Retained objects and operating system interfaces

K. Hopper

Department of Computer Studies, University of Leeds, Leeds, LS2 9JT, UK

The general nature of all types of object which a user may wish to retain between computing
sessions is shown to be that of a file. The requirement that a transportable control language provide
identical semantic effects everywhere leads to the idea of a universal file system. The specification
of a file in such a system is discussed before considering the effects of widely varying underlying
file systems on the mappings and facilities needed in a control language processor to support such
a universal file system. Discussion of file manipulations and network connection requirements
completes the design requirements for the use of retained objects in a control language processor.

(Received February 1980)

Introduction

The word interface, when used in relation to computer
operating systems, is often associated with two particular
boundaries—that between users and the operating system,
and between users’ processes and the operating system, since
these are the two boundaries with which the majority of com-
puter programmers come into contact. If the operating system
is considered only to be a specially privileged process, however,
then three separate operating system interfaces can be identified :
(a) the processor hardware, (b) the processor peripherals and
(c) processes. While purists may wish to suggest that the first
two should be considered to be one interface, it is argued that
peripherals are outside the processor and therefore fall into a
different class. Although they are indeed a hardware interface
they are the data communication devices for input, output or
both on behalf of any process.

Peripherals are therefore very much concerned with any object
retention which a process may wish to do. The physical
peripherals themselves must therefore be considered as retained
objects—objects retained from one computer use to the next—
since the operating system must know about them and their
properties in order to be able to use them for communication
purposes.

The suggestion that the third operating system interface is a
boundary with processes is not meant to imply that a user is
one of those processes which interfaces directly with the operat-
ing system. It does imply that users must have available a
communication process which has a direct operating system
interface, enabling them to instruct and receive responses
from the operating system. This process will be called the
control language processor (CLP). The two interfaces which
this CLP has—with user and with operating system—are
both of interest when discussing operating system interfaces
since the CLP must convert between the user’s view of actions
or responses and the operating system view of them. These
actions and responses may concern such things as controlling
other processes, doing calculations or otherwise manipulating
various types of object; in particular they will involve the
manipulation of objects which may be retained between
computing sessions on behalf of the user. The provision of a
transportable control language (TCL) in this context implies
that the CLP must provide a mapping between a ‘universal’
view of computer systems understood by the user using the
TCL and a particular view of a particular system known- to
the underlying operating system.

The provision of a universal view for all users using the TCL
has certain profound implications for the retention of
objects between computing sessions. First, the operating
system must retain its own view of these objects between

sessions and second it must also on behalf of the CLP retain
the user’s (TCL) view of the same objects—all in addition to
retaining the actual objects themselves!

Retained objects

From the computer users’ viewpoint the objects which he is
most likely to wish to retain are files containing data, programs,
etc. As already suggested the operating system will wish to
retain peripherals or, perhaps more accurately, at least its
description of peripherals. Users may also wish to retain
peripheral descriptions, accounts, budgets or even complete
abstract machines from one session to another.

Whatever the semantics of the objects to be retained may be,
or whoever wishes to retain them, the act of retention involves
permanent storage of some sort. The name conventionally
given to storage entities is file and therefore the discussion of
retention of any type of object between sessions reduces to a
discussion of retaining files, the nature of these files themselves
and the mappings which must be provided by the CLP.

Universal file system

In order for a TCL to have standard semantics for retained
objects and their manipulation it must view them in a standard
way. Before considering the way in which retained objects
may be viewed by an underlying operating system it is essen-
tial to describe this standard TCL view before discussing the
precise nature of a file as seen by the CLP.

The universal file system provided by the TCL should provide
all the facilities which any possible user may require when
using his computer (whether or not it provides all of these
facilities for all of its users). This very sweeping statement has,
however, some natural restrictions which may not at first
sight be obvious:

(a) The TCL user, particularly in a network environment, may
have no knowledge of the underlying physical storage facilities
provided for retained objects. A TCL can never provide
standard facilities for describing these because they are highly
machine dependent; the TCL would not be transportable
if it did provide them!

(b) No TCL can provide direct access facilities to any contents
of a retained object. It may, of course, include a mechanism
to call procedures (which are machine dependent in content
but transportable in use) in order to appear to provide this
facility for certain classes of user. The TCL must, however,
directly provide facilities for describing the contents of a
retained object, i.e. it must provide the description which
enables the machine dependent access procedures to correctly
access the retained object’s contents.

CCC-0010-4620/81/0024-0331 $04.00

© Heyden & Son Ltd, 1981

THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 331

202 udy 01 U0 188n6 Aq 01.9E9E/LEE/F/PZ/B10NIE/|UfLO0/WO0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

(c) As a corollary of the inability of a TCL to provide direct
access to the contents of a retained object, it can have no
knowledge of the meaning of those contents. In particular,
it can never provide the user with a guarantee that the contents
correspond with the description given to the universal file
system. The assurance of this correspondence must therefore
remain with the user and the way in which he fills the retained
object.

As a result of these natural restrictions, the universal file
system can only provide a set of logically homogeneous
retained objects which are containers for some sort of data.
Each of these containers has certain properties (to be discussed
in detail later) in accordance with which the CLP allows the user
to handle them, irrespective of whether the allowed handling
is meaningful in terms of the actual container contents! For
each existing retained object the universal file system implement-
ation within the CLP must therefore maintain the following
property information on behalf of the user (irrespective of the
facilities which the TCL provides for any particular user or
class of users):

(a) Unique identification. This must be sufficient to separately
identify every container in the system. Where a particular
computer system is a node in a network then this identification
must also contain the node identification in order to ensure
proper homogeneity throughout the network.

(b) Size and shape. This is the logical description of the
contents—the way in which the user wishes the CLP to handle
the retained object (e.g. a retained object which is a file of
compiled code which the CLP may therefore allow to be
executed).

(c) Owner and access. Although the identity of the owner of a
retained object is normally likely to be considered a part of
the unique identification, it is strongly related to the accessing
facilities. The CLP can only provide secure handling of
retained objects if the universal file system restricts access to
every object in accordance with the wishes of a particular user
whom it considers to be the owner. The CLP must therefore
enable this owner to give whichever access permissions he
wishes (e.g. READ, WRITE, SHOW, DELETE etc.) to any
other users in the system (or in the network if applicable). The
universal file system must therefore also retain this access
information as a property of each retained object.

The question of how the universal file system organises the
sets of properties for all retained objects in the homogeneous
store which it provides is not relevant to the subject of this
study although some form of hierarchy by owner will probably
be the most efficient. What is important, however, is that all
the property information about the homogeneous store is
semipermanent and must therefore itself be retained on a long
term basis—as a retained directory object within the homogen-
eous store! (NB the use of the term semipermanent is intended
to imply that property information is subject to change from
time to time and is not permanent in the sense of being
immutable.)

The nature of a retained object
The description of the universal file system suggests that a
retained object is a container with some three groups of
properties—so far described only in general terms. Considera-
tion of the mappings required by the CLP and the two differing
views of retained objects maintained by the user and by the
operating system requires the development of a complete
formal specification of the retained object as seen internally by
the CLP before these mappings can be properly described.

The specification of a retained object is built up from consid-
erations of the ontology of data which the user may wish to

332 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981

store. In the arguments which follow it is worth noting that
they apply to any retained object whether or not computer
storage and use is involved.

Unstructured data elements

Definition

At each level of discourse about any subject there exists one or
more indivisible entities about which it is not necessary to
know any finer detail to continue a ‘discussion’ at that level.
At any level, therefore, these entities may be referred to as
elements, whatever their fine structure may be at some lower
level. Those elements which are data (DE) exist in a domain
which is the cartesian product of their name and value, where
value itself exists in a domain which is a product of four other
domains—abstraction, denomination, mode and relationships.
That is

DE = IDENTITY x VALUE
where
IDENTITY = {name of objects in the subject of
discourse}
VALUE = ABSTRACTION x DENOMINA-
TION x MODE x RELATION
where
ABSTRACTION = {the conceptual ideas involved}
DENOMINATION = {the names given to the abstractions}
MODE = TYPE x UNIT
where
TYPE = {classes of abstraction}

[e.g. truth, number etc.]
UNIT = {scales of the abstractions}
[e.g. miles, hectares etc.]

RELATION = {relations to other DE}
where curly brackets are used to delineate a set.

Representation
At whatever level the current ‘discussion’ is taking place it
must always be possible to represent the data elements
involved in some physical way if they are ever to be stored or
moved from place to place. A data element may therefore be
considered not only to have a logical (abstract) existence, but
also a physical one. Since it may, of course, be represented in
numerous different ways it necessarily has a different physical
representation dependent upon the medium in use [piece of
paper, clay tablet(!) etc].

A physical data element (PDE) may therefore be characterised
in terms of the medium and inscription used as

PDE = MEDIUM x INSCRIPTION
where

MEDIUM = {physical media involved}
INSCRIPTION = {marks used to signify DENOMINA-
TION}

The physical and logical data elements thus defined correspond
closely to the concepts of datalogical and infological elements
introduced by Langefors and Sundgren (1975). Following this
development a little further necessitates the introduction of
transformations converting from the physical to the logical
forms and vice versa, i.e.

LPCONYV : : PDE - LDE
PLCONYV : : LDE - PDE

These may be thought of as Write and Read respectively since
the ‘thinking’ mechanism (at some ‘lower’ level of meta-
discourse, naturally) must have an ‘abstract’ copy of the data
element about which to think. In this sense, of course, the
abstract ‘logical’ data element has a representation of its own,

© Heyden & Son Ltd, 1981

202 udy 01 U0 188n6 Aq 01.9E9E/LEE/F/PZ/B10NIE/|UfLO0/WO0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

but it is a cardinal point in the remainder of this discussion
that this logical representation is a private characteristic of
the ‘thinker’ which does not concern any discussion of data
storage and access beyond these reading and writing transforma-
tions [see Milne and Strachey (1976) for similar concepts in
programming language theory].

Structured data elements

Definition

A commonly used name for a structured data element is
record. Using this short name for convenience a record is
commonly thought of as a group of data elements relating to
some particular event, action or state. A more general informal
definition must apply to all possible structured data elements
and a better one would be

A record is a group of one or more unstructured data elements
all of which bear a relationship to one other data element
which is unstructured at a higher level of discourse.

With this definition in mind, the formal definition of a logical
record, following the formal definition of a data element, can
be given as

LRECORD = IDENTITY x VALUE

where
IDENTITY = {names of records in the subject of
discourse}
VALUE = ABSTRACTION x DENO-
MINATION x ELEMENTS
x RECORDRELATION
where
ABSTRACTION = {conceptual structures involved}
DENOMINATION = {names given to the abstraction}

ELEMENTS = {LDE}
RECORDRELATION = {relations to other LRECORDs}

Bearing in mind that an unstructured data element is structured
at some lower level of discourse, however, the ELEMENTS
of this definition and the MODE of the unstructured data
element definition are seen to serve the same function of
specifying the kind of object concerned, the name used here
merely serving to distinguish between structured and un-
structured object definitions.

Representation

Exactly in the same way that each logical unstructured data
element was shown to have its physical counterpart, so must
the same be true of logical and physical records for similar
reasons. It is therefore possible to write, as before

PRECORD = MEDIUM x INSCRIPTION
and, for the appropriate transformation functions,

LPREALIZE : : LRECORD - PRECORD
PLINTERPRET :: PRECORD —» LRECORD

which may be thought of as Write(LRECORD) and Read
(LRECORD) in a similar way to the Write and Read discussed
for unstructured data elements.

Virtual record definition

The analogy between structured and unstructured data
elements is satisfactory only up to this point in the develop-
ment of the argument leading to a retained object specification.
Whereas a ‘discussion’ may either use or not use some unstruc-
tured data element, it is at liberty to consider only parts of a
complete logical record as being pertinent. This partial
logical record, however, is still a structured data element in
its own right and may therefore usefully be given the name
virtual record since it is never given a separate stored physical

© Heyden & Son Ltd, 1981

existence although, of course, a physical copy may be required
in order to manipulate it, however transitory such a copy may
be.

Although a virtual record may be identical to the logical
record in any particular instance it is in general a proper
subset showing only such detail as is necessary to the ‘discussion’
taking place. A virtual record may therefore be formally
defined as

VRECORD = IDENTITY x VALUE

where
IDENTITY = {names of the records in the
subject of discourse}
VALUE = ABSTRACTION x DENOMIN-
ATION x VELEMENTS
x RECORDRELATION
where
ABSTRACTION = {conceptual logical structures

involved}
DENOMINATION = {names given to the abstraction}
VELEMENTS = [ELEMENTS v ELEMENTS
VALUE of logical record]
RECORDRELATION = {relation to other LRECORDs}

A close comparison of this definition with that of a logical
record shows that, apart from the names used, they are identical.
While the notion of a virtual record in this sense is in common
usage, it seems therefore that its existence really corresponds to
a separate logical record existing in some notionally different
logical retained object. The virtual record concept is therefore
more properly left to the area of implementation rather than
specification (see the Appendix for a brief discussion of further
development of the idea for implementation purposes).

Retained object contents definition

Following similar arguments the contents of a retained object
could be defined by substituting FILE wherever RECORD
appears and substituting LRECORD (PRECORD etc.) wher-
ever LDE (PDE etc.) appears. The contents of a retained
object, however, are really only a structured data element at
a higher level of discourse! They need not therefore be con-
sidered separately any further.

File contents access
Corresponding to the definitions given for reading and writing
logical records, reading and writing of a complete contents
could be defined by

LPFILECONY :: LFILE — PFILE
PLFILECONY :: PFILE — LFILE

corresponding to the notions of writing and reading the entire
contents at once.

Unfortunately, these two definitions are not realistic from a
practical point of view. User processes cannot in general
access the complete contents of a retained object at one time
due to storage constraints. It is equally rare that a practical
process logically requires the entire contents of a retained
object at one time. It is necessary therefore to decompose the
theoretical transformations to enable selection of a part of
the contents to be made by the using process. This requires
definition of the rather more practical functions Writetofile
(LRECORD) and Readfromfile(LRECORD). Using functional
notation the theoretical decomposition of these transforma-
tions, including the necessary selections, may be given as
Writetofile(LRECORD) = LPREALISE (LPSELECT

(PFILE))

Readfromfile((LRECORD) = PLINTERPRET (LPSELECT

(PFILE))

THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 333

202 udy 01 U0 188n6 Aq 01.9E9E/LEE/F/PZ/B10NIE/|UfLO0/WO0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

Physical access considerations
In any practical situation, each of the transformations referred
to in the theoretical discussion requires some physical represent-
ation of the data in order that they may be manipulated. Each
partial transformation therefore must incorporate any necessary
alterations to the physical representation of the data.

The partial transformations given in the above function
definitions may be described as:

(a) LPREALISE. Realise the shape and representation of a
logical record (in the thinker’s ‘private’ representation) as
the corresponding physical record (in the physical retained
object representation).

(b) PLINTERPRET. Interpret the physical retained object
representation of a record as the corresponding logical record
shape in the thinker’s ‘private’ representation.

(c) LPSELECT. Select the logical record in the logical
organisation from the corresponding physical organisation.
While the partial transformations defined do not form a unique
sequence in which the overall transformation must be effected,
they have the virtue that they separate the transformation of
data shape from the transformation of organisation (selection).
This particular virtue will generally enable a reduction in the
number of representation translations to be made with a
corresponding saving in the access overhead. With this in
mind only PLINTERPRET and its converse may need built-in
representation translations incorporating into them.

Retained object specification
A retained object may be specified simply as a box containing
something in some (unknown) representation. A formal defi-
nition must incorporate these simple ideas in specifying the
properties both of the box and of its contents. It must be
remembered that the user cannot be forced to use the contents
in accordance with the given specification of them since this
will restrict his freedom of action. Since it is intended that the
mechanism which makes use of the specification shall do so
dynamically, the user will be at liberty to alter the specification
of the retained object contents without altering the actual
contents either directly using the TCL or through a program.

Remembering that the contents of a retained object may be
considered as being either physical or logical (or virtual) it
must be possible to include all aspects of contents definition
simultaneously in the specification to ensure its completeness.
It must be realised that a logical object (or a virtual one
derived from it) need not correspond to any single physical
container, nor necessarily to the complete contents of one or
more such physical containers. This physical fragmentation,
which is of no concern to the CLP, could be considered to
relate to a sort of aggregate retained object which would
therefore require multiple interrelated transformations. Further
continuation of this line of argument would mean that the
boundaries between individual transformations would become
blurred and that they would merely be ‘nice’ theoretical ideas
with little possibility of practical implementation.

In order to avoid this blurring of transformations it is
necessary to think of a retained object as being first and
foremost a (possibly disjoint) set of physical boxes for physical
data objects, i.e. more a conceptual container than a real one
in any sense. If this is true then the partial transformation
LPSELECT will always associate a logical record in the
container with some specific physical part(s) of the container.
Since the required user functions are Readfromfile(LRECORD)
and Writetofile(LRECORD) the logical object never needs to
exist as a separately realisable physical representation of the
data structure involved and remains, as its name implies, an
abstract concept. Because of this a logical retained object
can contain any number of records with some relation to

334 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981

another common data element (as described for a structured
data element) and it may at the same time be spread among
parts of any number of physically separate containers. This
enables logical retained objects to be specified with overlapping
contents without complication of the relevant selection
transformations. The logical properties must therefore be
used with the transformation LPSELECT. Similarly this
transformation must form part of the specification of the
contents in order for a user process to properly access the
logical retained object.

Hertweck (1978) expresses the need just outlined in terms of
some type of file dictionary and goes on to suggest that each
record should similarly contain its own specification. This
notion of self-defining contents is generalised in the partial
transformations being described here; in particular a dynamic
specification is considered. LPREALISE and PLINTERPRET
which are part of the retained object specification rather than
its contents are, of course, processes and also contain a repre-
sentation translation from the physical medium ‘code’ to the
logical ‘code’ used for manipulation—without requiring that
each record in the contents contain its own dynamically
variable specification.

A formal specification for a retained object must therefore
contain the following parts which are an extension of the
general ideas discussed for the universal file system:

(@) Identification—both as a name by which the retained
object may be known to a user process and also the identity
of the container itself.

(b) Specification of the logical object.

(c) Specification of the physical container.

(d) Specification of the physical representation.

(e) The dynamic state of the physical/logical object.

(f) Transformations—a set of transformation process identities
(or, possibly alternatively, a ‘shorthand’ for some standard
transformations). NB if the actual transformations
were to be specified, as opposed to merely giving their
identities, any implementation of dynamic transformation
change would be more complex. Using this method, any
number of different transformations can be dynamically
assigned to the specified identities.

(g) Retained object contents.

With these ideas in mind a formal specification of a retained
object may be given as a modified version of the specification
given by Kugler et al (1978).

FILE = IDE x VALUE
where
IDE = {id| idis a correct filename }
VALUE = (DESCRIPTOR x DATA)\RESTRIC-
TIONS
where
DESCRIPTOR = IDENTITY x DESCRIPTION
x STATE x ACCESS
where
IDENTITY = SITE x OWNER x TITLE
x GENERATION
where
SITE = {id| id is a network node name}
OWNER = {id| id is a valid usercode}
TITLE = {id | id is a valid title}
GENERATION = {N}

DESCRIPTION = PHYSICAL x LOGICAL

© Heyden & Son Ltd, 1981

202 udy 01 U0 188n6 Aq 01.9E9E/LEE/F/PZ/B10NIE/|UfLO0/WO0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

where
PHYSICAL = {physical attributes of container }
LOGICAL = ({logical attributes of container}
STATE = {state attributes}
ACCESS = ({access specifications }
DATA = INFORMATION x TRANSFORMS
where
INFORMATION = ALPHABET
[symbols defined in the logical
retained object]
TRANSFORMS = (SELECTIONS x SUB-
TRANSFORMS)
V STANDARDMAP
where

SELECTIONS = [id | id is the name of an
LPSELECT transformation
function]

SUBTRANSFORMS = PLTRANSFORMS

where

PLTRANSFORMS = [< id__1,id_2 > | (id_1 is the
name of a LPREALISE
transformation function), (id__2
is the name of a PLINTERPRET
transformation function)]

STANDARDMAP = {STANDARDTRANSFORM,
ORGKEYLENGTH,
RECFORMAT }

where
STANDARDTRANSFORM = {implementation defined standard
transforms }

ORGANISATION €
{none, random, serial, iseq,

seq }
RECFORMAT = ORGANISATION x ORGKEYPOS x
ORGKEYLENGTH
ORGKEYPOS €N
ORGKEYLENGTH €N

RESTRICTIONS = {val| val is a combination of
attributes in which at least two
are not compatible }

Underlying file systems

The range of retained object specifications used in the wide
variety of operating systems—from the large and sophisticated
to the small and primitive—which are to run under CLP
control is potentially almost infinite in the range of properties
considered together with the way that these are implemented.
Fortunately when considering their file systems this range is
not quite so wide as it may seem. It is even narrower when
those systems are included in which for architectural reasons
the file handling software is not formally part of the operating
system but rather a separate set of programs, routines or
both. Considering all retained object handling facilities in
common, whether built-in or separate, is essential for this
study, although considerations of specific details for specific
systems only becomes necessary when the detailed design of
specific mapping functions for a particular CLP is being
worked out.

All file systems provide a mechanism for obtaining physical
access to storage files, for creating them and for deleting them
again in a physical sense (i.e. they contain at least physical
description, contents and some form of identity as part of
their retained object specifications). The majority of systems do
not, however, consider input from or output to non-storage
peripherals as being physical access to a retained object.
Those which do allow stacks of cards, for example, to be
considered as files only do so at the higher logical level. It is
important to note that physical access to a retained object in
even the most primitive of operating systems is provided in
relation to some object identity provided by the user. This
user-supplied identity may have to indicate not only the name

© Heyden & Son Ltd, 1981

but also the medium on which that named object is known
by the user to be stored.

Excepting those operating systems which are no more than
simple hardware supervisors and may therefore be deemed to
fall outside the class of true operating systems being considered
here, all operating systems, knowing where a retained object
is physically stored, maintain at least implicit information
about the possible logical organisation. To protect themselves
they also maintain, as a minimum, information about whether
the contents of a retained object is suitable to be executed as
instructions by the machine, although in some systems this
does not actually prevent the user from attempting to execute
the contents of any object! The majority of systems do,
however, maintain some other information regarding the
logical organisation of the retained object contents, even if
only certain restricted forms of mappings are provided, recog-
nised or both (e.g. in many systems ‘random’ is often used to
mean ‘anything not specifically provided for’). The more user
support functions which are provided by an operating system,
the more logical mapping information has to be retained
about the particular object—for example the provision of a
unified file store (as seen by the TCL in the CLP universal
file system) may require the provision of dumping, retrieving
and archiving functions based upon date information about
the retained object. Once this degree of sophistication is
achieved it is usual (although not essential) for some form of
central directory to be maintained for all retained objects
within the unified file store. As was the case for the CLP
universal file system, this can take the form of a single directory
for all retained objects or some form of hierarchical system
of directories.

Once some form of directory facility is provided it becomes
possible for a form of access protection facility to be incorpor-
ated, based upon the owner of the retained object. In the
simplest cases this access protection may provide for only
two ‘groups’ of retained objects—those belonging to users
and those belonging to the system—and then only by providing
a general facility to prevent any form of access by any user to
system objects. The variety of access protection schemes found
in operating systems shows perhaps the widest discrepancies
between one system and another of any file facility in use, most
of them in no way approaching the security specified for the
universal file system.

Retained object mappings

The outline of the universal file system and the above notes on
possible underlying file systems tend to suggest that the retained
object specifications used by them will be quite different,
although in many cases they will be at least partially comple-
mentary. The command language processor must be able to
map the underlying file system view into its own internal view
and vice versa. This, however, is not the only set of mappings
which it must provide. In particular, it should provide the
TRANSFORMS of the retained object specification used by
the operating system if possible, to avoid double transformations
on reading or writing the contents of retained objects. Since
the set of PHYSICAL and LOGICAL properties which are
part of the DESCRIPTION and the set of properties which
constitute the STATE may well differ between the universal
file system and the underlying file system then a variety of
mappings between these two sets of properties must also be
provided in the CLP.

In order to enable the user and his programs to properly mani-
pulate retained objects in its universal file system the CLP must
also provide mappings for a number of using actions. These
actions may either be performed directly by the user (in some
cases) or by his programs (in all cases) dependent upon the
facilities provided by his particular version of the TCL. The

THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 336

202 udy 01 U0 188n6 Aq 01.9E9E/LEE/F/PZ/B10NIE/|UfLO0/WO0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

mappings provided must apply at all times, irrespective of
whether the user or his programs are attempting to manipulate
elements of retained objects. If this rule is not observed then:

(a) A user could write programs (assuming that he were able
and allowed to do so) to perform actions in relation to retained
objects which would otherwise be considered to be illegal by
the universal file system.

(b) The universal file system information about all retained
objects would not reflect their true state as changed by the
user program, say.

The variability of underlying file systems and the requirements
for mapping the effects of user actions at all times in order to
maintain the integrity of the universal file system implies that
the universal file system retained object specification must be
complete. This need, however, brings with it a problem! The
TCL user, as already discussed, cannot manipulate directly in
the TCL any physical attributes since these are machine depend-
ent. Neither, of course, can he effect any physical transforms
(i.e. LPSELECT, PLINTERPRET and PLREALISE). The
question which therefore arises in considering the CLP, which
must hold these parts of the physical specifications privately,
is whether it should retain a ‘universal’ set of these properties
or whether it should rely upon that set of physical properties
used by the underlying file system (where available). In order
to carry out any mapping of logical properties at all the three
‘physical’ sections of TRANSFORMS must obviously relate to
the physical view of the retained object held by the underlying
operating system. It is therefore logically consistent to design
the universal file system specification maintained by the CLP
to reflect the logical structure and properties as seen by the
TCL user while maintaining the physical structure and
properties as reflected in the underlying file system.

Practical mapping design considerations

Where the CLP is to map the universal file system on to an
underlying file system which provides identical features
(although, perhaps, in a slightly different form) then the
mappings involved could be little more than some relatively
straightforward renaming rules. At the other end of the scale,
however, where only a few of the facilities provided by the
universal file system are available in the underlying file system,
then either

(a) a fully comprehensive set of system functions must be
provided within the CLP to implement the complete universal
file system specification and mapping needs; or

(b) the user, whatever his needs, is only provided with those
functions contained in the underlying file system, mapped in a
suitable way to his TCL’s view of the universal file system,
other facilities merely giving rise to a ‘facility not available’
type of error message; or

(c) some compromise mapping be provided between the two
extremes just referred to.

The choice of which of these three implementation policies
to adopt is not, however, open to an individual implementer
in quite the simple way suggested by merely listing the three
possibilities. The restriction on choice is contained in the
philosophy behind the TCL itself—that its semantic effects be
the same everywhere! While this may seem to imply that the
fully comprehensive CLP implementation is an absolute
requirement, practical considerations regarding very small
computers limit the size of any extra facilities which could
be provided without unduly overloading machine storage,
particularly if no virtual memory facility is available. This
leads to the conclusion that some compromise must be reached
along the lines of the third option suggested.

Even at this stage, the selection of the compromise is again

336 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981

not entirely within the implementer’s discretion since he must
choose a compatible compromise. This need for compatibility
arises, of course, from the need to provide identical semantic
effects. In other words if a user (or his programs, of course)
can do anything at all with retained objects then the resultant
effect must appear identical to the effects achieved when using
the same TCL on any other machine.

The discussion so far has thus led to a general notion that
every implementation of the universal file system must contain
three things:

(a) the users’ view of their retained objects as described by
the TCL—i.e. a universal file system fully comprehensive
retained object specification as described above, together
with some form of directory and supporting internal routines;

(b) a set of mappings for those facilities provided which is
compatible with (a);

() this possibly empty section which consists of: (1) a set of
auxiliary functions to ensure complete compatibility for those
functions which are provided; (2) a set of ‘not available’
messages with a message production facility for those universal
file system functions not provided.

Retained object manipulation facilities

The discussion so far has concentrated on the nature of a
retained object and the relationship between the command
language processor view and that of the underlying file system,
i.e. the process/operating system boundary. Note has only
been taken of the user/CLP boundary (i.e. the TCL) insofar
as it affected the needs of the universal file system. Similarly,
only passing mention has been made of the boundary between
other processes running on behalf of users and the operating
system.

The need for the universal file system to keep a complete and
correct view of a user’s retained objects at all times implies that
all actions in relation to these objects must be carried out either
with the active participation of the CLP or with the operating
system informing the CLP as they are done. Whichever of these
methods is involved depends upon whether CLP ‘permission’
checks are required befor the action can be done.

The manipulation facilities required by the user and his
programs may be considered in four groups:

(a) IDENTITY. This group of manipulations contains only
two functions, create and identify a retained object or find an
identified retained object. In the general sense both of these
functions are always available in all ‘file’ systems. The only
differences between one system and another are: (1) The
ability to uniquely identify a retained object within a complete
set of system storage media. The resolution of any difficulty
of this sort must therefore rely on the universal file system
directory containing a unique map. In order to create retained
objects in the worst case it will be necessary for the CLP to
either provide or have access to information about unallocated
storage; (2) The ability to provide for the creation of retained
objects of all possible sizes and shapes specifiable in the
universal file system. Any inabilities of this nature may be
mapped into suitable ‘not available’ messages or into CLP
additions dependent upon the practical needs of users of that
machine and any restrictions of size which may be imposed.

(b) ACCESS. This group of manipulations consists essentially
of five functions which are considered vital to the integrity of
any CLP and for which, therefore, facilities must be provided
irrespective of their availability in the underlying file system.
These functions are: (1) Keep the retained object as a permanent
object belonging (in TCL terms) to the owner; (2) Delete the
retained object—for a non-permanent object (i.e. one which has
not been kept) this action never involves any security con-

© Heyden & Son Ltd, 1981

202 udy 01 U0 188n6 Aq 01.9E9E/LEE/F/PZ/B10NIE/|UfLO0/WO0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

siderations except for ensuring that only the retained object
which it is desired should be deleted is in fact deleted. For a
permanent retained object the facility must be provided to
ensure that the person wishing to delete the object has been
given permission to do so by the owner. This, of course, is a
hidden sixth function not directly accessible to the user,
either using TCL or in a program; (3) Allow other users to
have certain specified access facilities to a retained object.
This function is restricted to the owner of the object and
represents the de jure capability described by Bishop and
Snyder (1979) and is, of course, only applicable to a permanent
object; (4) Remove one or more specified access facilities to
the retained object from another user—again only applicable
to a permanent object; (5) Show to the owner (and only to
him/her) the current access rights to a retained object which he
owns.

(c) DESCRIPTION. The functions in this group of properties
are more in the nature of language facilities than conventional
ideas of function since they involve altering the value of some
component of the DESCRIPTION by assignment to it (if
logically possible) and ‘reading’ the current value. These two
basic actions in respect of each individual component may
necessitate the provision of any or all of many to one, one
to one, one to many and many to many mappings dependent
upon the meanings attached to individual LOGICAL prop-
erties maintained by the underlying file system. It may be
equally impossible to provide unambiguous mappings—or
any mapping at all—if the CLP retained object specification
attributes cannot be mapped on to underlying file system
properties. It will then generally be practically sensible to
provide ‘not available’ messages appropriate to the omitted
facilities.

(d) DATA. The manipulation of retained object contents
involves the actions known conventionally as opening, seeking,
reading, writing and closing. These are subsumed in the
functions Readfromfile and Writetofile described in deriving the
specification of a retained object. The exact facilities provided
for these functions are often dependent both on language
system and the particular machine. They are of no direct concern
to the CLP, but every action which a program makes with
regard to a retained object is of concern to the universal file
system either from the need to ensure security, from the need to
ensure legality, from the need to ensure consistency, from any
two of the three or, indeed, from all three reasons. When
necessary the CLP must be able to prevent illegal or insecure
operations of any sort![NB some types of retained object
(e.g. a peripheral) have no DATA component and these
manipulations are therefore not applicable to them.]

Implications of network connection

The design requirements for a universal file system and
transportable control language CLP must consider the
possible implications of the connection of the computer
system concerned into a network with other computer systems.
Since each node in a network will have its own CLP, no
problems arise at the user level involved in any retained
object connection between nodes. All difficulties which may
arise concern the CLP and the operating system together
with the communications software involved. Assuming that
the communications software is able to convert user node
identities to network addresses and pass messages transparently
between nodes then the only problems lie in the CLP imple-
mentation of the manipulations which it controls internally
for a remote user.

The facility provided by joining machines using a standard
CLP in a network raises no problems concerning IDENTITY,
ACCESS and DESCRIPTION which cannot readily be

© Heyden & Son Ltd, 1981

solved by the use of a standard message system [see for
example Liskov (1979] between nodes. Manipulations involving
access to the retained object contents does, however, raise
some transfer problems when the machines joined in the
network are of different types or, indeed, merely have different
underlying file systems. The problems involve the need for a
mechanism within the CLP to convert to and from some
standard communicable code representation of data not
only the contents of the retained object, but also the meaning
of that code representation—the TRANSFORMS of the speci-
fication.

Fortunately, this need to include TRANSFORMS requires
only that some standard code representation of this is available
as a valid internode language form for transfer between
CLPs. The conversion of ALPHABET to and from some
standard communication code to pass it as messages can also
be provided by relatively simple additions to the set of partial
transformations described when developing the specification
of a retained object.

Consider the function Readfromfile which is achieved by
successive applications of partial transformations in the order:

(1) LPSELECT
(2) PLINTERPRET

PLINTERPRET involves representation translation which
necessarily takes place at the ‘sending’ network node (at which
the physical container exists).

Similarly the function Weritetofile is achieved by successive
application of the partial transformations in the order:

(1) LPSELECT
(2) LPREALISE

In this case, both the partial transformations are necessarily
carried out at the ‘receiving’ node.

Since different nodes in a heterogeneous network are very
likely to employ different representations it is necessary to
provide some standard representation in which internode
transfer of primitive data elements may be effected. The
conversions from a node representation to this standard
representation and vice versa may, of course, be made inde-
pendent of the retained object or process concerned. The two
functions Readfromfile and Weritetofile may then be achieved
by the following sequence of partial transformations:

(a) Readfromfile
(1) LPSELECT
(2) PLINTERPRET
(A) NODETONETWORKCODE
(B) NETWORKTONODECODE

(b) Writetofile
(A) NODETONETWORKCODE
(B) NETWORKTONODECODE
(1) LPSELECT
(2) LPREALISE

The ‘universal’ translation transformations NODETONET-
WORKCODE and NETWORKTONODECODE are common
to all retained object data transfers between nodes and there-
fore need not form part of the specification of individual
objects. The need to be able to specify all the other trans-
formations in a standard manner may, of course, be achieved
either using TCL messages or some standard low level code
common to all nodes of a network.

The introduction of a network connection to a computer
system therefore only adds to the CLP design the need for
facilities for converting all elements of a retained object
specification into a standard message form and vice versa.
The necessary representation code translations seem to be

THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 337

202 udy 01 U0 188n6 Aq 01.9E9E/LEE/F/PZ/B10NIE/|UfLO0/WO0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

more suitable for inclusion in the necessary network com-
munications software processes.

Summary

The requirements for the retention of certain types of object
between computing sessions involves their consideration as
file-like objects which may have a null DATA component.
This enables all object types to be considered in a common
way in order to assess the impact of their retention on the
command language processor for a transportable control
language. The need to provide the user of a TCL with identical
semantic effects whatever his real underlying processor and
operating system led to the introduction of the need for a
universal file system.

The nature of a retained object as a container of structured
data elements was introduced in detail to enable a standard
retained object specification as seen by the universal file
system of the control language processor to be developed.
Consideration of the wide range of possible views of retained
objects which could be held by a variety of operating systems
led to the need for mapping of both individual retained
object properties and of the retained object semantic access
functions within the CLP.

The need for the user’s view of his universal file system to be
always consistent with the ‘real’ state of the retained objects as
maintained by the operating system led to the requirement
that the CLP either take part in or be informed of all actions
relating to retained objects, whether initiated directly by the
user or indirectly by a process activated on his behalf. A
review of the manipulations required enabled the problems
of this integrity maintenance for the CLP to be introduced.

Finally, the CLP design requirements were reviewed in the
light of the possible connection of the computer system as a
node in some network. Apart from the introduction of a
message system, this showed that, providing that all semantic
transformations were expressible in a universal way, then the
transfer of any components of a retained object could be
effected by the addition to the CLP of suitable message
generating features.

Acknowledgements

The ideas presented in this paper are the result of considerable
discussion with friends and colleagues, in particular I should
like to thank N. S. James, D. Jardine, P. C. Jenkins, H. J.
Kugler and C. Unger.

Appendix—Virtual objects

A data base which permits the use of many different views of
one set of logical data is only a particular manifestation of the
general concept of a virtual object as a subset of some other
logical object. Considerations of storage and accessing
efficiency often dictate that these subsets should be derived
from their logical counterparts rather than provided with
separate physical storage in many practical implementations
of any virtual object mechanism. The extension of the CLP

References
BisHoP, M. and SNYDER, L. (1979).

retained object specification given below is a consistent
mechanism to meet these practical constraints.

In order to implement virtual objects in this way it is necessary
to introduce three additional transformations which correspond
in a general way to the three already introduced

VLEXTRACT corresponding to LPREALISE

LVINSERT corresponding to PLINTERPRET

VLSELECT corresponding to LPSELECT
where the additional transformations may be described as:

(@) VLEXTRACT. Simulate the shape of the virtual record
given the corresponding logical record.
(b) LVINSERT. Simulate the shape of the logical record
given the corresponding virtual record.
(c) VLSELECT. Select the logical record in the virtual
organisation from the corresponding logical organisation.
With these additional transformations a specification of a
retained object for a CLP implementation requires the follow-
ing modifications:
SUBTRANSFORMS = LVTRANSFORMS x
PLTRANSFORMS

Il

where

LVTRANSFORMS = [{id_1, id_2) | (id_1 is the name
of the VLEXTRACT
transformation function),
(id_.2 is the name of the
LVINSERT transformation

function)]

SELECTIONS = (id_1, id_2) | (id_1 is the name
of VLSELECT
transformation functions),
(id_2 is the name of
LPSELECT transformation
functions)]

With these implementation additions to the CLP retained
object specification, the sequences of actions to provide the
Readfromfile and Writetofile functions in a network environ-
ment must be extended to become:

(a) Readfromfile
(1) VLSELECT
(2) LPSELECT
(3) PLINTERPRET
(A) NODETONETWORKCODE
(B) NETWORKTONODECODE
(4) VLEXTRACT

(b) Writetofile
(1) VLSELECT
(2) LVINSERT
(A) NODETONETWORKCODE
(B) NETWORKTONODECODE
(3) LPSELECT
(4) LPREALISE

I

The transformation of information and authority in a protection system, in Proceedings of the 7th

Symposium on Operating Systems Principles, pp. 45-54. ACM, New York.
HEerTWECK, F. (1978). An approach to a unified view of file handling, personal communication.

KUGLER, H. J. et al (1978).
LANGEFORs, B. and SUNDGREN, B. (1975).

Project NICOLA—Progress report 2, August, University of Dortmund.
Information Systems Architecture. Petrocelli, Princeton.

Liskov, B. (1979). Primitives for distributed computing, Proceedings of the 7th Symposium on Operating Systems Principles, pp. 33-42.

ACM, New York.

MILNE, R. and STRACHEY, C. (1976). A Theory of Programming‘ Language Semantics. Chapman & Hall, London.

338 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981

© Heyden & Son Ltd, 1981

202 udy 01 U0 188n6 Aq 01.9E9E/LEE/F/PZ/B10NIE/|UfLO0/WO0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

