Abstract data types, subtypes and data independence

F. Warren Burtont and Brian J. Lings?

A generalised subtype definition facility is described. A subtype may be restricted in its values,
its operations or both. Coercion from a subtype value to a parent type value is always possible.
The reverse coercion may or may not be allowed, depending on the subtype. A subtype may or
may not use the same form of representation as the parent type. Several examples showing the
usefulness of the subtype facility are given. It is shown that, with a few additional facilities,
subtypes may be useful in providing data independence in a general purpose language. Finally,
it is shown that the concept of subtype is useful in understanding the relationships between

certain other programming language constructs.

(Received March 1980)

1. Introduction

The concept of subtype has existed in programming languages
in an ad hoc manner for many years. In FORTRAN (ANSI,
1966), INTEGER may be viewed as a subtype of REAL.
Coercion from one type to the other is possible in an assign-
ment statement. More recently, Pascal (Jensen and Wirth,
1974) has provided subrange types where a subrange type may
be viewed as a subtype of the associated scalar type. Most
recently, Ada (ACM, 1979) has introduced the keyword
subtype and generalised the Pascal nesting of types.

However, a more general subtype mechanism than exists
in any of these languages is required. In Ichbiah et al. (1979,
p. 4-1), it is stated that “A now widely accepted view of types
is that a type characterizes the set of values that objects of the
type may assume, and the set of operations that may be
performed on them.” With this view, a subtype construct
should provide more than simple value restrictions on restricted
classes of types. It should be possible to define subtypes of a
type where arbitrary restrictions may be placed on the values,
operations or both. Subtypes of arbitrary user defined types
should be supported. For example, QUEUE could be a
subtype of LIST with restricted operations while a SORTED _
LIST could be a subtype with restricted values (and perhaps
operations as well). Certain operations, for example a diag-
nostic procedure which prints the contents of a LIST, should
be able to process a LIST, a QUEUE or a SORTED _ LIST.

Usually INTEGERS and REALS are represented differently.
In like manner, it should be possible for user defined subtypes
and types to have different representations. (We note that in
Ada, INTEGER is not a subtype of REAL.) For example, if
approximations to curves are represented by polygons, it is
reasonable to have a subtype for circles using a centre-radius
representation.

When a subtype is defined, it should always be possible to
coerce a value of the subtype to a value of the parent type.
(If A is a subtype of B we will call B the parent type of A4.)
For example, in Pascal it is possible to assign an INTEGER
to a REAL variable or a subrange value to a variable having the
associated scalar type. The definition of a subtype should
specify whether the reverse coercion is allowed. For example,
in Pascal the reverse coercion is allowed with subranges,
but a REAL may not be assigned to an INTEGER variable.
For uniformity, coercions between actual and formal para-
meters should also be supported. (The distinction between
input, output and input-output parameters in languages such
as Ada is most helpful in this context.)

2. Ada extension

For purposes of illustration we shall present the proposed
language features as an extension to Ada as we understand
the language from ACM (1979). We will assume that the
reader is at least vaguely familiar with Ada.

The concept of subtype exists in Ada in a limited form. To
fully support subtypes it is necessary to extend Ada to provide
a mechanism for specifying an arbitrary constraint for the
values of a subtype. In addition, it must be possible to specify
an alternative representation for a subtype and to define
suitable conversion operations.

The syntax of a subtype declaration may be modified as
shown in Fig. 1. A by clause has been added to the definition
of a subtype declaration and a functional constraint has
been added to the definition of constraint. The type mark
following the by specifies the representation of the subtype.
The function specified in a functional constraint must be a
Boolean function with a single parameter whose value is of
the parent type.

subtype_declaration :: =

subtype identifier is type_mark [constraint] [by type_mark]
constraint ::=

range_constraint |accuracy_constraint

| index_constraint |discriminant_constraint

| functional_constraint
Sfunctional_constraint ::= which is function_name

Fig. 1 Proposed extension to the syntax of Ada

Fig. 2 shows how a subtype EVEN of INTEGER may be
defined. Since the definition of EVEN does not contain a by
clause, conversion from the subtype to the parent type and
from the parent type to the subtype are defined and trivial.

An alternative definition of EVEN, where INTEGER and
EVEN are represented in different ways, is given in Fig. 3.
Since in the latter example INTEGER and EVEN are to be
represented in different ways, conversion operations must be
defined by the user. If I is an INTEGER variable and E is an
EVEN variable then the assignment E:=I will cause I to be
tested by DIVISIBLE _BY _2. If the test fails then the
exception CONVERSION _ERROR is raised, otherwise
function “EVEN” performs the conversion and the result is
assigned to E. We note that subtype EVEN of INTEGER
could have been represented “by REAL” if we had wanted to
make a more complicated example.

tSchool of Computing Studies, University of East Anglia, Norwich, NR4 7TJ, UK.
${Department of Computer Science, University of Queensland, Brisbane, Australia 4067.

CCC-0010-4620/81/0024-0308 $02.00

308 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981

© Heyden & Son Ltd, 1981

202 udy 01 U0 188nB AQ GEGEIE/B0E/#/¥Z/B10ME/|UlL00/W0d"dNO" oIS PEDE//:SARY W) PAPEOUMOQ

function DIVISIBLE_BY_2 (I:INTEGER) return BOOLEAN is
pragma INLINE;

begin

return / mod 2=0;

end;
subtype EVEN is INTEGER which is DIVISIBLE_BY_2;
Fig. 2 Definition of subtype EVEN

subtype EVEN is INTEGER which is DIVISIBLE_BY_2 by INTEGER;
function “EVEN” (I:INTEGER) return EVEN is
pragma INLINE;
n

return //2;

end;
function “INTEGER” (E:EVEN) return INTEGER is
pragma INLINE;

return Es2;

s

Fig. 3 An alternative definition of EVEN

It must always be possible to coerce a subtype value to a
parent type value. Therefore, the declaration of the
“INTEGER” operator was mandatory. Provision of an
operator to coerce from a parent type to a subtype is optional.
If “EVEN” had not been declared then it would not have
been possible to coerce an INTEGER into an EVEN. (By
analogy, in Pascal it is not possible to coerce a REAL into
an INTEGER.)

The pragma SUPPRESS may be used to turn off error
checking where it is not required. Otherwise error checking is
performed whenever a new value is assigned to a variable
with a functional constraint unless the value is of the same
subtype. Parameter passing is viewed as equivalent to assign-
ment.

Care must be taken when using functional constraints with
linked structures since it may be possible to access and modify
substructures without assigning a new value to the constrained
variable. This problem may be overcome by using encapsula-
tion, in the form of packages, to prevent back door access to
data.

We note that Ada could be further extended to permit
functional constraints for types as well as subtypes, and to
support supertypes as well as subtypes. For example,
COMPLEX could be defined as the parent type of REAL.

3. Examples _

Subtypes may be used to advantage in a number of ways.
These include error checking, as illustrated by the example
in the previous section. The reader will have no trouble
imagining numerous other examples along these lines. In
effect, a functional constraint is an assertion associated with
all data structures of a particular type rather than with a point
in the text of a program.

Subtypes may also be used to permit certain operations to
be used for a collection of similar types in a controlled manner.
For example suppose STACK, QUEUE, SORTED_ LIST and
READ__APPEND_ LIST are all subtypes of LIST. Suppose
thatin every case coercion from LIST to thesubtype is prohibited.
Operations which modify LISTs (by having out or in out mode
parameters of type LIST) can not be applied to any of the
subtypes. However, safe operations which do not modify
LISTs (where parameters of type LIST are of mode in) may
be applied to the subtypes of LIST. In this way a single diag-
nostic procedure which prints the contents of a LIST may be
used for any LIST subtype. If the subtypes are defined as
illustrated in Fig. 4 then the coercion from the subtype to
LIST is not likely to involve any cost at all. (Since this situation

© Heyden & Son Ltd, 1981

subtype STACK is LIST by LIST;
function “LIST” (S:STACK) return LIST is
pragma INLINE;
begin
return S;
end;

Fig. 4 Definition of subtype STACK

is fairly common, perhaps a special syntactic form such as
strict subtype STACK is LIST;
may be warranted.)

In a large program or system of programs it may be necessary
to have several different ways of representing objects which
logically are regarded as being of the same type. For example,
there are a number of ways to represent sets. The best method
of representation depends on the expected size of a set, the
size of the universal set, the operations which are to be applied
to sets and other factors. Any one method of representation
will cause serious inefficiencies if used in the wrong situation.
Therefore, a program may have to use several different
methods for representing sets. It may be necessary on occasions
for sets represented in different ways to interact, so distinct
types for different representations is not adequate. Similarly,
points in a plane may be represented in either polar or rectangu-
lar form. Another example along these lines will be considered
in the next section.

Suppose we wish to use both polar points (for frequent
complex exponentiation) and rectangular points (for frequent
addition) in a program. We could declare either to be a
subtype of the other. (Perhaps the keyword cotype could be
introduced, where coercion both ways must be possible
between cotypes.) In this way a variable could be declared in
light of its expected usage, while the possibility of coercion
would allow the programmer to use the variable freely. A
simpler example can be seen in the area of unit conversion.
Inches could be defined as

subtype INCHES is FEET by REAL;

where conversion between feet and inches would involve
multiplication or division by 12. To date, representational
alternatives in programming languages have been restricted
to a few special cases, such as packed and unpacked structures,
binary and character representations for numbers and struc-
tures of reduced size for records with a fixed variant part.

4. Data independence

Data independence (Date, 1975) has long been advocated in
the context of data base systems. Data independence is the
separation of the logical view and physical representation of
data. For example, in a relational data base system a user
thinks and programs in terms of abstract relations. In practice
relations may be represented in any of a number of ways
depending on how they are used. In a general purpose pro-
gramming language it is desirable to be able to support data
independence for a variety of logical data types.

The use of subtypes as discussed in the previous section is
not really sufficient to support a reasonable level of data
independence. The lack of a collective name for a family of
types discourages a programmer from thinking in terms of a
single logical type. In addition, problems arise when an
operation is defined for more than one type (subtype) in the
family. For example, if multiplication is defined for both
POLAR and RECTANGULAR types, then a simple multi-
plication is ambiguous. In particular, if a programmer wishes
to multiply a POLAR by a RECTANGULAR he must

THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 309

202 udy 01 U0 188nB AQ GEGEIE/B0E/#/¥Z/B10ME/|UlL00/W0d"dNO" oIS PEDE//:SARY W) PAPEOUMOQ

declaration:: =
declaration_as_defined_in_Ada
| family_declaration | family_subprogram_declaration
family_declaration:: =
family identifier is family_definition
family _definition:: =
type_mark | type-mark only
| type_-mark excluding (type-mark {, type_mark})
| type_mark including (family_definition {, family_definition})
family_subprogram declaration:: =
as illustrated in Fig. 6

Fig. 5 Syntax extension for data independence through type
families

specify which operator is to be used. The decision must be
made each time multiplication is used rather than once when
multiplication is defined.

The solution is to give a collective name to a family of types
and to define operations for a family in such a way that the
various possible parameter combinations are considered at
the point of definition rather than at the points of invocation.
This can be done if the syntax of Ada is extended as shown
in Fig. 5.

The direct and indirect subtypes of a type together with the
type itself form a tree. There is a unique path between any
two nodes of the tree and so coercion from one subtype (or
type) to another is unique if possible at all. A family is a
connected subset of a type tree. A family defined by a type
mark consists of an entire tree of types, including parent
types, subtypes of parent types etc. (A type mark is a type or
subtype name.) A singleton family is defined by a type mark
followed by only. A restricted family can be defined by listing
either the type marks to be excluded or the sub families to be
included. If a type mark is excluded then all type marks
joined to the tree via paths through the excluded type mark
are also excluded. The family definition

A including (B)
is taken to mean
A including (B excluding (A4))

since A need not be considered twice.

Since we are interested in the concept of data independence
through type families, rather than a specific language proposal,
we will not give the full syntax of a family_subprogram _
declaration. With family firmly defined, an example should
suffice.

Suppose POLAR is a subtype of RECTANGULAR. The
definition of family POINT in Fig. 6 includes both
RECTANGULAR and POLAR and excludes any other
subtypes either may have. A family function “*” is defined.
When two POINTS are to be multiplied, the first form in the
declaration of the family function “*” which can be matched
determines the actual procedure to be used. In this case, if at
least two out of three of the parameters and the result are of

family POINT is RECTANGULAR including (POLAR only);
family function ““,” (P1, P2: POINT) return POINT is
match
when form (POLAR only, POLAR only) return POLAR
or form (POLAR, POLAR only) return POLAR only
or form (POLAR only, POLAR) return POLAR only =
function “,” (P1, P2: POLAR) return POLAR is
begin . . . end;
when form (RECTANGULAR, RECTANGULAR) return
RECTANGULAR =
function “,” (P1, P2: RECTANGULAR) return RECTANGULAR is
begin . . . end;
end match;

Fig. 6 Example of a family function

310 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981

type POLAR then POLAR multiplication is used. (Note that
a RECTANGULAR is in the family POLAR but not in
POLAR only. A RECTANGULAR may be coerced to a
POLAR if necessary.) Otherwiss RECTANGULAR multi-
plication is used. Note that the final form can always be
matched.

Only in rare cases (for example
POLAR-_1 := RECTANGULAR-1 * (POLAR-2 *
RECTANGULAR-2)
where the intermediate result may be of either type) is qualifi-
cation required. The interested reader is referred to Ichbiah
et al. (1979, Section 7-5).

So far we have restricted our attention to very simple examples.
Data independence is likely to be most useful in more com-
plicated situations.

Consider a geographical information system where a logical
type (family) CURVE is to be used for approximations (to a
fixed precision) to curves. There are a number of possible
ways to represent curves. A polygonal representation is a
possible universal representation. However, significant savings
may be realised if special purpose representations are allowed
for circles and other special curves. In addition, more com-
plicated representations may be desired to speed processing
in certain situations. For example, in some cases the time
required to determine whether a point is inside an irregular
n-gon can be reduced from O(n) to O(1) by using a suitable
representation (Burton, 1977). Raster representations also may
be desirable, for example if a curve is to be frequently displayed
on a raster device. Compound representations may also be
defined. For example, if a circle is to be frequently used in
situations where a simple point-radius representation will
speed processing and also is to be frequently used in situations
where a more complicated representation is required, then a
compound representation containing both simple representa-
tions may be defined. Other representations may also be
justified. An ad hoc solution to data independence in geo-
graphical information systems has been proposed (Burton,
to appear).

The Ada extension considered earlier can clearly cope with
problems such as permitting multiple representations for
curves. The proposed language extension will support a
flexible and extensible system as well as allow a user to work
with logical rather than physical types.

Suppose a new operation is to be added to the system. In the
first instance, it is only necessary to support one version of the
operation. Coercion is used when parameters are of the wrong
type. Similarly, if a new physical type (representation) is to
be added to the system then in the first instance it is only
necessary to define one or two conversion operations. In
general, if a system supports m binary operations and n
physical types then only m + 2(n — 1) routines are required
(assuming coercion from the parent type to its subtypes is
always supported), as opposed to the mn® routines which
would be required when providing a routine for each possible
case.

To ensure system efficiency, instrumentation may be used
to detect common cases and additional routines may be added
to avoid bottlenecks caused by excessive conversions. These
alternative routines will be inserted within the family declara-
tion and automatically utilised (if appropriate) when a package
uses the family functions concerned.

5. A view of other language features

The fact that a subtype of a given type may be restricted in use
rather than in value means that constants of a type can be
thought of as belonging to a constant subtype. For example,
with the definition of CONSTANT_PACKAGE in Fig. 7,
we can declare

© Heyden & Son Ltd, 1981

202 udy 01 U0 188nB AQ GEGEIE/B0E/#/¥Z/B10ME/|UlL00/W0d"dNO" oIS PEDE//:SARY W) PAPEOUMOQ

generic (type 7; INITIAL:T)
package CONSTANT_PACKAGE is
restricted subtype CONSTANT_T is T by private;
VALUE: CONSTANT_T;
function “7” (CT: CONSTANT_T) return T;
private
restricted subtype CONSTANT_Tis T by T;
VALUE: CONSTANT_T:= INITIAL;
function “T”’ (CT: CONSTANT_T) return T is
begin
return CT;
end;
end CONSTANT_PACKAGE;

Fig. 7 Definition of the generic package CONSTANT-PACKAGE

package FIVE is new CONSTANT_PACKAGE (INTEGER,
5);

making FIVE.VALUE an INTEGER constant with value 5
for all practical purposes. That is, we can use FIVE.VALUE
in any situation where an INTEGER value is required since
coercion to INTEGER is allowed. However, there is no
possible way to modify the value of FIVE.VALUE.

We do not advocate the use of the generic CONSTANT_
PACKAGE but believe that viewing constants in terms of
subtypes is more satisfactory than the alternatives, such as
the Algol 68 (van Wijngaarden et al., 1969) view of variables
as references (pointers) to constants. Constants are simply
objects for which the assignment operation is not defined.

If we view a function or an expression as returning an object
with a constant subtype then we no longer need special
syntactic rules to prohibit functions and expressions from
occurring on the left hand side of an assignment statement.
Assignment to the result of a function or expression evaluation
would be an invalid operation for an object having a constant
subtype.

This view can be extended to simplify and clarify other
aspects of programming languages. Functions can be viewed
as constant arrays. This parallel suggests useful language
extensions. An array, being a ‘variable function’, could be
initialised by a function body, and sparse arrays could be
supported along the lines advocated by Dahl et al. (1972).
In this way we could define a sparse array SQUARE_MAYBE,
whose domain is all INTEGERs, where SQUARE_MAY BE(I)
is I=I unless specifically set to some other value. A possible
declaration for SQUARE_MAYBE is given in Fig. 8. In Ada

References
ACM (1979).

SQUARE_MAYBE: array (I: INTEGER) of INTEGER :=
begin
return /x/;
end;

Fig. 8 Definition of sparse array SQUARE_-MAYBE

it is possible to specify packing for a type. In a similar manner,
a sparse specification could be permitted.

User defined selectors may be supported in a language. For
example, 7.LEFT_MOST_LEAF could be used to select the
left most leaf of a tree T, where LEFT_MOST_LEAF is a
user defined selector. Selectors are simply functions which are
not restricted to return constants. Recall that an array sub-
script is actually a special type of selector for arrays. We do
not particularly advocate the provision of user defined selectors
but note that such a facility would fit neatly into the framework
we have described.

Relations, in the relational data base sense (Date, 1975),
are a useful data type. If relations are to be provided, we
can view a relational type as a subtype of a set-of-records
type. An array type can be viewed as a subtype of a relational
type, and the hierarchical relationship between functions and
arrays remains unchanged.

Even if languages are not to be enlarged to include features
mentioned in this section, we feel that languages should not
hide relationships between constants and variables and
parallels between functions and arrays. This basic problem of
referring to information in a more uniform way has been
considered by others (Geschke and Mitchell, 1975).

6. Conclusion

We have described a general subtype construct for use in high
level languages. The construct is useful because error checking
is improved by associating arbitrary constraints with subtypes,
readability is improved by permitting type definitions to more
fully describe types and by permitting relationships between
types to be more formally defined, and efficiency is improved
by providing a more flexible language which allows logically
similar objects to have physically different representations.

It has been shown that with some additional language
features a high degree of data independence may be realised
in a general purpose high level language.

Finally, we have seen that by thinking in terms of types and
subtypes it is possible to clarify and unify the distinctions
between constants and variables, functions and arrays, arrays
and relations, and so forth.

Preliminary Ada reference manual, SIGPLAN Notices, Vol. 14 No. 6, part A.

ANSI (1966). American standard FORTRAN, ANSI X3.9, American National Standards Institute, New York.

BurTON, W. (1977).
20 No. 3, pp. 166-171.

Representation of many-sided polygons and polygonal lines for rapid processing, Communications of the ACM, Vol.

BurToN, W. (1979). Logical and physical data types in geographical information systems. Geo Processing,Vol. 1, pp.167-181.

DaHL, O.-]J. DuksTRA E. W. and HoArE, C. A. R. (1972).

DaTEg, C. J. (1975).

GEsCHKE, C. M. and MITCHELL, J. G. (1975).
Engineering, Vol. 1 No. 2, pp. 207-219.

ICHBIAH, J. D., BARNES, J. G. P., HELIARD, J. C., KRIEG-BRUECKNER, B., ROUBINE, O. and WICHMANN, B. A. (1979).

Structured Programming, pp. 148-155. Academic Press, London.
An Introduction to Database Systems, Addison-Wesley, Reading, MA.
On the problem of uniform references to data structures, /IEEE Transactions on Software

Rationale for the design

of the Ada programming language, SIGPLAN Notices, Vol. 14 No. 6, part B.

JEnseN, K. and WIRrTH, N. (1974).

Mathematisch Centrum, Amsterdam.

© Heyden & Son Ltd, 1981

Pascal: Uses Manual and Report. Springer, Berlin.
WUNGAARDEN, A. van, MaiLLoux, B. J., PEck, J. E. L., and KosTEr, C. H. A. (1969).

Report on the Algorithmic Language ALGOL 68.

THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 311

202 udy 01 U0 188nB AQ GEGEIE/B0E/#/¥Z/B10ME/|UlL00/W0d"dNO" oIS PEDE//:SARY W) PAPEOUMOQ

