Justification with fewer hyphens

Alison M. Pringle

University of Cambridge Computer Laboratory, Corn Exchange Street,

Cambridge CB2 3QG, UK

Many books are now typeset by computer, and certain areas of this work are subject to much
criticism by professional printers. An example is justification and the introduction of hyphenation.
Many of the programs used in the past have been naive and inflexible. This paper presents an
approach to the problem which is both new and flexible, and produces better results than many
which have been seen before now. In some cases it may even produce results which improve on

those of traditional methods.
(Received September 1980)

Introduction

The application area within which this paper falls is that of the
computer based composition of text. This is an area which has
expanded rapidly in the last ten years. Not only has the number
of available systems expanded enormously, but the measure of
acceptance and approval accorded to them by the printing
industry has increased. This approval is not unqualified and
there are several areas where the work produced by these
means is much criticised. This paper is an account of one of a
group of experiments which were designed to demonstrate
that in some areas much better results can be obtained from
automated systems than have been seen in the past, and that
these improved results may in some cases make available
possibilities which were not readily available through tra-
ditional methods.

There is one point which must be emphasised before detailed
consideration of the work described here can begin: the type of
printing work in which we are interested. The discussion here
applies to high quality work of the sort produced by printers
for bookwork. It does not specifically apply to the kind of
line-printer paginator with which most computer scientists
are familiar or to the ‘near print’ which some word processing
systems emit. It may well be that some of the principles are
applicable in that context, although they might be regarded
as unduly fussy, but it is not our target area. The work is
aimed at text which will be properly printed to commercial
standard by professional printers.

The particular problem under consideration in this case is
that of justification. Justification is the process of breaking
text into lines. It consists of choosing line endings and altering
the spaces between words and at each end of each line in
such a way that the text forms a regular and pleasing pattern on
the page. This is usually interpreted as meaning that the right-
hand margin of printed text should form a straight line (right
justification). In fact similar considerations apply however
text is set. For example, it may be ‘set left’, that is with a
straight left-hand but ragged right-hand margin. It may also
be centred or set in various non-standard ways, as poetry
often is, but analogous problems still occur. To some extent
it is true that the problems are more acute for right-justified
text. For this reason (and because this is the most frequently
used format) it is to this particular problem that the rest of
this section applies in detail. In general there are limits to the
range of values suitable for word spacing. If words are too
closely packed it will be difficult to distinguish them, while if
they are too loose the flow of the text is lost, as is the strong
horizontal guide needed by the eye. Somewhere between the
minimum and maximum acceptable spaces is an ideal space.
This may not, in fact, bisect the range. For example, a typical
range might be four to nine printers’ units with a standard

space of six units (a printers’ unit is usually defined as one
eighteenth of the width of an upper case ‘M’ in the current
type, or body, size and is thus scaled with the body size). An
alternative method would be to distribute space variously
through the text, between letters as well as words. This is not
generally well thought of by printers, and is not considered
here. Yet another approach would be to use the freedom
provided by modern photosetters to scale characters inde-
pendently in the horizontal and vertical directions. This
would receive even less approval in principle than the last
suggestion, although experiment suggests that people are in
fact less conscious of the visual effects than they believe if it is
done with discretion. However, this too is not considered here.

The usual approach to justification consists of: filling the
current line with words until it is full or overfull; determining
which words (if any) will lead to acceptable spacing if chosen
as the line end; and selecting the one which gives a spacing
closest to the ideal. If no such line break can be found, select
the word whose ends span the possible space range and
hyphenate it in such a way that an acceptable word spacing
results.

Although this may seem a reasonable approach and has been
used with some success in many systems, it does have draw-
backs. Since each line is considered separately the overall effect
may be unsatisfactory. A typical rule for word division is given
in Hart’s Rules (1978, p. 137), ‘“Two successive hyphens only are
allowed at the end of lines’. Fig. 1 shows the bottom section of
the first page of text from a directory (CIT, 1978) which was
set by computer. This violates not only this rule, but also the
next: ‘A divided word should not end a right-hand page’.
It is also considered bad practice to finish a paragraph with a
line consisting only of the second part of a broken word.

A further difficulty lies in the hyphenation itself. English is a
very difficult language to hyphenate correctly, since almost any
general rule has exceptions, e.g. ‘mo-ther’ but ‘light-house’.This
demonstrates why algorithms such as those described below
will often fail. There are also well-known hazardous words,
such as ‘therapist’. In addition there are semantic problems
which cannot be resolved by inspecting letter patterns. A
good example is ‘present’ which is split ‘pre-sent’ or ‘pres-ent’
according to the sense in which it is employed. Printers
themselves are acutely aware of this problem, and many books
have been published about hyphenation, for example Sisam
(1929). Many algorithms for automated hyphenation have
also been published [e.g. Rich and Stone (1965); Ocker (1975);
Knuth (1979); Moitra et al. (1979)].

There are two main techniques which have been used for
hyphenation in automated systems. The first is the logic
hyphenator. In this case an algorithm is provided which searches
a word for syllables, and hence hyphenation points. A common

CCC-0010-4620/81/0024-0320 $02.00

320 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981

© Heyden & Son Ltd, 1981

202 udy 01 U0 188nB AQ L9GE9E/0ZE/¥/¥Z/10M4e/|ufoo/W0d"dNo"oISPEDE//:SARY W) PAPEo|UMOQ

What is the Convocation?
by E.F. LAWLOR

Chairman of the Standing Committee of the Convocation

Nearly five thousand graduates have passed through the Cranfield Institute of
Technology and its predecessor, the College of Aeronautics, and together they
make up most of the membership of Convocation, which is a constituent body of
the Institute. This body is frequently called ‘The Cranfield Society’, a name in-
herited from the association of former students of the College of Aeronautics.

From its earliest days the Society was aware of its potential for highlighting key
issues, and during the fifties and sixties this developed in several ways. The Society
held a number of weekend Symposia, devoted to discussions of future trends in
Aeronautics, Education, Communications, Transport and Management. During
this period the Society prepared submissions to the Plowden Committee on the Air-
craft Industry, the Fulton Committee on the Civil Service and the Board of Trade
Civil Aviation Enquiry. Another activity was a series of annual lectures, organised
in collaboration with the Royal Aeronautical Society, in memory of the late Sir
Frederick Handley Page, and having the theme ‘The Influence of Aviation and
Astronautics on Human Affairs’. We were honoured to have HRH The Duke of
Edinburgh, KG deliver the inaugural lecture at Cranfield in 1963. Since the early
sixties a prize has been awarded each year to the student covering the widest range
of achievement, both socially and academically.

Towards the end of the sixties, the Society turned its attention more and more to the
role it could usefully adopt within the Cranfield Institute of Technology. When the
Institute received its Charter at the end of 1969 it provided for a Convocation of
graduates, whose prime function was to bring to bear their interest, experience and
views towards achievement of the objects of the Institute. This is the role which the
Convocation has set out to fulfil since the Charter was granted.

But this is not its only role. It also seeks to provide fellowship between members by
organising functions such as dinners, dances and social gatherings. In addition it
publishes its own news magazine Digest twice a year. In order to have the oppor-
tunity to participate in these activities, and to receive Digest, all members are in-
vited to pay a fee (currently £2 p.a. or £40 for life). Those who do not become ‘par-
ticipating members’ in this way normally receive information only once a year con-
cerning the Annual General Meeting. However, every member (whether par-
ticipating or not) has been sent a copy of this Directory if we have his or her ad-
dress.

Fig. 1 Example of computer typesetting

method is to start at the end of the word and scan forward
until a vowel is found. This indicates the centre of a syllable.
Since in English the preceding consonant is normally part
of the syllable, the scan is continued until a consonant is
found. This is then considered jointly with the preceding letter,
to see if they form a normally unbreakable pair, such as ‘th’ or
‘gh’, and the syllable start chosen accordingly. Severa! such
algorithms have been published, and many systems have been
written using them. The algorithm published by Rich and
Stone (1965) is a good example of a pure algorithm of this
type. The difficulty with this approach is that however sophisti-
cated such algorithms are, they can rarely give better than
60-70 9; correct hyphenation. It can, however, be argued that
such an algorithm is quick, and thus comparatively cheap, and
that as long as all hyphenations are recorded by the system and
checked by a reader it is acceptable to correct bad ones
manually—treating them like spelling mistakes in other parts
of the text.

An alternative approach is to keep a dictionary of words
longer than (say) five letters, together with their possible break
points. All hyphenations are then looked up as and when they
are required. The argument for using this approach is that
hyphenation is, or should be, a comparatively rare event, and
thus the increased expense of dictionary look-up, as opposed to
using an algorithmic method, is not significant. However, large
amounts of backing store would be required and the method
might still fail if a new word were encountered or a contentious
hyphenation used.

In practice a hybrid method is often employed. In this case
an exception dictionary is maintained which contains only

© Heyden & Son Ltd, 1981
2

those words for which the algorithm is known to fail. A word
to be divided is checked against this list. If it is found, a
breakpoint is chosen from the dictionary, otherwise an
algorithmic method is employed. It is clear that even this
approach requires a considerable dictionary since it needs to
contain 30-409 of the possible vocabulary. A measure of the
problem can be found by considering some well-known diction-
aries. Chambers (1972) contains about 150000 words, while
the OED (1933) gives about 550000, or 6000000 if all the
variants (eat, eats, eating. . .) are counted.

Even when an adequate solution has been found for English,
or at least that subset of English commonly used in books
processed by the system, problems still remain if part of the
text is in another language, for which the rules developed for
English do not apply.

Given that hyphenation causes such trouble, it seemed
reasonable to consider an experiment on how best to avoid
the problem. The most obvious method might seem to be an
extension of the range of acceptable spaces. In practice this is
not satisfactory since it tends to erode the quality of the text
by producing unacceptably loose spacing. It is also likely to
be unsuccessful if certain sorts of word pattern occur within a
line. For example, a line which almost contains the word

honorificabilitudinitatibus

(Shakespeare, Love’s Labour’s Lost, Act 5 Scene 1) at the end
is unlikely to be assisted by this means.

It seemed clear that more interesting results might be available
if a more radical approach were adopted and complete para-
graphs rather than individual lines were considered. Given
that the word space for each line is chosen to be as close to a
standard space as possible, it may be possible to tighten or
loosen a particular line and still produce an acceptable result.
This may be achieved by moving a8 word from one end of a
line to the preceding or succeding line. Now, suppose lines
are made up one at a time. For a while all will probably go
well, but sooner or later a line will be found for which an
appropriate line break is not available at the end of a word.
It may be possible to push the first word (or words) of the current
line back to the previous line. This will cause the previous line
to become much tighter. If it becomes too tight it may be
possible to remedy the situation by moving words back to
the line before that; and so on, back, if necessary, to the
beginning of the paragraph. If it is not possible to reach
stability by these means, it may be possible to achieve it by
the reverse process. In this case, instead of pushing words back
to tighten earlier lines, you pull them forward to loosen the
lines. Only if justification cannot be achieved by either means
do you finally employ hyphenation. This approach is par-
ticularly attractive since it is similar to one which might, in
principle, be used manually by printers. In fact they do not
use it since a line sent to a casting machine is committed for
good; when it is punched on a Monotype D-board there is
no going back; when work is being hand set, backing up is
possible but is almost the same as resetting. Juggle (see later)
employs this technique to make up paragraphs.

Since completing this work, we have found evidence that a
similar idea was considered and discarded by Elliotts while
working on the Garden City Press system in the mid-1960s.
The paper in which it is discussed (Cooper, 1967) is not explicit
and it is difficult to assess the results. The main reason given
for abandoning the experiment is the large resources required.
These no longer seem excessive in comparison with the benefits
which may be obtained. Computer composition has now
reached a stage where emphasis can rightly be placed on
improving quality rather than simply on efficiency, since it
is this aspect which raises doubts in printers’ minds rather
than cost.

THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 321

202 udy 01 U0 188nB AQ L9GE9E/0ZE/¥/¥Z/10M4e/|ufoo/W0d"dNo"oISPEDE//:SARY W) PAPEo|UMOQ

The program Juggle

It should be noted from the outset that Juggle was always
envisaged as an experiment in a particular technique. Its
capabilities are limited to the composition of paragraphs
according to a format supplied by the user and the output of
them in a form suitable for display.

Juggle incorporates a very basic idea of a paragraph. A
paragraph is regarded as a series of words distributed into
lines. The lines are made up to a specific measure and the first
one may be indented. Within a line the word spacing may
take values within a specified range, but an optimum is always
aimed at. }

The program takes three input files, one of which may be
omitted. The first (and optional) one is a format description.
This is short and simple, and if omitted is supplied by default.
The second input file specifies the characters in the fount to
be used together with their widths. Finally, and most import-
antly, there is the file containing the text for composition. This
may contain several paragraphs, each terminated by the escape
sequence ‘*P’.

Juggle first assimilates the format description and the fount
definition, and then proceeds to read a paragraph of raw
text. As it does so, it builds a data structure which reflects the
verbal structure of the text. Each word is stored and measured,
and information about its type is recorded. Initially there are
three types of word. First there are simple words consisting
purely of letters. Then there are abnormal words which contain
non-letters, for example ‘1984’, ‘ALGOL68’ or ‘Hen3ry’.
These are usefully distinguished since usually they must not be
divided. It is a corollary of the way Juggle looks for words that
punctuation is normally attached to the word immediately
preceding it. That word is thus labelled as abnormal and will
not be broken which neatly results in the correct practice in
most cases. Finally there are words which are already hyphen-
ated, such as ‘well-known’ or ‘water-colour’. These words must
not have further hyphens inserted in them, but their indigenous
hyphens may be used as line breaks. The parts are therefore
stored as separate words, and in fact given different types
according to whether or not they represent the final part of a
word. There is a clear distinction between these hyphens and
any which may be inserted by the program.

When the data structure is complete Juggle sorts the words
into lines using the following algorithm. Words are added to
the line until the word space needed for justification is less
than or equal to the maximum permitted space. Further words
may then be added or removed until a spacing as close as
possible to the ideal is reached. It will sometimes happen that
the space which terminates the first stage is not only less than
the maximum but also less than the minimum permitted
space. It is at this point that the novel part of the algorithm
comes into play.

The first response to this situation is to attempt to make space
in the present line by pushing material backward from the
line start in such a way that the earlier lines are tightened
within acceptable limits. The routine which does this (PUSH-
BACK) is recursive. It attempts to fit the first word of the line
on which trouble occurred on to the previous line. If it will
fit, all well and good. Otherwise PUSHBACK calls itself in
an attempt to push material from the line on which it is
operating yet further back. At any point in this process where
PUSHBACK is called it may be called repetitively, and a
count will be maintained. Thus if an attempt to create space
at the start of a line is successful but inadequate, a second
attempt will be made, and so on.

If the attempt to gain space by pushing material back is
unsuccessful, the alternative approach is tried. First the
paragraph is restored to its state prior to the application of
PUSHBACK, and then an inverse routine, PULLON, is

322 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981

applied. This is also, incidentally, the means used to restore the
status quo. PULLON acts as an inverse to PUSHBACK, and
an equal number of applications will reverse the results of
applying PUSHBACK. The object of applying PULLON is to
add sufficient material at the start of the problem line to make
an earlier potential line break acceptable. PULLON is also
recursive and acts in a manner precisely similar to PUSHBACK.

If this attempt is also unsuccessful in producing a suitable
line break and word space, then the paragraph is again restored
to its initial state. A logic hyphenator may then be applied.
The application of the hyphenator has the side effect of
modifying the data structure describing the verbal structure
of the paragraph, since one word must now be represented by
two. It also requires the addition of two new word types
analogous to those used for naturally divided words.

When the entire paragraph has been processed in this way, it
is output as linear text with appropriate typesetting directives
embedded in it, and the next paragraph (if any) is processed.

The program was written in BCPL and implemented on the
University of Cambridge IBM 370/165. It consists of about
8K of code, including extensive tracing code and the standard
BCPL library and diagnostic aids.

Experience and results

Fig. 2 shows a paragraph generated by Juggle. This result was
achieved by use of the techniques described above. Examination
of trace output from the program reveals how it was done.

Our modern view of the classical era has been so much formed by the
accumulated reverence for Beethoven that we acoept without question
the doctrine tha: the symphony is of all musical forms the most important,
the one into which a composer must inevitably pour all his mightiest
inspirations. That certainly was not the view of Beethoven's own period. °
The generation which had just lost Mozart and had exalted his memory
to a place among the gods was inclined to regard operas and concertos
as far more important than symphonies. The concerto was obviously a
more important form than the symphony, because it was an occasion for
watching the composer himself apparently in the very act of composing. 10
It is difficult for us to imagine a period of musical history in which there
were no classics, and in which all interest was concentrated on the newest
production. The English, by commemorating Handel i in Westminster
Abbey in 1784, had taken the first step towards establi lcultoft.he
classics’ in music, and this cult of Handel had;ustbeguntospradﬁom
England to Germany. Johann Sebastian Bach, who for us to-day is the
great classic of the eighteenth century, was practically unknown outside
Leipzig. The only works of Bach which Beethoven is likely to have
known were the Forty-Eight Preludesand Fugues; Forkel had just begun
to awaken intereit in Bach's music, and hardly any of it was accessible
in print.

20

Fig. 2 A paragraph generated by Juggle

Our modern view of the classical era has been so much formed by

@ the accumulated....

Our modern view of the classical era has been so much formed by

®) the accumulated reverence for Beethoventhat weaccept withoutquestion

Our modern view of the classical era has been so much formed by

© the accumulated reverence for Beethoven that we accept without

Our modern view of the classical era has been so much formed by the
(d) accumulated reverence for Beethoven that we accept without question
the doctrine.....

Fig. 3 Examination of the justification of lines 1-3 in Fig. 2

© Heyden & Son Ltd, 1981

202 udy 01 U0 188nB AQ L9GE9E/0ZE/¥/¥Z/10M4e/|ufoo/W0d"dNo"oISPEDE//:SARY W) PAPEo|UMOQ

Line 1 was generated without difficulty, leading to the situation
in Fig. 3(a). When line 2 was attempted, the first line break
found would have led to a line which was too tight. Fig. 3(b)
shows the initial version of line 2 set with a minimum word
space. This is clearly too long. If the last word is dropped and
the maximum acceptable space is used, the situation in Fig. 3(c)
is reached. This version of the line is too short. As a result
of applying PUSHBACK, Fig. 3(d) (which is acceptable) was
achieved. Line make-up proceeded without trouble until line
10, where a similar procedure was invoked, as shown in
Fig. 4(a)—(c). The rest of the paragraph was composed without
incident.

It is useful to compare these results with those of the conven-
tional method. It is possible when using Juggle to disable
recursive justification so that a line is fixed after it has once

as far morc important than symphonics. The concerto was obviously a
more important form than the symphony, because it was an occasion
(a) for watchingthecomposer himsclfapparently inthe very act of composing.

as far more important than symphonics. The concerto was obviously a
morc important form than the symphony, becausc it was an occasion
(b) for watching the composer himself apparently in the very act of

as far more important than symphonics. ‘e concerto was obviously a
more important form than the symphony, becausc it was an occasion for
(c) watching the composer himselfapparently ir: the very act of composing.

Fig. 4 Examination of the justification of lines 9-10 in Fig. 2

Our modern view of the classical era has been so much formed by
the accumulated reverence for Beethoven that we accept without ques-
tion the doctrine that the symphony is of all musical forms the most
important, the one into which a composer must inevitably pour all his
mightiest inspirations. That certainly was not the view of Beethoven's
own period. The generation which had just lost Mozart and had exalted
his memory toa place among the gods was inclined to regard operasand
concertos as far more important than symphonies. The concerto was
obviously a more important form than the symphony, because it was
an occasion for ing the composer himself apparently in the very
act of composing. It is difficult for us to imagine a period of musical
history in which there were no classics, and in which all interest was
concentrated on the newest production. The English, by commemora-
ting Hande! in Westminster Abbey in 1784, had taken the first step
towards establishing a cult of ‘the classics’ in music, and this cult of
Handel had just begun to spread from England to Germany. Johann
Sebastian Bach, who for us to-day is the great classic of the eighteenth
century, was practically unknown outside Leipzig. The only works of
Bach which Becthoven is likely to have known were the Forty-Eight
Preludes and Fugues; Forkel had just begun to awaken interest in Bach's

music, and hardly any of it was accessible in print.

Fig. 5 The text of Fig. 2 set without using recursive justification

been composed. If this is done the final paragraph is that
shown in Fig. 5. It is interesting to note that although a hyphen
is inserted at the end of line 2, the next hyphen is at the end of
line 13, and not line 10 as might have been supposed. This is
the result of shifting part of ‘question’ on to line 3 which
causes the rest of the text to shift up. It does, however, suggest
that there is a ‘problem quotient’ for a particular piece of
text which is independent of the method of resolution. Ex-
perience with other text seems to confirm this.

As an experiment, a substantial section of this paper was
processed using the method described here. The sample
contained just over 3000 words in 27 paragraphs. The recursive
algorithm was invoked 28 times and was successful 19 times.
Of the nine hyphens inserted seven were acceptable. When the
text was processed with the recursion disabled, 20 hyphens were
inserted of which 15 were acceptable and the hyphenation
algorithm failed to find break points in three words.

Setting to shorter measures leads to less striking results. This
is reasonable and was to be expected. Usually shorter lines
contain fewer words and thus less white space. It is therefore
less likely that sufficient spare space can be accumulated for
inserting extra words. Similarly, removal of a word is likely
1o leave too much space for distribution. This is sad but not
disastrous. Typically the measure chosen for a particular piece
of composition reflects the quality and permanence of the final
product. The obvious contrast is between newspapers and
hardback books. Since short measure printing tends to be
‘throwaway’ printing, its quality is of lower importance. Thus
a much wider range of spacing within a line is acceptable as a
means of eliminating hyphens. In addition, since the object
of hyphen removal is to raise the quality of the text, successful
removal is less important. The effectiveness of this method
seems to be roughly proportional to the measure used and it
is thus most effective for those kinds of text which most merit
care and attention.

A useful variant of this technique might be to combine it
with a fairly sophisticated specialised hyphenator. Experiment
might prove that there are classes of syllables (possibly
suffixes and prefixes) which can be found and stripped with
greater than average confidence. If so, then by using a hyphen-
ator which detected these syllables together with the techniques
described in this section it may be possible to provide better
and more reliable hyphenation.

A final point is worthy of reflection. If you can reduce the
number of hyphens needed, then you effectively reduce the
failure rate of the hyphenation algorithm. A more rigorous way
of expressing this is to say that the object of this exercise is
the same as that of improving a hyphenator: the reduction of
the number of bad line endings. It is not significant how this
result is reached. This means that a technique like this may be
worth considering even in circumstances when it will not
give its best results, since a poor hyphenator will give less
offence the less often it is called.

References
Chambers (1972). Chambers Twentieth Century Dictionary, Chambers, London.
CIT (1978). The CIT Directory. Cranfield Institute of Technology.

COOPER, P. 1. (1967). The influence of program parameters on hyphenation frequency in a sophisticated justification program, in Advances
in Computer Typesetting: Proceedings of the 1966 International Typesetting Conference, Institute of Printing, London.

Hart’s Rules (1978).

KnNuTH, D. E. (1979).

MOITRA, A., MUDUR, S. P. and NARWEKAR, A. W. (1979).
ence, Vol. 9 No. 4, pp. 325-337.

Hart’s Rules for Compositors and Readers at the University Press, Oxford, 38th edition, Oxford University Press, London.
TEX and METAFONT New Directions in Typesetting, Part 2, Appendix H. Digital Press, Bedford, MA.
Design and analyis of a hyphenation procedure, Software—Practice and Experi-

OckER, W. A. (1975). A program to hyphenate English words, IEEE Transactions on Professional Communication, Vol. 18 No. 2, pp. 78-84.

OED (1933).
RicH R. P. and STONE A. G. (1965).
Pp. 444-445.

Sisam, K. (1929). Werd Division, SPE Tract No. XXXIII.

© Heyden & Son Ltd, 1981

Oxford English Dictionary. Oxford University Press, Oxford.
Method for hyphenating at the end of a printed line, Communications of the ACM, Vol. 8 No. 7,

THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 323

202 udy 01 U0 188nB AQ L9GE9E/0ZE/¥/¥Z/10M4e/|ufoo/W0d"dNo"oISPEDE//:SARY W) PAPEo|UMOQ

