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A multiprocessor architecture for the solution of spatial and graphical problems by recursive

subdivision is proposed. The trees that result from such divisions are mapped on to a closed graph
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which is then considered as a network of processors. Simulations of these configurations have been
performed with encouraging results. Proposals are made for the implementation of such machines.
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1. Introduction

A number of computational problems, especially those of a
spatial or geometric nature, may be effectively solved by
techniques of successive subdivision. As well as effecting a
reduction in processing time over methods requiring global
search, an overall simplification may result. Additionally,
because such techniques generate independent sub-problems,
they seem well suited to implementation on parallel hardware.
This paper presents a possible processor architecture for such
tasks.

As a problem is divided, the subdivisions may be considered
as a tree, having the original problem as root and the solvable
sub-problems as leaves. A first approach to a hardware
configuration suggests that a processing unit be assigned to
every possible node on the tree. This is clearly both impractical,
because of the large number of processors which would be
required, and inefficient, because for most real problems the
tree generated is extremely sparse. The authors put forward a
method of connecting a feasible number of processors in a way
which retains many of the desirable features of a full tree. It
also gives acceptable processor utilisation, while avoiding the
problems associated with a single bus structure or shared
memory (Willis, 1978).

2. Graphical basis for the architecture

How may a relatively small number of nodes be arranged in a
pattern which resembles a large tree and retains some of its
useful properties ?

The Petersen graph (Fig. 1) is well known in graph theory.
Its nodes have a valency of 3; that is to say, each node is
connected to 3 other nodes. It has the property that, starting
from any node, a circuit of at least five nodes must be traversed
in order to return to the starting node. This minimal circuit
length is called the girth of the graph, and the Petersen graph
contains the minimum number of nodes for girth 5 to be
possible in a valency 3 graph. In other words, 5 is the maximal
girth for ten nodes of valency 3.

The Petersen graph can be redrawn as in Fig. 2, with the
central node chosen arbitrarily, as the graph is symmetrical.
In this form, it can be seen that the central node can be con-
sidered as the root of three binary trees, shown in Fig. 2 as
solid lines. If this graph were implemented as a network of
processors, a problem on any processor could be divided
down any or all of the three trees which start at that processor.
The maximal girth property of the Petersen graph gives the
maximum depth of these trees for the ten processors employed.
Thus a problem will be divided the largest number of times
before arriving back at any node. Other graphs with this
property may be constructed, and the theory may be extended
to graphs of higher valency. We restrict ourselves to graphs
of valency 3 to limit the problems of interconnection of
processors in a practical machine.

It is not possible to construct graphs of valency 3 and any
given girth with less than certain numbers of nodes. It can be
shown (Biggs and Ito, 1980) that if the girth g of a valency 3
graph is even, then it must have at least m nodes, where

m=21+2+2>+ ... 427 (1)
where
g
=2 2
r=% @

For example, to achieve a girth of 6, 14 nodes are needed and
to achieve a girth of 8, 30 nodes are needed. It has been proved
(Singleton, 1966) that graphs of even girth containing this
minimum number of nodes can only be constructed for girths
of 2, 4, 6, 8 and 12. For other girths more nodes are needed.
Figs. 3 and 4 show the 14 node graph of girth 6 and the 30
node graph of girth 8. Like the Petersen graph these graphs
are symmetrical, meaning that the structure looks the same
from every node.

We have chosen these graphs as being representative of the
size of machine that it would be practical to construct although

Fig. 1 The Petersen graph

Fig. 2 The Petersen graph as a tree
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Fig. 3 The 14 node girth 6 graph

Fig. 4 The 30 node girth 8 graph

we do not rule out the possibility of smaller or much larger
devices.

3. Applications

The authors have conceived the processor architecture presented
in this paper in the context of certain spatial problems which
they feel to be of importance, and which are susceptible to
solution by subdivision, an approach commonly known as
‘divide and conquer’. This does not preclude its application
to other tree-structured problems, although the realisation of
any such processor might depend on the attributes of the class
of problems to be handled. Spatial problems are characterised
in many cases by requiring a large amount of arithmetic,
but more moderate data flow. This conforms well with the
advantages and limitations of the approach presented here.

Subdivision techniques fall into one of two classes. In the
first class are those techniques which divide the data according
to a particular characteristic, such as colour. In the second class
are those techniques by which the space that the structure
occupies is divided.

The top down approach to the travelling salesman problem
(du Feu, 1975) provides an example of the first class. In this
case, the set of points to be visited is clustered into ‘towns’,
which are dealt with in turn. Shamos (1975) offers other applica-
tions to structures in the plane, such as the computation of
convex hulls and the Dirichlet tessellation. In the second
class is, for example, the Warnock (1969) hidden-surface
algorithm. This involves the recursive subdivision of the area
of a picture until sub-areas are simple enough to be analysed
easily, or small enough to reject. This approach may be
extended into three dimensions as a search technique (Eastman
and Lividini, 1975), or as an efficient method of evaluating a set-
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theoretic volume model (Woodwark and Quinlan, 1980).
In 3-dimensional cases the amount of processing on conven-
tional machines is considerable. Evaluation times for volume
models, in particular, are notoriously long.

4. Simulation

To investigate how the proposed architecture might behave
in practice, the authors have written a FORTRAN program
to perform discrete time simulations of processor networks
connected in graphs of the type described in Section 2.

The simulation starts by assigning to a randomly chosen
processor an original problem of size n,. That processor
examines the size of the problem and decides whether to
split it into a number of sub-problems or to solve it. The
criterion for making this decision is discussed below. If the
problem is to be split, the processor takes a number of time
steps, f;, to split the problem, which is a function of problem
size. If the problem is to be solved this occupies ¢,, time steps,
which is a second function of the size of the problem. The
number of sub-problems, &, into which a problem is split
at each stage is constant for each simulation. Each processor
has a stack associated with it, and, when a processor splits a
problem into k sub-problems these k sub-problems are pushed
on to the stack. A processor with problems on its stack
examines the top problem and decides whether to split it or
to solve it as previously described. A processor with no
problems on its stack interrogates its neighbours to find the
largest problem on their stacks, if any, and then steals that
problem and solves or splits it. This means that processors
with problems do not spend time trying to dispose of some of
them to idle neighbouring processors, but that the idle
processors actively search for problems to solve. Suppose the
first processor splits its problem. When it has finished splitting,
its neighbours take some of the sub-problems off its stack and
solve or split those sub-problems, leaving the first processor
with a lighter load. When those sub-problems have again
been split and pushed on to the neighbouring processors’
stacks the neighbours’ neighbours can steal problems from
their stacks, and so on. The original problem is thus recursively
divided and spread throughout the network.

If a real problem is being split into k sub-problems, the sum of
the sub-problems often exceeds the size of the original problem.
When a scene is divided by the Warnock algorithm, for example,
some picture components may span the dividing lines, and
must be considered in both sub-scenes. This is simulated by
multiplying the size of each sub-problem, n,, by a random
variable to give a final sub-problem of size n,

n; = n(l + x) A3)
x is a pseudo-random number realised from the exponential
distribution with expected value 0-125. This value is chosen as
a reasonable figure for the applications envisaged.

A problem of size n is split into the k smaller sub-problems
required by realising k-1 pseudo-random variables from the
uniform distribution on (0, n) and slicing the problem at these
points to give the values n, mentioned above. Thus the expected
size of ng, E(ny), is

n(l + 0-125)
k. @

For reasons explained below it was decided that the time
t, for a processor to solve a problem of size n should be a
function of n?

E(ng) =

t, = an® ©)
and that the time ¢, to split a problem of size n should be
considered to be linear in n

t, = bn ©)
These equations were designed to be consistent with the type
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of problem which the proposed processor architecture is
intended to solve. The values of a and b were varied as part
of the simulation study. Again taking the Warnock algorithm
as an example: if it is required to eliminate the hidden portions
of n picture components, each has potentially to be compared
with all the others, leading to an O(n?) time for solution. To
partition the components into k sets each component need
only be examined once, leading to an O(n) time for the partition
to be performed.

Given this behaviour, how may a decision be made on whether
or not to split a given sized problem? Suppose a problem of
size n were to be solved by one processor only, and that, in
order to solve it, that processor will split it i times, push the
resulting sub-problems onto its stack, and then solve them all.
In the following section capital Ts have been used for total
times. If the expected increase in problem size on splitting
is ¢ (in this case ¢ = 1-125) then the expected time taken to
perform all the divisions, E(T,), will be

c(bnk) = c2(bnk?) =D [bnkti-1]
ET) =bn + 52 4 555 Lonk
@)
The k terms cancel and the series sums to give
-1
ET,) = bn (Cc - 1) ®)

The expected time, E(T,), to solve the resulting k* problems
each of expected size

E(ny) = ck_’] )
will be
BT =" (10)
Thus the expected total computation time, E(T,), will be
E(T) = ET) + E(T.,) = bn ‘ci - 1‘ + ‘1";#2 (11)

E(T,) is at a minimum with respect to the number of divisions
performed, i, when

i = In{an (c—1) [In(k) — 2 In(c) ] — b In(c)} (12)
- [In(k) — In(c)]

As a rough guide, it was decided that a problem of size n
should be split when the values of 4, b, ¢ and k gave a value
of i greater than 0-5 in Expression (12).

Is this a good criterion to use when there is more than one
processor available to work on the problem ? Even if more than
one processor is available, the expected collective time for
which all the processors will be occupied with that problem,
and therefore unavailable for anything else, will still be
E(T,). However, when many working processors have idle
neighbours, division is more effective than the criterion
indicates. In general this would only be the case at the beginning
and end of the time that the machine is working.

The behaviour of the processor architecture is, in many ways,
analogous to the spread of an epidemic across a regular
lattice with re-infection allowed (see for example Hammersly,
1966). A great deal of work has been done on such epidemic
spread, much of it by simulation, but the graphs of node
interconnection proposed in this paper are more complex
than those obtained from simple lattices, so the results of
such epidemic studies are of limited use.

Fig. 5 shows the time taken for the 14 processor machine
(Fig. 3) to solve problems of increasing initial size, n,, for
various values of the constants a and b in Eqns (5) and (6)
with problems being split into two sub-problems at each
stage (k = 2). The curves are the best fit parabolas of the
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Fig. 5 Solution time against problem size for the 14 node processor

three sets of simulation results. Parabolas were chosen because
of the quadratic nature of Eqn (5). It was thought that to
fit straight lines would be prejudicial to the reader’s perception
of the results, although in most cases the quadratic term in
the fitted curve is not statistically significant. Each data
point on the graphs of results is an average of three independent
simulations.

The device behaves much as would be intuitively expected.
If the problem is difficult to split and easy to solve (i.e. b is
large and a is small) it is of an unsuitable type for the proposed
architecture. The device then takes much longer times to solve
larger problems (the dotted curve through the data marked
by an asterisk) and the quadratic term in the fitted curve is
positive (though small). If the problem is as easy to split
as it is to solve the device behaves linearly over the range
of problem sizes illustrated in Fig. 5 (the continuous line
through the points marked by a plus). If splitting is easier
than solving (the chain line through the points marked by a
cross) the problem is well suited to the device and it behaves
rather better than linearly over the range.

Fig. 6 shows the behaviour of the 14 processors machine on
very large problems with @ = 0-1 and & = 0-1 (the linear
result in Fig. 5). The device behaves slightly worse than
linearly up to very large problem sizes. This is what would be
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Fig. 6 Solution time against problem size for large problems
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Fig. 7 Maximum stack usage against initial problem size
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expected from the O[nlog(n)] characteristic obtainable by
the recursive divide and conquer technique on which the
device is based.

Fig. 7 shows the behaviour of the maximum size of stack
required over all of the processors throughout the solution
of the whole problem under the same conditions as Fig. 6.
The relative demand for stack space tails off sharply as problem
size increases. This is as would be expected, as the depth
of the division tree increases logarithmically with problem
size.

Fig. 8 shows the percentage of the total time taken to solve a
problem that the machine is idle. Idle time is defined as the sum
of all the times for which processors are idle divided by the
number of processors. Most of this idle time is concentrated
at the beginning of the solution of a problem, when the
processors are waiting for the first processor to split the
original problem, and, to a lesser extent, at the end, when the
whole of the network is not needed to solve the small part
of the original problem which remains.

Fig. 9 is a histogram of the number of sub-problem solutions
produced in one typical simulation against time for @ = 0-1,
b = 01 and an initial problem size of 60. The histogram is
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Fig. 8 The percentage of time spent idle against initial problem
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Fig. 9 Histogram of solutions against time

fairly typical of the behaviour of the device over a wide
range of conditions. Answers are produced mostly during the
last two thirds of the time taken to solve a problem. The
early period is largely devoted to splitting up the problem
and dividing it throughout the network. It is encouraging
that the histogram does not exhibit sharp peaks as these would
imply contention problems in the communication of answers
out of the device.

Fig. 10 shows the time taken for the 30 processor machine
(Fig. 4) to solve problems of increasing initial size operating
under the same conditions as those depicted for the 14 processor
machine in Fig. 5. The behaviours of the two machines are
similar for the unsuitable problem type (solution easy,
splitting difficult: the dotted curve through the data marked
by an asterisk). This is because the machine has little incentive
to split problems under these conditions, so the problems never
spread throughout the whole graph and an increase in the
number of nodes offers no advantage. Under the constraint
that splitting and solution are of the same difficulty (the contin-
uous line through the points marked by a plus) the smaller
machine takes about 25% longer. When splitting is easier
than solving (chain line through the data marked by a cross)
the smaller machine takes about 65% longer.

All the simulations discussed thus far have involved the
splitting of problems into two sub-problems (k = 2). This
is because any tree can be represented as a binary tree and this
is therefore of general interest. Most implementations of the
Warnock algorithm, which has been used as an example
throughout, split the picture data into four congruent rectangles
similar to the original rectangular surround of the whole
image. The authors have done some simulations of the device
with k set to 4. The machine seems to work faster under these
conditions than with k set to 2. This is consistent with the
results that the machine runs fastest on those problems which
are easy to split and difficult to solve. In both cases the problem
is spread quickly throughout the network. Splitting into four
is also of interest because the nodes of the graphs have
valency 3. If a problem is split into four, three parts of it can
be stolen by a processor’s three neighbours and the fourth
part can be retained by the original processor. Splitting fewer
than four ways does not spread the problem throughout the
network so quickly, splitting more than four ways can cause
problems to be stacked unnecessarily.

These simulation studies demonstrate the behaviour of the
proposed architecture. Solution times degrade gracefully as
load increases, the requirement for stack memory grows better
than linearly with increasing load, and, if a reasonable load
has been placed on the machine, each processor does not
spend too much of its time idle while waiting for problems.
The times at which answers to sub-problems are produced
are distributed uniformly enough over the total time taken
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Fig. 10 Solution time against problem size for the 30 node
processor
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to solve problems that there should not be too many contention
problems in passing those answers out of the machine.

5. Projected implementation

In this section are considered some of the possible solutions to
the problems that would be encountered in constructing and
operating a machine with the proposed architecture.

The simplest and cheapest way to implement a processor
network would be to design the nodes around a conventional
microprocessor. The microprocessor at each node will have a
certain amount of random access memory associated with it
and possibly some read only memory to facilitate resetting or
starting the machine. The nature of the spatial problems
which the machine is designed to solve make it desirable that
each node be provided with a hard-wired floating-point
processor. The links between neighbouring nodes will be made
with parallel connectors. Processors can communicate with
their neighbours by direct memory access to make the transfer
of sub-problems quick and simple.

The whole network can be supervised by a single master
processor, probably based on the same microprocessor as that
used in each node. The master processor will be responsible for
initialising all of the nodes with a program and any global
data. It will also be responsible for inserting the original
problem at some node.

The way in which a processor communicates the answers
which it generates to the outside world depends, to a certain
extent, on the nature of the problems which the device is
solving. The answer to a sub-problem might need to be
communicated to its parent problem and so on right up the
problem tree to the root. If this is necessary a flag can be left
on the stack from which a problem had been stolen and replaced
by the solution when it became available. For most spatial
applications the answer to a sub-problem is immediately
useful, for example when it is part of an image to be displayed
on a graphics device. In these circumstances the answer can
be communicated directly to the outside world without the
necessity of passing it back up the tree. To facilitate this,
each processor can be made a leaf on a separate binary tree.
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Each junction in this tree continuously monitors the two
junctions or processors below it to see if an answer to a
sub-problem is available. When one is, it is passed up the
binary tree to its root where it can be communicated to a
graphics device or to the master processor. The junctions of this
tree will be very simple and cheap. This tree might also provide
an alternative method of loading all the nodes at the start
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The network proposed is potentially highly fault tolerant.
If, when a node was physically removed from the network
for servicing, its location appeared to its erstwhile neighbours
to be permanently idle, those neighbours would simply ignore
it. In order to isolate completely a working node all three
of its neighbours would have to be inoperative at the same
time.

6. Conclusions
The authors believe that the processor architecture that they
have proposed offers an attractive alternative to bus-structured
multiprocessor systems, or systems with shared memory,
with their associated contention difficulties. The range of
applications of the device is not universal, but does include a
large class of spatial and geometrical problems which are
receiving increasing attention.

The authors are currently working on an implementation of
the processor architecture discussed in this paper.
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