Validation of an analytic model of computer performance

E. Foxleyt and O. Salman}

The objective of validating an analytic model for performance prediction of a computer system
is to establish confidence in its use as a tool. In general the problem of validation has two main
aspects. The first deals with the ‘internal correctness’ of the model, in that its mathematical
structure must satisfy the functions and logical sequences intended by the designer. This should be
a basic objective of the analyst, and is the simpler of the two aspects. However, the more formidable
aspect of validation lies in deciding how adequately the model represents actual systems and how
far it reflects their major characteristics. The work in this paper deals with this latter aspect. A
procedure for estimating input parameter values and output performance measures from available
performance statistics and measurements is described. The model used is a class of queueing
networks known as central-server, although the same procedure could be applied to other types of

model.
(Received May 1980)

1. Introduction
Two techniques could be used in order to validate an analytic
model (Salman, 1978):

(a) by cross correlation of the model’s results with either a
comparable simulation model, or another analytic one of
the same system developed by using other mathematical
tools;

(b) by comparing parameters and results of the model with
actual measurements and data of available computer
systems.

The first method of validation is most useful when the system
to be modelled is in the design or planning stage, but in the
absence of any measurements there will be no guarantee that
the model is valid.

On the other hand, if there is at least one implementation of
the modelled system for which historical data and measure-
ments are available, validation of the model could then be
achieved by comparing the calculated performance values
with the corresponding measurements for the same values of
(input) parameters. This is the most accurate method of
validation.

However, validation by this technique is not a straightforward
one. In contrast to comparison with a simulation model, for
example, the data collected from virtually all measurement
monitors and performance packages of available systems are
not generally in that ‘basic’ form required by analytic models.
Usually further processing on these data is needed before
they can be used in the validation process. The data collected
from available computers are usually produced by hardware
monitors and/or operating systems monitoring packages.
The parameter values required to validate the analytic model
have to be extracted from these data, from the workload
specifications and from any other relevant information about
the system. Experiments specifically designed for this sort of
validation will always be required (Berners-Lee, 1972;
Giammo, 1976; Salman 1978).

2. The model

The model is a queueing network, and its main features are
shown in Fig. 1. This type is known as a central-server network.
It is a popular one among analysts since it can generally
represent the main structure of most typical modern computer

Py M
M-1
peripheral
n, CPU P13 N3 | devices
1+ —
=5
Pn Pim

Fig. 1 Schematic description of the central-server queueing network

systems. Server 1 represents the CPU, and servers 2, 3,... M
represent I/O units. The model has the following assumptions:

(1) the number of multiprogrammed jobs in the system is
constant (constant degree of multiprogramming);

(2) the routing probabilities are independent of the state of
the system;

(3) the service times are independent of the state of the system;

(4) there is no concurrent processing, i.e. only one resource is
allocated to any one job at a time.

Analyses for such a model have been carried out by several
authors (Buzen, 1971; Chandy, 1972; Chandy et al., 1975a;
1975b; Gelenbe, 1975; Gelenbe and Pujolle, 1977; Gordon and
Newell, 1967; Kobayashi and Reiser, 1974; Moore, 1971) and
formulae for several performance measures have been estab-
lished. In its final analysis the model has the following input
parameters and output measures:

Input parameters
M the number of resources in the system
N the number of jobs being multiprogrammed

u; ! the mean service time per job at the ith resource
i=12...M)

the variance of service time per job at the ith resource
i=1,2...M)

2
g;

Output measures

The mean and variance of queue lengths at the different
resources (7;, o,,f.; i=12...M)

The mean delay at each resource

tDepartment of Mathematics, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

tDepartment of Computer Science, ISSR, Cairo University, Egypt.

CCC-0010-4620/81/0024-0347 $03.00

© Heyden & Son Ltd, 1981

THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 347

202 udy 0 U0 159n6 AQ YB9E9E/L¥E/7/¥Z/1014e/|ufoo/W0d"dNo"oIePEDE//:SARY W) PAPEo|uMOQ

The utilisation of each resource
The average total time in the system per job

The reader who is particularly interested in the mathematical
analysis of the central-server model should refer to Buzen
(1973), Kobayashi and Reiser (1974) or Salman (1978).

3. The validation procedure
The machine used for the validation procedure was an ICL
1906A running under the GEORGE 3 operating system.

When GEORGE 3 is running, various relevant performance
statistics are gathered by a special package (which is an integral
part of the operating system), and stored in a system file. The
frequency with which the data are collected is controlled by
an installation parameter. The data which have been collected
can then be read by other programs to analyse them in any
required way. Performance statistics were collected for a
whole week. Intervals which cover all the working shifts (work
was done in three shifts) over 24 h were selected. These were

Table 1 Nottingham University GEORGE 3 performance statistics for 8 September 1977 on 1906A

(a) At 21.37.58

Core usage (Kwords) CPU time (% of clock)

Jobs Core image details

Time MOP* BKG"® Total no.

2143 2 14 15 2 10 2
21.45 2 14 14 2 10 2
21.47 2 16 17 2 12 3
21.49 1 15 16 2 11 3
21.51 1 15 15 1 10 4
21.53 1 13 14 1 10 3
21.55 1 13 14 1 10 3
21.57 1 14 15 1 10 4
21.59 1 14 14 2 10 2
22.01 1 12 13 1 10 2
22.03 1 13 13 1 10 2
22.05 1 14 15 1 12 2
22.07 1 13 14 2 10 2
22.09 1 14 15 1 11 2
22.11 1 13 13 1 10 1
22.13 2 14 14 1 11 2
22.15 1 14 15 2 12 1
22.17 2 14 15 1 12 2
22.19 2 14 15 1 12 2
22.21 2 13 14 1 10 3
22.23 2 13 14 1 10 3
22.25 2 13 14 1 11 2
22.27 2 15 15 1 12 2

COO0COO0OOCOOCOOCOOOOOOOOOCOOCO -

>0K® >2K >35K >70K >100K OBJ¢ GEO¢ FREE TOT OBJ GEO IDLE EXECt

0 156 29 5 190 85 9 1 5
0 149 34 7 190 67 16 6 11
0 126 52 6 184 36 38 13 13
0 102 55 32 189 38 26 26 10
0 152 30 8 189 36 27 27 10
0 59 25 64 149 46 30 11 13
0 16 109 68 192 25 7 64 4
0 139 40 8 186 56 22 13 9
0 141 38 9 188 14 27 51 8
0 161 24 6 191 4 26 19 11
0 43 90 38 171 43 20 30 7
0 137 41 6 184 37 26 26 11
0 121 58 9 18 57 18 17 8
1 134 46 7 188 61 27 5 7
1 47 96 48 191 24 34 32 10
0 137 23 8 168 46 32 13 9
0 157 22 6 185 58 30 3 9
0 130 51 9 190 68 21 3 8
0 160 15 7 182 72 18 1 9
0 125 25 41 190 68 21 3 8
0 149 32 5 187 51 31 10 8
0 161 25 6 191 52 37 0 11
0 141 39 9 189 76 18 0 6

(b) At 00.00.50—backing store device transfers queued

(c) At 07.14.54—backing store device transfers per minute

Time 368 378 42" 43" 44" 45" 46 521 57 Time 36 37 42 43 44 45 46 52 57
00.16 6 07.14 424 374 158 1 100 50 144 644 171
%:;g 2 2 e AT 877 397 248 0 34 216 287 141 141
00.22 i 1 1 0118 1201 467 348 39 S50 97 305 5 289
00.24 1 07.20 1102 298 254 0 126 76 33 31 580
00.26 1 1 07.22 691 839 230 31 193 198 105 412 103
00.28 2 3 0724 408 359 145 13 169 24 51 173 31
%;‘2’ 12’- 1 16 2 07.26 987 403 288 14 43 2 43 37 13
00,34 5) 07.28 252 78 63 0 12 0 59 15 299
00.36 1 2 3 07.30 193 82 64 0 12 16 S 153 38
00.38 3 1 3 07.32 791 411 237 3 73 19 133 6 39
00.40 07.34 2319 636 562 10 189 116 277 62 171
00.42 2 07.36 1479 985 539 26 281 218 110 117 154
88::2 L 1) 07.38 395 908 226 21 649 455 46 246 331
00.48 07.40 822 717 355 9 650 273 109 69 256
00.50 1 4 07.42 387 819 215 19 179 444 229 59 131
00.52 11 4 07.44 934 359 223 14 416 190 160 25 223
aMOP—multiple online programming. fEXEC—executive.

PBK G—background.

¢K = 1024 words, 24 bits each.
d0BJ—object.

¢ GEO—GEORGE.

8Devices 36, 37 — 2 HSD connected to one controller.
hDevices 42-46 — 5 EDS60 connected to one controller.
iDevices 52, 57 — 2 EDS60 connected to one controller.

348 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981

© Heyden & Son Ltd, 1981

202 udy 0 U0 159n6 AQ YB9E9E/L¥E/7/¥Z/1014e/|ufoo/W0d"dNo"oIePEDE//:SARY W) PAPEo|uMOQ

periods during which the machine was running steadily and no
breakdown occurred. The statistics collected by the per-
formance package are mainly snapshots of the overall state of
the system at a given instant; these were taken every 2 min.
The information collected at each snapshot comprises items
such as: CPU idle time and number of transfers since last
snapshot, main store state, queue length at each resource, and
the type (foreground or background) and number of jobs in
main store (Table 1). With the exception of the CPU idle time
and number of transfers all the other information is non-
cumulative. It gives knowledge about what is happening at
the instant of the snapshot and no indication about anything
happening in the time between snapshots.

4. Estimation of input parameters
In what follows we discuss a procedure to estimate the input
parameters described in Section 2.1.

4.1 The number of system resources, M

Although this value represents the number of different
resources of the system, the value chosen will depend upon the
level of detail required by the analyst. For example, the
configuration used has one CPU and three controllers con-
nected respectively to the following devices: two exchangeable
disc stores (EDS), five EDS and two high speed drums (HSD).
This will give M a maximum value of 1 + 2 + 5 + 2 = 10
(devices) and a minimum value of 1 + 1 + 1 + 1 = 4 (con-
trollers). It will be easier to consider these resources at the
controller level, i.e. to use the minimum value of M, so long as
we can estimate the corresponding service times.

4.2 The number of multiprogrammed jobs in the system, N

This is the number of jobs resident in memory (main store)
during the interval under study. The number of such jobs is
called the degree of multiprogramming which the model
assumes to be constant. In general, this is not true unless, in the
system used for validation, two conditions are met. First, the
memory has a fixed number of partitions with each one allocated
to one job at a time. Second, the system is heavily loaded so
that there is always a backlog of jobs, each ready to occupy
immediately any partition that is freed by a completed job.
In practice, there are comparatively few systems which still
comply with the first condition, the best known being the IBM
operating system MFT. However, by examining Table 1(a)
we can see that the number of jobs reported in memory over
an interval of 28 min determined by the snapshots at 21-51 to
22-17, varied only between 13 and 15. (The reader should note
that since each snapshot includes information accumulated dur-
ing the preceding 2 min, the above interval of 28 min starts 2 min
before the snapshot at 21-51, i.e. at the moment following the
snapshot at 21-49. Thus, without further prompting, any
reference to an interval specified by a number of snapshots is
always assumed to include the 2 min preceding the first
snapshot.) A characteristic shown by all the performance
statistics over a whole week was the small variation in the
number of jobs in memory. There was never any dramatic
change in the number of jobs multiprogrammed over a
substantial period of time, even though the system memory
was not statically partitioned and any program was allocated
a partition of storage in proportion to its requirements. In
fact this is not the first time this phenomenon has been reported.
Anderson et al. (1973), in an empirical study of time sharing
systems, reported that the degree of multiprogramming
remains stable around 4 or 5 over a long period of time when
the number of users logged on was over 25 or so. This means
that our assumption of constant degree of multiprogramming
is reasonable provided that the system is heavily loaded, that
is, provided that the second condition at least (and not neces-

© Heyden & Son Ltd, 1981

sarily the first) is met. To estimate an average value for N
over a certain interval of time we have to consider both the
number of user jobs in main store and the effect of the operating
system. It becomes necessary to distinguish carefully between
the concept of degree of multiprogramming as used to signify
the number of simultaneously active user jobs, and its use
in modelling to represent the total extent of parallel activities
on the machine including both user jobs and the operating
system. Our estimated value of N in the model should therefore
include the demands made by the operating system on the
CPU and I/O in the same way as those of the user jobs. Since
the demands made by the operating system are more than
what is usually generated by an average user job, a factor
F (F > 1) should be added to the average number of user jobs
over the period under study. In effect the value of F represents
the average number of parallel processes generated by the
operating system. Thus an estimate for N can be given by

s

> J, AT,
N = round %_ + F

3 AT,

i=1
where round {X} gives the integer value nearest to X, J;
is the number of user jobs in core at the ith snapshot (i = 1,
2,...8); AT; is the time interval between snapshots (i — 1)
andi(i = 1,2,3,...5); and F is a factor dependent on the
degree of parallelism within the operating system.

In the validation procedure described below, F has been
assumed to take the value 2. This has given reasonably good
results with GEORGE 3; different values would need to be
considered for other operating systems.

4.3 The routing probabilities (Matrix P)
In the routing matrix

P11 Pi2 Pi3-.-Pim

1 0O 0...0
1 0O o0...0
P =
1 0 0 0
only the elements of the first row (pyy, P12, - - . P1m) have to

be evaluated, as the rest are determined by the model’s struc-
ture. The values of these elements, in any interval under study,
could be estimated from the number of transfers recorded
in the performance statistics over this interval. Thus, if f; is
the average number of transfers per job to the ith I/O resource

M
(i =2,3,... M) then Y f; is the average number of transfers
i=2

M
per job. Now if we let f; = 1, then f = > fi is the average

i=1
number of CPU requests per job, where the choice of value
for f; accounts for the last CPU request before the job is
completed and leaves the system. Hence, an estimation for
Py is given by

Assumption (2) of Section 2 states that these probabilities
are constant and independent of the state of the system during
the period under study. To see how far this statement is valid,
the performance statistics at the interval between 09-50 and
10-12 h (i.e. the 24 min following the snapshot at 9-48) were
examined. The values of f; (in this case i = 1, 2, 3, 4) were
calculated for different subintervals within the 24 min and the

THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 349

202 udy 0 U0 159n6 AQ YB9E9E/L¥E/7/¥Z/1014e/|ufoo/W0d"dNo"oIePEDE//:SARY W) PAPEo|uMOQ

corresponding p,; obtained. If these p,; were to remain stable
over this interval, then by selecting any two (unoverlapped) sub-
intervals we would expect both to have the same (or nearly the
same) values of these probabilities. For example, by calculating
the values of p,; (i ~ 1, 2, 3, 4) over the three subintervals of
lengths 8, 10 and 6 min delimited by the snapshots at (09-50,
09-56), (09-58, 10-06) and (10-08, 10-12) respectively, it can be
confirmed that p,; is reasonably stable (see Table 2). Moreover,
it was also found that sometimes these probabilities could be
stable over substantial periods of a whole shift. This is illustra-
ted in Table 2 by the values of p,; evaluated at the time interval
11-27-11-35, i.e. ~ 1 h later. We thus come to the conclusion
that the assumption of constant routing probabilities P
independent of the system state is, in fact, a realistic one.

Table 2 Elements of the first row of matrix P

P, ; of matrix P
Interval length

(min) Py P12 P13 Pia

Time interval

09.50-09.56 8 0.0041 0.5900 0.2801 0.1258
09.58-10.06 10 0.0043 0.5810 0.3077 0.1052
10.08-10.12 6 0.0040 0.6100 0.2910 0.0950
11.27-11.35 10 0.0045 0.5738 0.2837 0.1380

4.4 The mean service times (vector m)
The mean service times of the different resources in the system
are represented by the vector

(l 1 1)
m=|——5..._—
H1 K2 Um

We shall examine how to estimate the mean service of each
type of resource.

(a) The processor (CPU)
An estimate of the CPU mean time 1/u, could be worked out
as follows:

Suppose that the system has been examined for a period of
time T min. Without loss of generality, T will be taken as a
multiple of the time interval between snapshots; in our
particular example this is 2 min. Let u, be the average CPU
utilisation over this interval T. The value of u, could be esti-
mated from the CPU busy times as recorded at the snapshots
of the performance monitor over the interval T [see Table
1(a)]. Hence the CPU actual busy time during T is u,T. If N
is the average number of jobs in time T as explained in Section
4-2 we have

(b) The 1/O mean service time
This is dependent on the type of resource used. We discuss the
two most commonly used devices—EDS and HSD.

Exchangeable disc store. In general let us assume that one
controller is connected to p spindles [Fig. 2(b)]. The timing
diagram for one spindle is shown in Fig. 2(a). It is possible to
determine analytically the distribution of the response time for
this file system. Similar systems have been studied mathe-
matically by Abate et al. (1968) and also by Seaman et al.
(1966). However, since an estimation of the average response
time (or mean service time) of such a system is all that is
required here, a much simpler analysis could be carried out as
follows.

Let us assume that all the p spindles are similar, in the sense
that they all have the same timing diagram with the same

350 THE COMPUTER JOURNAL, VOL, 24, NO. 4, 1981

Request for service Request service

selected by PF56 completed
(=] N
Z £
a [
w 2 3
° —
z 2 @ &
v S Qs
% = Qls <
=¥ o m < g
€ B E|l8 &
) L CRES
& -9 & — 8
b e
2 & g2 4
g ‘% |Rotational | § | 5 g
= Seek time 2 | delay ==

Phase 1 Phase 11
Concurrent for all One spindle
spindles at a time
Service time
(@)
Spindles

Fig. 2 (a) The phases of execution of a disc (EDS60) service request,
(b) multiple spindle controller queueing model (main com-
puter—ICL 1906A ; controller—PF56; spindle—EDS60)

average values of these timings. This is true in most physical
structures. We also assume that each spindle receives requests
at a rate which is the same fraction of input for all spindles,
i.e. 1/p of all requests for access received by the control unit.
This means that the file records are assumed to be distributed
uniformly over all the p spindles. Essentially that is not what
occurs in practice, as the spindles which happen to store the
frequently accessed files tend to get a bigger share of the
traffic. However, most computer installations try to redistribute
their files so that the traffic becomes more balanced. This
situation is generally desirable as it permits fuller utilisation
of all access mechanisms and the overlap of seek operations.
Now, if ¢, and t, are respectively the average seek time and
latency per spindle, and if 7,,, and t,;, are respectively the
maximum and minimum access time to this filing system, then

tmu = td + tl
and

t
Imin = Ul +;;

Hence, an estimation of the average access time is

— tmnx + tmin —_ 1 1
t) ty + 3 (l + p) t,
where ¢, is usually taken to be one half of the time of one
spindle revolution. For example, one of the three controllers
in the system used for validation was connected to five EDS60
spindles each with average seek of 35 ms and average latency of
12:5 ms. For this device, the formula gives a 1/u of 33-5 ms
(558 x 10™* min).

High speed drum. The timing diagram for a HSD is shown in
Fig. 3. Here there is no arm movement, i.e. no seek time as in
discs. Most of the time needed to complete a service is attribu-
table to the rotational delay, i.e. the latency. Whatever the
number of drums connected in parallel to the same controller,
a request service to one of the drums has to wait for the whole

© Heyden & Son Ltd, 1981

202 udy 0 U0 159n6 AQ YB9E9E/L¥E/7/¥Z/1014e/|ufoo/W0d"dNo"oIePEDE//:SARY W) PAPEo|uMOQ

Request for service

selected by the Request service

controller completed

<
§ z
<5 242 2
53 52| 538
EE Se|2E|3<
§¢ ce|=2Eg|lew
S5 . SE|5S|8S
& 8| Rotational delay I EXE =)

Service time

Fig. 3 Timing diagram for a HSD

of its own rotational delay before transmission (usually taking
a very small time) starts. This means that the average service
time of one set of p drums connected to the same controller,
is the same as the average latency of one drum independent of
p. Of course, this is on the assumption that these drums are
exactly of the same type, which is a usual common practice.
Thus the mean service time (1/u) of a cluster of drums on one
controller is given by the average latency of one drum which
is half the time of one revolution.

The revolution time for the HSD 2815 used in the ICL
1906A, is 12:6 ms, giving a 1/u of 6:3 ms (1:05 x 10~* min).

4.5 The workload
Usually the workload on any machine will tend to vary over
time. We will assume that the workload consists of either a

homogeneous stream of jobs (e.g. most jobs involve short
processing requests on any particular resource), or of a non-
homogeneous stream with a mixture of long and short proces-
sing requests. If the workload is of the first type we expect the
coefficient of variation of the service time (¢ = o2u?) to be less
than 1, whereas if the workload is of the second type, c is
expected to be greater than 1.

We were not able to determine the value of ¢ exactly, but we
managed to approximate it when examining the performance
monitor statistics.

5. Estimation of output measures

The criteria which have been used for comparison between the
model and system outputs were the mean queue length at
each resource and the utilisation factors. The variance of
queue lengths were difficult to estimate properly in the system

we used, because snapshots were taken at long time intervals

(2 min).
If snapshots were to be taken at much smaller intervals of
time, unacceptably high system overheads would be incurred.

5.1 Mean queue length at each resource

An output measure predicted by the model is the mean queue
length at each resource when the system is in a steady state.
However, as mentioned in Section 3, the performance package
does not record the mean queue length as such. It only records
snapshots of the queue lengths at each resource. Nevertheless,
if the sytem has been running for some time without break-
down, i.e. at (or nearly at) steady state, the average of a number
of consecutive snapshots over a period of time could be consid-
ered an estimate of the mean queue length. Though one cannot

Table 3 Performance measures

Mean queue length

Resource utilisation

1° 2° 3®
Condition (a)*
Model predictions 9477 0177 1177
System performance 9600 0-200 1-200
Value of abs. error 0-123 0023 0-023
Rel. error (%) 1-3 11-5 19
Condition (b)*
Model predictions 9750 0-600 5115
System performance 9900 1900 5-100
Value of abs. error 0-150 1-300 0-015
Rel. error (%) 1-5 68 0-3
Condition (c)*
Model predictions 16400 0-320 1-530
System performance 15-550 0-850 1-450
Value of abs. error 0-850 0-530 0-080
Rel. error (%) 55 62 5-5
Condition (d)*
Model predictions 9700 0-285 4-800
System performance 10650 1-000 4-000
Value of abs. error 0950 0715 0-800

Rel. error (%) 89 71 20
2Details of the conditions are

4® 1 2 3 4
0-382 0-997 0-149 0-591 0-280
0-380 0-818 0209 048 0-235
0-002
53
0-700 0998 0-265 0-742 0-304
1-100 0-968 0-256 0-719 0-294
0-400

36
0-770 0972 0292 0890 0-589
0-500 0-844 0-253 0-775 0-511
0-270

54
0-360 0992 0179 0-803 0-219
0-350 0646 012 0-523 0-143
0-010
29

Condition Time interval No of jobs, N p7!x 10* (min) Pii c
(a) 01.32-01.40 11 34 (0-0046 0-4831 0-3610 0-1513) 0-8
) 09.58-10.06 18 2-3 (0-0043 0-5810 0-3063 0-1084) 2
(c) 17.05-17.13 18 1-83 (0-0039 0-5234 0-3010 0-1717) 04
) 21.55-22.03 16 2-83 (0-0070 0-4861 0-4101 0-0968) 1-5

®1 = CPU; 2 = controller + 2HSD; 3 = controller + 2EDS60; 4 = controller + SEDS60

© Heyden & Son Ltd, 1981

THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981 351

202 udy 0 U0 159n6 AQ YB9E9E/L¥E/7/¥Z/1014e/|ufoo/W0d"dNo"oIePEDE//:SARY W) PAPEo|uMOQ

guarantee this to be true, it is more likely that the queue
length when the system is at steady state will not be dramatic-
ally different from its mean value over long periods of time.
To ensure that the above statement is valid, the average queue
length in each case under study has been taken over two
(unoverlapped) consecutive periods of 10 min each (5 snap-
shots in this case). As expected, the two averages, in most of
the cases were very close.

5.2 The average resource utilisation

The system performance data include the utilisation of the
CPU, but not of the I/O resources. However, an estimate of the
utilisation of each I/O resource can be worked out as follows.
If u, is the CPU utilisation as delivered by the performance
package and u; (i = 2, 3, ... M) denotes the utilisation of each
I/O resource, then the rate of input to the ith resource is
u i, py; and the rate of output from the ith resource is w;pu;.
When the system is at steady state, the two rates should be
equal; thus

1
u; = (U p)P1i —
u

6. Results of the comparison process

The model prediction and the corresponding system perform-
ance statistics were examined and compared using examples
of data collected at different times of day. These had different
coefficients of variation ¢ of the service times. The results are
displayed in Table 3 where the device numbers 1-4 denote
respectively the CPU, a controller with two HSD, a controller
with two EDS60 and a controller with five EDS60.

Utilisations

The results given by the model for the resource utilisations
u; (i = 1,2, 3, 4) show reasonably good agreement with those
for the actual system. For example, the relative error of the
CPU utilisation u, was as small as 3% in Condition (b) and
about 15% in Condition (c); for the HSD (u,) it was 3:5% in
Condition (b) and ~ 15-4% in Condition (c).

References

Queue lengths

The model predictions of queue lengths were, as would be
expected, most accurate when the queues were longer. The
information on queue lengths from Conditions (a)—(d) are also
shown in Table 3. It can be seen that for the CPU, for example,
where the queue length was generally large in all four condi-
tions (indicating a CPU bound system), the relative error
ranged from 1-3% [Condition (a)] to a worst value of 8-9%
[Condition (d)]. Similarly, with the next most heavily used
device (device 3, EDS60), it ranged from 0-3% [Condition
(b)] to 20% [Condition (d)]. Although the error appears
larger in relative terms when queue lengths are small, the
absolute value of the error remains small throughout, only
exceeding the value 1 in one instance. The fact that the model
predictions were generally less accurate when queue lengths
were shorter is not a serious drawback, since the model
correctly predicts which devices will have the longer queue
lengths and which will, therefore, be significant bottlenecks
affecting performance.

7. Conclusions

Validating an analytic model is not a straightforward task.
The statistics typically collected from a computer system are
not suitable for immediate use in validation. However, this
paper has shown that by careful examination and manipulation
of these statistics it is possible to extract from them the values
of the input parameters required by the model (Section 2).
Similarly, the two main performance measures of mean queue
length and device utilisation had to be estimated from those
statistics before they could be directly compared with the
corresponding model predictions. All this is necessary to
complete the validation process.

The validation has thus shown that computer system perform-
ance can be satisfactorily predicted using an analytic model of
the central-server type.

Acknowledgements

The authors would like to express their thanks to members of
the Cripps Computing Centre at the University of Nottingham
for their assistance in the above work.

ABATE et al. (1968). Queueing analysis of the IBM 2314 disk storage facility, Journal of the ACM, Vol. 15 No. 9, pp. 577-589.

ANDERSON Jr, H. A., REISER M. and GALATI, G. L. (1973).

The characterization and classification of the interactive workload for virtual

memory computer system, in Proceedings of Computer Science and Statistics: The Seventh Annual Symposium on the Interface, Iowa

State University, Ames, Iowa.
BerNERS-LEE, C. M. (1972).
of Surrey, pp. 43-52. British Computer Society, London.
Buzen, J. P. (1971).
Performance Evaluation, pp. 82-103.
Buzen, J. P. (1973).
Vol. 16 No. 9, pp. 527-531.
CHANDY, K. M. (1972).
ation Sciences and Systems, pp. 224-228.
CHANDY, K. M., HErRZo0G, U. and Woo, L. (1975a).
Vol. 19 No. 1, pp. 36-42.
CHANDY, K. M., HErzog, U. and Woo, L. (1975b).
Development, Vol. 19 No. 1, pp. 43-49.
GELENBE, E. (1975).
GELENBE, E. and PujoLLE, G. (1977).
LABORIA—Le Chesnay (France).
Giammo, T. (1976).
pp. 137-152.
GorpoN, W. J. and NeweLL, G. F. (1967).
254-265.
KoBayasHI, H. and REISER, M. (1974).
Development, Vol. 18 No. 2, pp. 110-124.
Moorg, C. G. (1971).
SALMAN, O. (1978).

Three analytic models of batch processing systems, in BCS Conference on Computer Performance, University
Analysis of system bottlenecks using a queueing network model, in Proceedings of ACM-SIGOPS Workshop on System
Computational algorithms for closed queueing networks with exponential servers, Communications of the ACM,
The analysis and solutions for general queueing networks, in Proceedings of the 6th Annual Conference on Inform-
Parametric analysis of queueing networks, IBM Journal of Research and Development,
Approximate analysis of general queueing networks, IBM Journal of Research and

On approximate computer system models, Journal of the ACM, Vol. 22 No. 2, pp. 261-269.
A diffusion model for multiple class queueing networks, Rapport de Recherche No. 242, IRIA/

Validation of a computer performance model of the exponential queueing network family, Acta Informatica, Vo. 7,
Closed queueing systems with exponential servers, Operations Research, Vol. 17 No. 2, pp.
Accuracy of the diffusion approximation for some queueing systems, IBM Journal of Research and

Network models for large-scale time-sharing systems, PhD Dissertation, University of Michigan, Ann Arbor.
Queueing network models for computer system performance prediction, PhD Thesis, University of Nottingham.

SEAMAN et al. (1966). An analysis of auxiliary storage activity, IBM Systems Journal, Vol. 5 No. 3, pp. 158-170.

352 THE COMPUTER JOURNAL, VOL. 24, NO. 4, 1981

© Heyden & Son Ltd, 1981

202 udy 0 U0 159n6 AQ YB9E9E/L¥E/7/¥Z/1014e/|ufoo/W0d"dNo"oIePEDE//:SARY W) PAPEo|uMOQ

