit, byte, half- , single- , double- or quadruple-
word (i.e. 1, 8, 16, 32, 64 or 128 bits in length).

Arrays of arrays are then arrays of descriptors. Thus since
Iliffe vectors are used for multidimensional arrays, multi-
dimensionality is sematically identical to arrays of arrays.

Records within records are represented by their bases. Thus
like arrays, records contain only the primitive items.

In summary, an array descriptor has scaling and bound
checking switched on and a record template descriptor has
them switched off.

In this scheme, addressing is automatic and consistent with
the data structure being accessed at the time. Furthermore,
it is independent of any other data structure which the present
one may contain or be contained by, so simplifying compilation.

2.7 Examples
Suppose the following Pascal declaration:

type
alfa =1..10;
beta = setof1..6;
gama = array [ alfa ] of char ;
delta = record
x:alfa;
y: beta;
z:gama;
u: 1delta
end;
epsilon = array [alfa] of delta;

var
sigma : epsilon ;

The data item sigma is an array of record bases of type
delta, that is, it is an array of single word (32 bit) values with
ten elements. The descriptor of sigma, d(sigma), is therefore
d(sigma) = (tag=0,size=>5,s=0,usc=0,bci=0,bound=10,address=m)
where m is the address of the first record base, and the element
length in bytes is ‘2 to the power (size — 3)'.

The record type delta has a template of four descriptors.
They are
d(x) = (tag=0,size=5,5=0,usc=1,bci=1,bound=0,address=0)

Field address holds the offset of x in delta.
Note: because of architectural considerations one 32 bit
word is the smallest practical single item appropriate for x.

d(y) = (tag=0,size=5,5=0,usc=1,bci=1,bound=0,address=4)
Offset of y = size of x in bytes.
Note: as above, architectural considerations impose a size of

32 bits. Larger sets may use 64 or 128 bits. The latter is an
architectural limit after which arrays of bits must be used.

d(z) = (tag=2,size=6,5=0,usc=1,bci=1,bound=0,address=8)

A descriptor descriptor. The element in the record is the
descriptor of the array z.

d(u) = (tag=2, size=6,s=0, usc=1, bci=1, bound=0, address= 16)

A descriptor descriptor. The field described is a Pascal pointer
which is itself a descriptor, its type depending on the data
type to which it is bound.

Note: the previous item in the record was 8 bytes long.

© Heyden & Son Ltd, 1981
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Fig. 1 The data item sigma - [

A graphic representation of the structure of sigma is shown

in Fig. 1.

Consider accessing sigma[ 2 ].z[3]

sigma is an array, therefore load its descriptor into D.
LD.L N {in the ICL 2900 assembler}

Evaluate the index on the top of stack, saving and restoring
D, if necessary. No scaling of the index is necessary because
it is done by the descriptor.

sigma [ 2 ] is a record, so load its base into B.

LB.DT { in the mnemonics }

sigma[2].z is a record item. Load its template descriptor into

LD.X N { from area previously located by register X }
sigma[2].z is also an array. Its template descriptor is therefore
a descriptor descriptor. (This may be checked if desired).
Load the array descriptor from the record into D.

LD.MD { located via D modified by B }

Evaluate the index on top of stack, saving and restoring D,
if necessary.

Obtain the item sigma[2].z[3] :

L.DT { one byte is loaded and extended to accumulator
size }

Consider obtaining the value of sigma[2].uf. As before

LD.L N

LB.DT

LD.X N

sigma[2].u is a pointer to a record. The pointer is therefore
a descriptor of a 32 bit item which, we may assume, is required
in register B.
LD.MD {via D modified by B}
LB.D {load record base in B}

Then by loading D with descriptors from the template of
delta we can access the record sigma[2].uf in the same way as
we accessed sigma[2] above.

2.8 Problems
The primary difficulty is in the creating and assignment of
complex data items.
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The standard Pascal procedure NEW usually allocates an
undifferentiated space of the size required by the data item
and allocates the address of this space to the pointer variable
which is NEW’s parameter. .

In the present scheme, the process is much more complex.
The descriptors and record bases in the space must be written
by a complex routine analogous to the process of the compiler
itself. Each type will have such a routine which allocates the
necessary space as before, but also structures it.

NEW will return not a descriptor to the structure but an
escape descriptor to the routine for the type to which the
pointer variable is bound.

The first operation on a structure accessed via a pointer
will be to load into D the descriptor which is that pointer.
When this is first done, an escape descriptor is detected and
at that point space is allocated and structured. The last action
of the type’s allocation routine is to replace the escape descrip-
tor in D with the correct pointer descriptor for the data item
allocated. The interrupted instruction is then re-executed and
will function normally since the D register now points correctly
towards the structure (e.g. directly to a simple item, to a
descriptor for an array, to a 32 bit base for a record). Now
the pointer variable itself must be changed from an escape
descriptor to prevent the above action happening again.
Therefore the pointer must be stored immediately, i.e.

LD.L
STD.L

N { may cause escape }
N { D may be changed }

Assignment of complex structures is also more involved.
The embedded bases and descriptors prevent a simple MOVE
of the total size of the item type as is done in most compilers.
The compiler has to insert code for a series of assignments
and moves operating on the terminal nodes of the structures
using the descriptors and bases at the intermediate nodes.

An obvious objection to the current scheme is the extra
storage required for structuring a complex item. In the case
of the item sigma of Fig. 1 the data occupies 180 bytes and
the structuring information 240 bytes. This is probably in
practical terms the worst case. Only in large programs are
space requirements important and the larger structures should
have a more favourable ratio. For a more detailed study of
data structure composition in large well written programs see
Schmitz (1979).

3. An improved descriptor mechanism for Pascal data structures
3.1 Introduction

Due mainly to the 2900 array descriptor being a large item
(64 bits) the standard architectural solution presented in the
preceding section does not give a good ratio of data to structural
information in Pascal types mapping (Rees et al., 1978).
Although an ad hoc method can improve this ratio, it imposes
a penalty on compiler simplicity. Nor does the standard
architectural solution give a simple method for assignment of
data structures due to the fact that descriptors and data are
mixed as seen in record type delta of Fig. 1. Generation of
dynamic data structures is complicated because structural
information must be evaluated at generation time.

This section describes a descriptor mechanism for mapping
Pascal data types to computer memory. It consists of a set
of type descriptors and three descriptor operators. The idea is
to transform a valid Pascal name into a semantic expression
which when evaluated at run time will give as a result the
semantic attributes of the name : address and type.

The semantic expression consists of operands and operators.
The operands are descriptors and the operators (which operate
on descriptors giving descriptors) have a one to one correspond-
ence with Pascal data selectors.
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Our solution tries to cope with the ICL 2900 descriptor
problems cited above. First the ratio of data to structural
information can be improved by attaching descriptors to
types instead of to variables. Assignment and creation of data
structures are simplified because data structures are laid
down linearly in memory and descriptors are kept separate
from data. The main advantage of this method over the
traditional compiler evaluation is the obvious simplification
of the translation procedure which is one of the aims of
language-oriented computer design. This is achieved by
delaying all the work related to address and type evaluation
of data structure elements to run time.

3.2 Descriptor objects

Descriptors are data objects. As such they have a name and a
value. The descriptor value is a set of attributes which character-
ise some computer object, e.g. variable, file, procedure or
another descriptor. Since this paper is discussing data
structures, ‘descriptor’ will hereafter denote a descriptor for
data objects only.

Descriptors are complex data objects. The basic units forming
the descriptor are called descriptor fields. Each one describes
one of the attributes of the object. A descriptor field can itself
be a complex data object depending on the particular attribute
being defined. The descriptor template defines the set of values
that a descriptor can assume by defining how many and what
kind of fields the descriptor has. We have chosen a field
partitioning which allows of a simpler algorithm for name
translation, as will be shown in Section 3.5.

3.3 Descriptors for Pascal data types

A Pascal variable can be defined by its address and type so a
Pascal variable descriptor would have two fields, type and
address, the former usually being a complex field. It will be
shown that finding descriptors for Pascal variables can be
reduced to the problem of finding descriptors for Pascal
types. It is also useful to consider type descriptors as objects
in themselves. Since types can be shared by variables, the same
descriptor can be used in the definition of several variables.

In order to describe all possible type declarations we need at
least onc descriptor template for each data type. All non-
recursive types, i.e. simple types and sets, can be described
by a fixed format descriptor template. Arrays and records on
the other hand, if one tries to put into their descriptor the
entire semantic specification, cannot have a fixed descriptor
representation. Fortunately, Pascal restricts the type of
operations on structured types. The only operation allowed is
assignment of equal type structures which does not depend on
any attribute of the type apart from its size. As an example,
the semantic data needed for an array x and its element x[i]
are different. For the first case, only its size, whilst for the
second information about bounds and element type is neces-
sary. There is an exact parallel in the case of records.

This fact gives us the key to solving the problem of the
recursive nature of these types. The descriptor template for
arrays and records has, apart from its tag, only one field to
hold the array or record physical size. Separate templates are
defined for array elements and record items.

We show below the associated descriptor template for each
Pascal data type (Jensen and Wirth, 1978). The mnemonic
bit [n] denotes an implementation dependent field size.
Primitive types . Primitive types, being predefined and static,
have no need for any semantic parameter in their definition.
They are defined uniquely by their tag.

record
tag : (int,char,bool,real)
end

primitive-type-template =
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For example, a declaration like
type T = integer,
would create a descriptor for T denoted by d(T) as
d(T)=(int)
Note that from now on we omit the field identifier in front of the
descriptor field value, e.g.
d(T)=(tag=sca,card=13) becomes d(T)=(sca,3)
Scalar types . A scalar type is defined by a set of constant
identifiers over which the Pascal standard functions pred(x)
and succ(x) are defined. They can be implemented by mapping
the constants on to a subset of integers 0 . . i, so their semantic
description needs only the number of elements in the set.
Their template is

scalar-type-template = record
tag: (sca);
card: bit [n]
end
For example

type T=( white,grey,black )
would generate

d(T)=(sca,3)
Subrange types . The subrange type is defined by a pair of
constants marking an interval over an already defined scalar
type. Its template can be defined as

subrange-type-template = record
tag: (subr);
Icon, ucon : bit [n]
end
Set types . The set type can be semantically identified by

set-type-template = record

tag: (set);

card: bit [n]

end

where the field card defines the number of elements in the type
over which the set is defined.
Array types . The semantic definition of the type array involves
two templates. The first is a descriptor for the whole array

array-type-template = record
tag: (arr);
size : bit [n]
end
where size is a field to hold the array physical size, e.g. in
bytes. We have a second template for the array elements :

array-element-template = record
tag: (arl);
index : simpletypetemplate ;
element : typetemplate
end

where index is a template of an allowed simple type and
element is that of any type.

Record types . As in the array case, there are two templates
defined for records.

record-type-template record
tag: (rec);
size: bit [n]
end
record
tag: (fld);
item: typetemplate ;
offset : bit [n]
end
where offset is a field holding the physical distance of the
item from the beginning of the record.

]

record-item-template

© Heyden & Son Ltd, 1981

Pointer types . Since pointers are defined over an already
defined type, their semantic specification does not need any
semantic fields (they are already in the pointed type).
pointer-type-template = record
tag: ( ptr)
end

We will now show how descriptors for those types are used
to form the descriptors of more complex types. In the left
column there is a Pascal declaration, and in the corresponding
right column we find its descriptor. In the complex type
descriptors, parentheses are used to indicate fields which are
themselves descriptors.

In following example we use the symbols:
d(id)) — for the descriptor of <id)
d({id)-e) — for the descriptor of an element of array {id)
d( id)-p) — for the descriptor of the type to which the

variable {id), a pointer, is bound.

type
alfa =1..10; d(alfa)=(subr,1,10)
beta = setof 1. .6; d(beta)=set,6)
gama = array [ alfa ] d(gama—e)=(arl,(subr,1,10),
of char; char)

d(gama)=(arr,10)
delta = record

x:alfa ; d(x)=(fld,(subr,1,10),0)
yibeta d(y)=(fld(set,6),1)
z:gama ; d(z)=(Ad,(arr,10),2)

u: {delta d(u)=(fld ptr,12)

end; d(delta)=(rec,16)
epsilon = array [alfa] of delta;
d(epsilon—e)=(arl,(subr,1,10),(rec,16))
d(epsilon)=(arr,160)

3.4 Descriptors for Pascal variables
Given a set of descriptor templates, one for each data type,
we can generate descriptors for any Pascal variable. The
descriptor for a variable is defined by two fields, a data
attribute field which is the type descriptor to which the variable
is bound and an address field.

The format of any variable descriptor can be defined as:

variable-descriptor = record
attribute : type template ;
address : bit [n]
end
For example suppose a declaration like
var sigma : epsilon ; d(sigma)=(d(epsilon),address)
but
d(epsilon)=(arr,160)
and if sigma is bound to location 300 in store then
d(sigma)=((arr,160),300)

3.5 Descriptor operators

Given this semantic description of a data structure we can get
the descriptor of one of its elements by using specific descriptor
operators. The ICL 2900 addressing via descriptor and modifier
is in essence a descriptor operator which evaluates the array
element descriptor from the array descriptor and an index.

When a single element which is part of a data structure is
referenced, it is denoted by a series of selectors applied to
the highest hierarchic name in the data structure. One way of
thinking about a cascade of selectors is as constituting a
series of operators applied on data types.

Our main constraint in the design of the descriptor operators
was the need for a simple translation algorithm to minimise
the work done by the compiler when generating code for a
Pascal name. The second restriction is one-symbol-look-ahead
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which implies that the analysis of names must be done in a
single scan from left to right. Additionally, during evaluation
the system should use the normal data stack without any
special features. At the end of the evaluation process the
resulting descriptor should be at the top of the data stack.
These conditions allow a very simple and structured technique
for evaluating Pascal names since all evaluations, both of
expressions and descriptors, are made on the same stack.

The simplest way of fulfilling the above conditions is by a
simple one to one replacement of the Pascal ‘[’ the array
selector, ‘.’ the record item selector and ‘1’ the pointer selector
by three descriptor operators which we call bracket, dot and
arrow.

For example, a name like sigma[ y].z would be converted by
the compiler into the reverse Polish string

d(sigma) d(sigma-e) y bracket d(z) dot
where d({id)) implies ‘load the descriptor of (id) to the
stack’. In this case bracket would operate on d(sigma),
d(sigma-e) and the value of the expression y to produce the
descriptor of sigma[y], which combined with d(z) by the
operator dot gives as result the address and type of sigma[ y].z.

This means a transfer of the operations made by the compiler
when generating code for sigma[ y].z to run time. The Appen-
dix shows the name translation procedure. The descriptor
operators assume a resulting descriptor with the format

result = record
type : typetemplate ;
address : bit [n]
end
We now assume the following functions

length(x)—is a function that when applied to the descriptor
argument x returns the size (in bytes) of the element described
by x.

value(x)—is a function which returns the value of the object
described by the descriptor x.

Ibound(x)—the argument is a simple type descriptor and the
function returns the value of the lower bound of the type
specified by the descriptor.

The bracket operator, given an array descriptor da an array
element descriptor de and the evaluated index i, generates a
descriptor for the array element variable. Its operation can be
defined by the following procedure (operands being assumed
to be global)
procedure bracket ;

{generate a variable descriptor for the array element}
begin
result.type := de.element ;
result.address := (i — Ibound(de.index))
*length(de.element)
+ da.address
end

This means the generation of a variable descriptor whose
type is the element field of the array element descriptor and
whose absolute address is the sum of the base address of the
array and the product of the relative index and the array
element size.

The dot operator gives as result the semantic characteristics
of the item being selected inside a record. If dr is the record
descriptor and dri is the record item descriptor then its operation
can be defined as:
procedure dot ;

{generate the descriptor for the record item}
begin

result.type .= dri.item

result.address : = dr.address + dri.offset
end
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This means the generation of a variable descriptor whose
type is the same as the item descriptor and has as address the
sum of the base address of the record and the item offset.

The arrow operator gives as result the semantic description
of a pointer selected variable. As the pointer variable descriptor
dp describes a pointer variable whose contents point to a
variable of type #, the result is the creation of a variable
descriptor of the same type #, having as address the contents
of the pointer variable. This can be defined as

procedure arrow;
{generate the descriptor of a pointed variable}
begin
result.type:=t;
result.address : = value(dp)
end

3.6 Examples

We want to show that, given a name in its textual form with
all the descriptors associated with it, we can form descriptors
for its elements. In the following examples we assume the
variable sigma bound to memory location 300 and that
descriptor evaluation is taking place on the same stack as for
expression evaluation. ‘

Using the same type definitions as in Section 3.3 and the
beginning of Section 3.4, valid Pascal names defined over
sigma are:

sigma

sigma[ 2]

sigma[ 2].x

sigma[2].z

sigma[2].z[3]

sigma[2].u}.z
Case 1 . The name is sigma. The descriptor of sigma is
d(sigma) = (d(epsilon),300) = ((arr,160),300)
which means that sigma is an array of size 160, starting at
location 300. Note that no other semantic information is
needed, since Pascal operations on data structures are limited
to assignment.

Case 2 . The name is sigma[2]. Its descriptor is derived from
the reverse Polish expression
d(sigma) d(sigma—e) 2 bracket
By definition of bracket
d(sigma[2]) = ((rec,16),316)
Case 3 . The name is sigma[2].x. Its descriptor is defined by
d(sigma[2]) d(x) dot
which is in detail
((rec,16),316) (fid,(subr,1,10),0) dot
By definition of dot
d(sigma[2].x) = ((subr,1,10),316)
Case 4 . The name is sigma[2].z. Its descriptor is defined by
d(sigma[2]) d(z) dot
The result is an array descriptor with the attributes of type
gama and with address 318.
d(sigma[2].z) = ((arr,10),318)
Case 5 . The name is sigma[ 2].z[ 3], with descriptor defined by
d(sigma) d(sigma-e) 2 bracket d(z) dot d(z-¢) 3 bracket
which expression, when evaluated from left to right, gives the
descriptor of a variable of type char at address 320.
d(sigma[2].2[3]) = (char,320).
Case 6 . The name is sigma[2].ut.z, Suppose that a Pascal
instruction NEW(sigma[2].u) was issued before, allocating a
record of type delta at position 1000 in memory. Evaluate
d(sigma[2]) d(u) dot d(u-p) arrow d(z) dot
from left to right, giving the descriptor of an array.
d(sigma[2].ut.z) = ((arr,10),1002)
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4. Conclusions

The solution offered by the ICL 2900 descriptor mechanism
for the implementation of Pascal data structures is very space
consuming. Also no simple solution for assignment of data
structures or creation of dynamic data objects is offered.
While our alternative method may not have been economic
when the ICL 2900 series was designed, the rapidly falling
cost of hardware leads us to believe that it is becoming practical.

To sum up, this paper suggests the following.

To be used efficiently as a technique for implementation of
data structures, descriptors must be devised in several formats
and with a matched set of machine primitives.

Since they are the expression of the primitives used in data
definition and access, these requirements tend to be language
dependent.

They imply a machine able to work with variable size operands
(descriptors) having an implementation of the descriptor
operators either implicit or in the machine instruction set.

Since it uses the normal data stack in the evaluation of
semantic attributes made at run time, the compiler will be
smaller and faster. The code generated will be more compact.
giving gains at execution time.

Appendix—The name conversion algorithm
The process of name conversion can be described by a Pascal
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Book review

Project Auditing Methodology, by W. S. Turner III, 1980; 454 pages.
(North-Holland, $46-25)

The book is a detailed review of procedures developed within the
author’s organisation for auditing EDP projects and said to be
applicable also to other types of development project. It is crammed
with information on all facets of a project. A substantial chapter
is devoted to the audit report and the importance of its content and
presentation. Other features of particular value are the list of
problem areas to look for in each aspect of the project, the extensive
audit check lists and evaluation forms, and the treatment of contract
details and relationships between contractor and client. There is
also a wide-ranging annotated bibliography.

The author’s approach involves three levels of audit: first an
overview audit to obtain a preliminary assessment of the state of a
project; second, an administrative audit to cover all general aspects
in detail ; third, one or more technical quality audits where required
to assess the quality of work done. If every project area was audited
in the detail described by the author, the auditor would risk
achieving notoriety for high audit costs and excessive interference
with the project. Clearly this is not intended. Nevertheless, it
would have been helpful to have some indication of audit areas to
concentrate on in the more usual circumstances of restricted time
and access.

The scope of work to be done goes beyond traditional audit
activities to areas where the prime intention is to provide informa-
tion for management decisions. In my opinion detailed forecasting
of the future course of a project is more properly a project manage-
ment responsibility and the auditor’s function should be restricted
to checking that forecasting procedures are adequate. The same
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type of comment applies to some other topics, which the author
deals with at length in the context of providing a service to man-
agement, such as valuation of work done, quality of work done and
contractor’s profit expectations. In my view management should
not have to rely on the audit function for essential information of
this type; this risks destroying the auditor’s independence. In
contrast, there are some important areas in a project audit which
are curiously omitted, for example the evaluation of project manage-
ment controls over the work of the contractor; indeed, it appears
that the audit itself is to be the primary control tool. There is no
mention of timewriting procedures and related controls which
form an essential feature of a reimbursable contract. There is no
discussion of checks on controls being built into the system to
preserve security, reliability and accuracy. Little is said of the
auditor’s involvement in system testing; this is an essential activity
if the audit group is to remain associated with the project in the
operation phase.

While in critical mode I must take issue with the author over his
belief that recommendations should be excluded from the audit
report, or at best be relegated to a separate document. His views
do not stand up to close scrutiny. I believe that carefully presented
recommendations assist project management to a fuller under-
standing of the significance and relative importance of weaknesses
identified in the findings.

Despite these criticisms there is so much of value in the book that
it must be a useful addition to the library of any auditor, project
manager or specialist with the experience to select procedures of
most benefit to his own environment.

J. R. JonEes (London)
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