
Workshop Report

VLSI: Machine Architecture and Very High
Level Languages

VLSI is changing electronics and comput-
ing! If we accept that the problems of'how' to
realize millions of gates on silicon are being
solved, we should be thinking now about the
problems of 'what' computers we are going to
design. With this theme Brian Randell and
David Kinniment of the University of New-
castle upon Tyne welcomed 35 leading re-
searchers from the USA and Europe to the
VLSI workshop. The aim of this workshop
was to bring together the currently largely
separate strands of research in IC design,
parallel machine architecture and very high
level programming languages. The workshop,
sponsored by the UK Science Research Coun-
cil, was held from 14-18 April 1980 in Lumley
Castle, which is a magnificent 13th century
building now established as a first class hotel.
The timetable consisted of invited presenta-
tions interspersed with panel discussions deal-
ing with various aspects of the theme.

In the first invited talk Iann Barron, Man-
aging Director of Inmos Limited, took a
pessimistic stance when discussing the impact
of VLSI. Investment costs for establishing a
VLSI processing capability are massive, so it
follows that this capability will remain in the
hands of a small number of companies with
strong vested interests. It would be naive to
believe that VLSI will signal the demise of the
von Neumann computer. The von Neumann
computer has a lot of momentum behind it,
and in the world of mass production and mass
marketing momentum tends to dominate such
factors as elegance of style or conceptual
sophistication. It is an undeniable fact that
the first product to hit the marketplace corners
the lion's share of that market. It is also
undeniable that consumers, as well as manu-
facturers, are notoriously reactionary. Hence
the 'market forces' which govern what chips
get produced will mitigate strongly against
innovative architectures. Only when it can be
convincingly argued that some novel design
will have universal applicability (or, more
significantly, can be packaged to have univer-
sal appeal) will a break with current practices
be countenanced. Setting the tone for the
remainder of the workshop, this talk provoked
a vigorous discussion.

The next speaker, Carlo Sequin of the
University of California, Berkeley, asked what
kind of components we need to order today to
make it possible to build interesting machines
in the future? He then went on to explore the
possibility of a single, general-purpose com-
ponent for building computers, within the
framework of Berkeley's X-tree research, pro-
ject. One specific issue of this project, which
started in 1977, was to define a modular
component X-node from which general-pur-
pose computing systems of arbitrary size could
be built. Each X-node contains a memory,
processor, control, I/O switch and buffers. The
primary contender for interconnecting X-

©Heyden & Son Ltd, 1982

nodes into truly modular and incrementally
expansible networks are tree-structures. X-
tree is therefore a binary tree enhanced with
additional horizontal links to form a half-ring
or full-ring tree. These additional links help to
evenly distribute message traffic throughout
the tree and provide a degree of fault tolerance.
In X-tree the children of X-node n have node
addresses In and 2n + 1 respectively.

Wayne Wilner of Xerox Corporation's Palo
Alto Research Center continued the discussion
of general-purpose VLSI building blocks by
describing his Recursive Machine Project.
Recursive Machines are based on the concept
of recursion and order. A Recursive Machine
(RM) consists of either a RM element or,
recursively, an ordered set of RMs. A RM
element has: (1) storage, in the form of
variable length registers and through an I/O
processor connected to secondary storage; (2)
logic, in the form of a general-purpose,
microprogrammable processor with writeable
control store; and (3) input/output, in the form
of a communication processor and bus ports
through which it transmits messages on behalf
of fields located within its storage. It also has
two point-to-point connections through which
fields migrate from one element to another.
Information is represented in terms of fields,
which are recursively defined to be either
bracketed strings ' (. . .) ' of characters or
bracketed strings of fields '(() () . . .) ' .
Thus, a machine instruction is recursively
defined to be either a string of characters or an
ordered set of machine instructions. Instruc-
tions which are ordered sets have as their first
instruction a string which governs the control
and interpretation of the remaining instruc-
tions. An objective of this project is to remove
hardwired limits on the semantics of program-
ming languages, such as address space size,
string length, universe of types, and functional
forms.

H. T. Kung of Carnegie-Mellon University
then took up the challenge of the design of
special-purpose chips which can function as
peripheral devices attached to a conventional
host computer. VLSI provides opportunity for
special-purpose chips. Silicon compilation will
make such chip fabrication routine. However,
algorithms that perform well on conventional
random access computers are not always the
best for VLSI implementation. Computation
is cheap in VLSI; communication determines
performance. Kung then described what he
calls 'systolic' algorithms. Such algorithms
have 'VLSI properties', namely they are
implementable by a few simple cell types,
whose data and control flow is simple and
regular, utilizing extensive pipelining and
multiprocessing. For VLSI algorithms there
are a number of different simple and regular
strategies for interconnecting processors: (1)
1-dim. linear arrays are suitable for matrix-
vector multiplication and recurrence evalua-
tion, (2) 2-dim. square arrays are suitable for
pattern matching and relational data base
operations, (3) trees are suitable for searching

algorithms, and (4) shuffle-exchange networks
for FFT. Lastly, H. T. Kung described a
specific VLSI chip—one that performs online
pattern matching of strings with wild card
characters—produced at Camegie-Mellon.

Gerry Sussman of the Massachusetts Insti-
tute of Technology then graphically illustrated
the power of Mead and Conway VLSI design
techniques by describing how they designed
and implemented a LISP chip in just five
weeks. The single-chip microcomputer called
SCHEME-79 directly interprets a typed-point
variant of SCHEME, a dialect of the language
LISP. To support this interpreter the chip
implements an automatic storage allocation
system for heap-allocated data and a user
interrupt facility. The processor is divided into
two parts: the data path and a controller. The
data path consists of a set of special purpose
registers, with built-in operators, which are
interconnected with a single 32 bit bus. The
controller is a finite state machine which
sequences through the microcode implement-
ing the interpreter and garbage collector. As a
performance estimate they computed
(fib20) = 6765 with two different memory
loadings, with a clock period of 1595 nanose-
conds, and a memory of 32K LISP cells. The
SCHEME-79 chip took about 1 minute, with
a substantially empty memory, and about 3
minutes with a half-full memory, to execute
the program.

The next speaker, Bart Locanthi of the
California Institute of Technology, argued
that there is increasing agreement that appli-
cative or functional programming techniques
are the answer to the problems of discovering
and exploiting concurrencies in computations.
This point of view appears also to extend to
the conclusion that functional programming is
the answer to the challenge presented by
semiconductor technology. Bart then outlined
his Homogeneous Machine, whose key notions
are functional programming and a tree-struc-
tured organization. Where his work differs
from others is in the way a functionally pure
subset of LISP interacts with a tree architec-
ture, and in what he calls a hierarchical cache
used to produce a large multi-port memory.
Each node in the tree comprises a processing
element, a cache memory through which
access to ancestral data is provided, and a local
memory which can be written only by the
processing element in the node. The processor
is connected to its immediate ancestor and
descendants in a tree structure. The sole
purpose of the cache is to buffer read accesses
to ancestral data.

John Darlington of Imperial College, Lon-
don presented an abstract scheme for a
multiprocessor implementation of applicative
languages. The absence of side-effects or
shared variables from applicative languages,
besides bestowing many benefits for compre-
hensibility, also makes them ideal vehicles for
parallel execution. He then went on to consider
a scheme for evaluating such languages in a
way that allows many simple processors to be

CCC-0010-4620/82/0025-0153 $02.50
THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 1 5 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/153/527320 by guest on 10 April 2024

WORKSHOP REPORT

used. The program, or graph, of the expression
to be evaluated is represented as packets of
work, each containing a packet identifier, an
operator, and a list of input and output
operands. At the abstract level the architecture
consists of a pool of packets accessed by many
processors, whose job is to select an active
packet, apply one or more reductions to it, and
return the resulting packets to the pool. The
pool of packets represents the main implemen-
tation challenge. Two possible architectures
are being investigated: first, a pool imple-
mented as a ring on which packets circulate,
and, second, a pool based on a more conven-
tional RAM.

The next speaker, Gyula Mago of the
University of North Carolina, described his
reduction machine and discussed its efficiency
of program execution. The computer architec-
ture has the following properties which are
particularly suited to VLSI. It has a cellular
construction, i.e. the machine is obtained by
interconnecting large numbers of a few kinds
of chips in a regular pattern. The machine
directly executes Backus' functional program-
ming language FP, and automatically exploits
the parallelism present in FP programs
thereby, he claimed, achieving execution
speeds far in excess of what is deemed merely
adequate. The machine structure is a binary
tree with two different kinds of cells employed:
one kind are leaf cells (called L cells) and the
other kind are non-leaf cells (called T cells).
The FP expression, considered a linear string
of symbols, is mapped onto the L array from
left to right, one symbol per L cell, possibly
with empty cells interspersed. Both kinds of
cell are simple—a network containing a mil-
lion L cells should be compared with a
sequential computer having a million words of
main memory. Mago said that a performance
comparison of a 220 node reduction machine
with a CDC 6600 for a Gaussian elimination
with matrix sizes of 60, 130 and 220 indicated
7, 25 and 100 fold speed-ups.

Next, Klaus Berkling of Gesellschaft fur
Mathematik und Datenverarbeitung, Bonn
described the GMD Reduction Machine built
and in operation in his laboratory. This
machine has created a medium on which an
algebra of programs with functions as objects
and functional forms as operators can be
realized. The string reduction architecture has
the following features: expressions (i.e. trees)
are kept in stacks as sequences of constructors
(i.e. nodes) and atoms (i.e. leaves) in preorder
linear form. Atoms represent either abstract
entities like numbers, booleans and strings of
letters, or lambda variables, or name functions.
The hardware consists of a set of seven stacks
which are connected by two parallel buses to
the processing unit. An expression kept in one
(source) stack may be transferred to another
(sink) stack by a recursive transfer process
which first moves the constructor to a third
(auxiliary) stack, then transfers the first sub-
tree, then transfers the second subtree and
finally moves the constructor from the auxil-
iary stack to the sink stack. During such a
transfer if a primitive triplet apply-functional-
argument combination is found it is replaced
by its value. In terms of circuit count (about

1500 TTL chips) the GMD Reduction Ma-
chine compares with a von Neumann type
mini-computer. Dr Berkling claimed, how-
ever, that its functional capabilities exceed
those of the mini-computer by a large extent.

Arvind of the Massachusetts Institute of
Technology argued that any machine compris-
ing hundreds of processing elements must
have a highly distributed and asynchronous
control structure. As a solution, Arvind then
described a system he is designing based on
dataflow principles in which each processing
element contains part of the program, and the
processors communicate by sending informa-
tion packets to each other. The machine is
programmed in a high-level expression-ori-
ented, single-assignment language called Id,
and supports a novel way of interpreting
dataflow known as the U-interpreter. The
machine consists of N processing elements
(PEs) and an N x N packet communication
network. Each PE is essentially a complete
computer with an instruction set, and a 16K
word memory, etc., and is realizable in nMOS
technology using one custom made chip and
several standard chips. For the construction,
he said that they plan to use several standard
memory boards with 16K or 64K dynamic
RAM chips and a commercially available
ALU such as the Intel 8087. A dataflow
computer with 64 PEs is currently being
designed at MIT and is expected to be
fabricated within two years.

Carl Hewitt of the Massachusetts Institute
of Technology then described a multiprocessor
computer called APIARY, suitable he claimed
for VLSI implementation, which he is design-
ing for use in an Artificial Intelligence
environment. Hewitt said the main design
problems relate to the required interconnec-
tion topology. Unless care is taken the design
will produce long wires (connections) and
hence unacceptable delays. These problems
can be solved by using a Hypertorus system.
The advantages of this folded torus system are
that all wires are short, it occupies only a small
space, and it is homogeneous, isotrophic and
physically extensible. In APIARY, each com-
puting element or worker component (actor)
is constructed as follows: a work processor, IC
memory (1Mb), a communications processor
and a communications interface.

Next, John Hennessy of Stanford University
discussed representational problems (of pro-
grams) in decentralized computer systems
design. Representation of a program is the key
problem in designing new languages and new
computer architectures, since representations
must be optimized in terms of certain key
measures, e.g. size, execution speed and
potential parallelism. These problems become
much worse in a VLSI environment because
of parallelism. Applicative or functional pro-
gram representations offer many advantages
for VLSI, for instance they are highly parallel,
and since functions are dependent only on
their inputs, the system lacks a central state
and global environment. The Toy language is
being developed at Stanford to investigate
such approaches. Toy may be described as an
intersection of: (1) the data types and syntax
of PASCAL, (2) the loops and scope of the

data flow languages VAL and Id, and (3) the
operators of Backus' FP. There is no imple-
mentation or evaluation scheme predefined by
the language. Two important evaluation strat-
egies are being explored: data driven and
demand driven strategies. The data driven
scheme is based on the data flow notion that
an operator executes as soon as its inputs are
available, whereas the demand driven scheme
follows reduction with an operator being
executed when its result is needed. A major
problem for the Toy language is handling data
structures, since the concept of sharing is not
present at the user level in a functional
programming environment.

Continuing in the same vein, David Turner
of the University of Kent discussed the
implementation of applicative languages, in
the context of his SASL programming lan-
guage and its graph reduction execution model.
This approach to compiling a very high level
language, based on combinatory logic, was
shown to have certain efficiency advantages
over the traditional method of implementing
applicative languages via Landin's SECD
machine. There are basically two types of
parallel reduction regime, namely cautious
and rash. Cautious parallelism is a simple
generalization of normal-order reduction, left-
most outermost plus the parallel evaluation of
arguments of strict operators such as ' + ' .
Rash parallelism evaluates reductions not
lying on the normal order path, in the hope
that it may require their results. Lastly, Turner
outlined the advantages of using combinators:
the combinator code is extremely simple, and
it is known on theoretical grounds that any
applicative language can be compiled to
combinators. One of the main benefits of this
second point is that we can work on developing
the high level language without interfering
with the design of the machine.

Sharon Sickel of Logical Paradox Inc.
discussed programming for concurrency: how
to uncover natural dependencies of the sub-
parts without overspecifying the problem. A
distinction was made between the set of
descriptive languages (DL) and the set of
effective languages (E). DL includes formal
notations such as predicate calculus, algebraic
formulas, set notation, etc., while E includes
notations such as LISP, COBOL and ADA.
However, a number of interesting languages,
having the advantages of both groups, lie at
the intersection of DL and E. These include
Prolog, SASL and the dataflow languages.
This allows a problem to be specified in a
variety of notations (as long as the formal
semantics are given) familiar to the requester
and then transformed into an intersection
language denoting an efficient computation.
As an illustration, Dr. Sickel referred to
Hoare's program FIND in its first order
predicate calculus specification and trans-
formed it into a Prolog program.

Daniel Friedman of Indiana University
continued the theme of applicative program-
ming, discussing the encapsulation and control
of contending parallel processes within data
structures. Programming problems whose so-
lutions require such control include interrupt
handlers, merging (of input streams), and the

1 5 4 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/153/527320 by guest on 10 April 2024

WORKSHOP REPORT

airline reservation problem. In discussing
primitives for such programming problems,
Friedman used LISP's cons of a list. Discussion
centred on the difference between McCarthy's
traditional 'strict' cons whose arguments are
call-by-value and his own 'suspending' cons
and 'frons' whose arguments are called-by-
need or called-by-delayed-value. Friedman
demonstrated indeterminate programming us-
ing frons by presenting an indeterminate
merge operation in an applicative style. The
advantage of embedding such contention
within a data structure is that the contention,
itself, becomes an object which can be handled
by the program at a level above the actions of
the processes themselves. This means, he
claimed, that indeterminate behaviour, never
precisely specified by the programmer or by
the input, may be shared in the same way that
an argument to a procedure is shared by every
use of the corresponding parameter, an ability
which is of particular importance to applica-
tive-style programming.

Next, Peter Henderson of the University of
Newcastle upon Tyne gave a short presenta-
tion on the use of a purely functional language
(LISPKIT) to describe geometric patterns.
This was a preliminary report on some work
being done at Newcastle by Henderson and
McLauchlan on high level descriptions of the
geometry of integrated circuits. Henderson
showed how a simple register file could be
described using just half a dozen simple
functions in the language.

Changing the tone, David Boyd of the SRC
Rutherford Laboratory described the UK
Science Research Council's support for (VLSI)
integrated circuit production. The Rutherford
Laboratory is the centre of the SRC Interactive
Computing Facility (ICF) network of PRIME,
GEC and DEC computers which provide
country-wide interactive facilities for a num-
ber of application areas including microelec-
tronics design work. At present integrated
circuit design is based on the GAELIC suite
of programs, commercially marketed by Com-
peda Ltd. It supports manual mask layout
using a text language, interactive CRT or
digitizer automatic layout of general cells,
design rule checking, logic simulation, and
pattern generator output in particular to the
mask-making facility at Rutherford. The Elec-
tron Beam Lithography Facility (EBLF) at
Rutherford is based on a Cambridge Instru-
ment's EBLF-2 currently supplying a service
down to 2 micron minimum features on up to
4 inch chrome-on-glass masks. Fabrication
facilities are available at Edinburgh and
Southampton Universities for n-channel sili-
con gate processing. The SRC is also support-
ing a number of MSc. courses in Microelec-
tronics beginning in October 1980 with
opportunities for design, fabrication and test-
ing of integrated circuits.

The final presentation was by Philip Tre-
leaven (the author) of the University of
Newcastle who described a decentralized
computer architecture and computational
model. The architecture is based on a single
chip building block—a computing element—
which is plugged together with its duplicates
(cf. LEGO blocks) as a vector to form a

parallel computer. Each computing element
contains integral capabilities for memory,
processing and communication. Each memory
holds a contiguous part of the program
structure which is encoded as nested delimited
strings using the characters '(", "0", " 1 " and
")'. A processor executes work in its memory
and also services accesses to its part of the
program structure. The communication unit
handles memory accesses in non-adjacent
elements, by establishing a 'route' between a
reference to an item of information and the
actual item. Such a route is established by an
address, which in the machine is a sequence of
selectors like a telephone number. Lastly, the
computational model represents a synthesis of
the concepts underlying data flow, control flow
and reduction models, and hence is general-
purpose by supporting these models.

One of the doyens of computer architecture,
Bob Barton of the Burroughs Corporation was
also a participant at the workshop and made
a number of stimulating informal presenta-
tions. Unfortunately he resisted considerable
pressure to give a formal presentation of his
VLSI-related work.

Intermixed with the invited presentations
were a number of panel discussions covering
topics ranging from design of integrated
circuits to very high level programming. For
each discussion session four to five people
were invited to make short position statements
after which the topic was thrown open to all
participants.

The first discussion addressed the problem
of design environments and tools. The panel
consisted of David Kinniment (University of
Newcastle upon Tyne), Irene Buchanan (Edin-
burgh University), Steve Hollock (Plessey
Research Limited) and Doug Lewin (Brunei
University). David Kinniment, setting the
theme for the other panelists, urged the
adoption of a hierarchical and structural
method to overcome problems such as the
increasing length of an IC design cycle and
management of the layout and other problems
which are dominating the chip area. Design
and layout of systems with a million transistors
and above is a very complex task and cannot
be tackled with present day methods which
essentially operate at the level of geometrical
manipulation using graphics. Continuing the
call for structured design in VLSI, Irene
Buchanan stated that the principles are anal-
ogous to those of structured programming.
This is not surprising since both approaches
are concerned with the problem of controlling
complexity. The design hierarchy of VLSI
separates into two different types of cell. Cells
at the lowest level contain primitive compo-
nents and are termed "leaf cells. Cells at levels
above, contain instances of these lower level
cells and are called 'composite' cells. In Steve
Hollock's experience customers were more
interested in performance than complexity,
requiring more customization (i.e. ultra-high
speed logic, mixtures of high and low speed,
analogue and digital). However, sufficient
repetition has led Plessey to develop two major
design methodologies: a high speed ECL ULA
family and Microcell for low power C-MOS.
Doug Lewin highlighted a number of points

concerning design. These include: VLSI is
only one area in designing digital systems
which contain both hardware and software;
there are few viable tools for specification
testing and synthesis of digital systems; due to
complexity, design algorithms with exponen-
tially increasing time are no longer viable; and
there is a need to consider the total system
including analogue and transducer com-
ponents.

Attacking the panel, Peter Henderson
(University of Newcastle) said that Sussman
seems to have been able to design a fairly
complex system making minimal use of graph-
ical facilities. This appeared to contrast with
the emphasis of some other speakers, who
seem to think that graphical tools are more
important. Carlo Sequin leapt to the defence
of graphic tools, giving as an example that
digitizing is the simplest way to do random
corrections. Gerry Sussman commented that
anything we wanted to tell a program by
showing it, we also want to tell by saying it.
This is because we may eventually build a
second (AI) program which is intelligent
enough to instruct the first.

The second discussion session on VLSI
building blocks took as its theme: will a
'universal' processor-memory chip solve all
our building block problems, or do special-
purpose and customizable PLA-type chips
have a contribution ? The panelists were David
Aspinall (UMIST), Mike Rogers (Bristol
University), Iann Barron (Inmos Limited) and
Brian Warboys (International Computers
Limited). Mike Rogers commented that listen-
ing to many of the talks about architecture
and programming, he was wondering about
the relevance of all this to VLSI. Maybe we
should be thinking more about the design
methodology than the building blocks. Iann
Barron then described his ideal building
block—a 'Transputer'. Briefly a transputer has
a processor, memory and communications on
a chip. It is also important that the communi-
cation is uniform across the network since
people will want to build quite simple systems
from this component. Brian Warboys argued
against introducing too many dichotomies in
VLSI. There is the hardware/software, the
processor/memory, and now the general-pur-
pose/customized chip dichotomy. He hoped
that we could keep the transparency in large
systems we seem to be discussing, in respect of
small systems. Small may be beautiful but
large has a hell of a lot of inertia. It seems
absurd to be fixing now on standard compo-
nents at a time when this new technology is
just coming in. Arvind then asked why do we
think a processor/memory pair is a good
component? Iann Barron replied that one of
the biggest design constraints is the number of
pins. You want to keep that number low.
Additionally, speed of communication be-
tween processor and memory is a major factor.
A chip with both processor and memory can
be used essentially as a memory chip if you
want it that way. The processor/memory chip
may not solve all problems (e.g. pattern
recognition) but it does help solve some
important problems. Supporting Barron,
Carlo Sequin added, the way things have

©Heyden& Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 1 5 5

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/153/527320 by guest on 10 April 2024

WORKSHOP REPORT

happened is to put the high bandwidth path
on the chip. The next path in line for inclusion
in the chip is the processor-memory connec-
tion. Now you have the problem of getting
enough memory onto the chip. Klaus Berkling
questioned whether we were merely perpetu-
ating the von Neumann machine by this
processor/memory structure? Countering,
Gerry Sussman said a network of (say 1000)
von Neumann machines is not a von Neumann
architecture from the point of view of the
programmer who has to program them. David
Kinniment interjected that the whole concept
of building blocks assumes that we are going
to build a very big system. But the major
market is for small customized systems on a
single chip. Brian Randell added that surely,
we progress by accepting a set of standard
components and living with them. A great
strength of von Neumann has been that, no
matter how bad a particular machine, we have
been able to program round it.

The next discussion on the architecture of
ultra concurrent machines, had as panelists
Philip Treleaven (University of Newcastle),
Robert Milne (Inmos Limited), Bob Barton
(Burroughs Corporation) and Wayne Wilner
(Xerox Corporation). Philip Treleaven
pointed out that whatever our VLSI building
blocks if large numbers are to be employed in
computer systems then there must be a system-
wide architecture and computational model
which they all obey. In identifying such a
model, he said there seemed to be two basic
mechanisms. First, a control mechanism de-
fining how one instruction causes the execution
of another and consisting of either 'by availa-
bility' of data, or 'by need' for data. Second, a
data mechanism defining the way a particular
argument is used by a group of instructions
and consisting of an argument either being
passed directly 'by value' between instructions
or being passed indirectly 'by reference' to a
shared memory cell. Most computational
models regards these mechanisms as two pairs
of alternates, for a VLSI architecture to be
general-purpose it needs to support both pairs.
Taking a different theme, Robert Milne asked
what the simplest microcode and protocols
should be to enable us to build (soft-
ware/hardware) systems easily. For describing
a decentralized system we want a system
describing language which specifies what the
allowed sequences of messages between the
components are and how these messages are
to be understood. In principle this language
could be applicative. However, the discussion
of applicative architectures should not concern
their adequacy in principle but their adequacy
in practice. The three drawbacks are: (1) its
reliance on kernel programs such as storage
managers, (2) its inability to hide information
in processes properly, and (3) its omission of
a parallel operator for binding messages from
source processes to destination processes. At
the lowest level of a system we may move away
from purely applicative programming. Yet
once we do this, things proliferate: we start to
have functions, processes, parameters, varia-
bles, messages, and indeterminacy (concur-
rency), or indeterminacy (choice) . . . Not all
these things are essential; which ones to

combine, while still avoiding the drawbacks
of applicative programming, Milne presented
as a challenge.

Bob Barton made a number of interesting
comments under the title of 'Various'. Barton
said that yesterday's problems have been
updated. We used to have arguments between
the logic designers and the programmers about
designing machines. Yesterday's logic design-
ers have been replaced by programmers and
the programmers by mathematical types who
know a lot about logic but are most at home
thinking about applicative languages. It's the
same old arguments, just new protagonists. He
said he appreciated Turner's approach. Turner
has found a practical application for a nice
little bit of esoteric mathematics: combinatory
logic. It's a completely fresh approach to
designing a machine. Barton then asked the
following question. What would justify a
computer manufacturer in investing the mil-
lions of dollars needed to design and manufac-
ture new machinery? In answer, he said that
functional programming is the first thing that
had interested him in programming for many
years. He thought it is really most important.
We should be thinking also about using the
capacity for logic, allowed by VLSI, to gain
other advantages than just performance. We
should use that capacity to obtain reliability
and fault tolerance for example. Our depend-
ence on networks establishes a very real target
for terrorists, as long as fault tolerant issues in
network components remains unaddressed.
Wayne Wilner said that rather than proposing
a specific architecture he would like to present
a dozen issues which ultra-concurrent ma-
chines must resolve in order to be successful.
The first five are areas of opportunity for ultra-
concurrent machines: input/output, software
system structure, task decomposition, source-
level control over the machinery, and intercon-
nection structure. The last seven are potential
obstacles: fault tolerance, address mapping
mechanisms, flexible hardware/software
boundaries, efficient use of common resources,
multiple instruction sets, interprocessor inter-
ference, and deadlock avoidance. After giving
the dozen issues Wayne expanded on each
topic.

The discussion on very high level program-
ming languages took as its theme how will we
program future concurrent machines, or can
we design the languages first and the machines
second? The panelists were Peter Henderson
(University of Newcastle), Sharon Sickel
(Logical Paradox Inc.), Joe Stoy (University
of Oxford), David Park (University of War-
wick) and David Turner (University of Kent).
All of the panelists strongly favoured applica-
tive languages, and the general theme of the
presentations may be gained from the follow-
ing contribution by David Turner. On the
software side we have a crisis which can be
resolved by moving to a much higher level of
programming language, the kind of language
he was calling earlier a 'denotational lan-
guage'. These languages are characterized by
a group of properties collectively known as
'referential transparency'. On the hardware
side we can see that to realize fully the
potentialities of VLSI we have to move to a

highly parallel architecture. Parallelism on the
necessary scale cannot conceivably be under
the conscious control of the programmer—it
must arise from an inherent asynchronousness
in the language he is using. The remarkable
point is this—that the conditions for a lan-
guage to be asynchronous in the right way turn
out to be precisely the same conditions as for the
language to be referentially transparent.

A number of people disagreed strongly with
the panelists. Carlo Sequin's remarks illus-
trates their view. Applicative language are (1)
a bad match to the real world, and (2) a bad
match to VLSI technology. The 'real' world
has 'things' in it. These things have 'state'
which does not change unless there is 'inter-
action'. Interaction occurs in time and takes
time. Von Neumann languages have a messy
mixture of state and interaction. Applicative
languages leave out state and have implicit
and immediate interactions. In a more suitable
abstraction things will have implicit state (e.g.
processes), all interactions will be explicit and
interactions would be needed to know or
change state. Applicative languages are a bad
match to VLSI technology. Current IC tech-
nology produces memory at about 10 times
more dense than logic. Note: (1) how can you
make effective use of this fact if you throw out
states? (2) computation of a function takes
much more energy than a storage of a state;
(3) state machines and von Neumann proces-
sors are existing building blocks suitable for
the representation of things (e.g. processes);
and (4) extraction of parallelism becomes more
natural when tied to partitioning into things.
Following Carlo Sequin's remarks, with sup-
port from Gerry Sussman and others, a heated
discussion developed. The participants were
divided into two approximately equal factions
on the question of the general-purpose nature
of applicative languages. One group champi-
oned applicative languages and the other
favoured object-oriented languages such as
Xerox PARC's Smalltalk.

In the final discussion session, asking the
question: are we really ready for VLSI?, the
panel were Mike Rogers (Bristol University),
Carlo Sequin (University of California, Berke-
ley), David Park (University of Warwick) and
Brian Warboys (International Computers
Limited). Mike Rogers opened. VLSI imposes
two major constraints and at the same time
provides two major opportunities for the
system designer. The constraints are: (1) a
small number of simple cells repeated many
times, and (2) regular interconnections. The
opportunities are: (1) high degree of concur-
rency, and (2) creation of innovation architec-
tures, in particular hierarchical structures.
Except for repetitive designs, such as memo-
ries, the problems of complexity are increasing
rapidly and these are evidenced by the length-
ening design time-scales. This situation closely
mirrors the history of systems software except
that we now have the advantage of hindsight,
and can learn from the lessons of the past.
Ideas of hierarchical design, with a structured,
modular approach to the problem have been
adopted generally successfully in this area,
and point the way ahead for VLSI designers.
However, these require appropriate software

1 5 6 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/153/527320 by guest on 10 April 2024

WORKSHOP REPORT

: ssi
10T

MSI LSI

100 T 1000 T 10000 T
Gates Registers Bit slices

UC designer IC designer IC designer

VLSI

100000 T Transistors
Computers (IC designers)

+ everybody else

tools and at present we do not have them. So
in this sense we are not yet ready for VLSI. To
take advantage of VLSI we must also be able
to deal with all the problems arising from
concurrency and here the major difficulty
arises in applying in a systematic way the
advances in computer science which have
been made over the past few years in our
understanding of concurrent processes. In this
area we are partially ready for VLSI. Finally,
one of the toughest problems to crack, and one
in which very little progress has been made is
the whole subject of testing and verification.
In this area we are certainly not ready for
VLSI, and in the long run it is likely that this
will have the biggest single effect in limiting
the size/complexity of designs.

Carlo Sequin felt we were definitely not
ready for VLSI. There are various ways to
characterize this type of technology (see
diagram).

Therefore VLSI is a social phenomenon.
There are several fallacies about VLSI.
Everybody wants to design their own lan-
guages, but now they can design their own
machines too. VLSI is cheap, so if something

is too complex and expensive to implement in
software, do it in hardware instead. One need
not even take care over the design of the
hardware because fast turn-around times allow
faults to be located quickly in the actual chip.
The above points indicate why we are not
ready for VLSI, in brief we have the wrong
attitude, insufficient design and testing tools,
and not enough designers to span the range of
knowledge required from system down to
transistors.

David Park also felt that we were not ready
for VLSI. VLSI technology is with us now, but
we are not intellectually ready for it, which is
going to cause problems. A possible step in the
right direction is the development of functional
languages since they allow programs to be
thought about in a mathematical way. An
example of this is a program which describes
the transformation that can be applied to a
context free grammar. Brian Warboys stated
that the breakthrough will occur when, for
example, relational data bases meet reduction
techniques. VLSI tells us that the building
blocks are the system. The important thing is
to introduce disciplines and integrated sys-

tems. Then Steve Hollock argued that design-
ing VLSI chips is difficult and expensive.
Mead and Conway techniques are wasteful
and do not use state of the art circuits.
Manufacturers will not allow researchers ac-
cess to an up-to-date production line, the best
that can be hoped for is one that is two years
old. A number of people disagreed. Arvind
said bis machine is directed to the solution of
a real problem and will be built with the help
of industry. Lastly, Gerry Sussman pointed
out that MIT is using an up-to-date line.

In summary, I hope that this report gives
the flavour of what, most participants agreed,
was a very extensive and exhilarating week of
discussions held in a most enjoyable environ-
ment. The workshop proceedings are pub-
lished by the Computing Laboratory as Tech-
nical Report number 156. Individual copies
can be obtained by sending £4 ($10) per copy
to: VLSI Workshop Proceedings, Computing
Laboratory, University of Newcastle upon
Tyne, Newcastle upon Tyne, NE1 7RU,
England. Cheques should be made payable to
'University of Newcastle upon Tyne'.

PHILIP C. TRELEAVEN
University of Newcastle upon Tyne,
Claremont Tower,
Claremont Road,
Newcastle upon Tyne NE1 7RU, UK

© Heyden & Son Ltd, 1982

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1.1982 1 5 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/153/527320 by guest on 10 April 2024

