
SHORT NOTES

A Note on Sparsely Filled Dynamically Allo-
cated Memory

Recent papers by Reeves on modelling mem-
ory allocation analyse the distributions of
allocated and free blocks under random alloca-
tions and releases. Here we offer an interpreta-
tion for the lack of a mathematical equilibrium
solution at low storage utilizations. Insight into
the physical reasons for that situation is obtained
by comparison with stack allocation, and with
•spaghetti stack' allocation systems.

Recently, Reeves has presented an approach
to analysing dynamic memory allocation,1'2

with particular attention to random allocation
of memory cells from the free blocks available,
and with a random cell release process. He
derives solutions for the equilibrium distribu-
tion of allocated blocks in runs of various
lengths. These runs range from isolated blocks
surrounded by free memory on both sides—
runs of length 1, to runs of many contiguous
reserved blocks.

Reeves' solution for the equilibrium situa-
tion is obtained by requiring statistical equi-
librium in the number or proportion of runs in
each particular length. As he remarks, this
device leads to the conclusion that there is no
equilibrium solution if the memory utilization
is under 48% (with unit size requests).2 Davies
showed that no such discontinuity is found in
a system using garbage collection (without
storage compaction).3

This note is concerned with the physical
interpretation of that intriguing stability re-
sult. Reeves presents an analysis, in the light
of simulation results. The free store, in a
sparsely utilized memory, tends to form into
one principal unit with a number of scattered
separate fragments in the memory.

If there were always only one stretch of free
store, then this resembles the traditional stack
discipline. If the allocated cells actually obey
a last-in-first-out discipline, this is the special
case that will result anyway. With a stack,
there is always just one single sequence of
allocated cells, whose length varies as cells are
allocated and released. Conversely, there is
always just one free cell. Under these condi-
tions, assuming overall equilibrium but ran-
domness in the demand for memory space, the
actual size of this stack will vary widely about
some mean value. (Compare results from
queueing theory for variations in the size of a
queue, such as M/G/l. These results do not
apply directly, but persuade me that similar
substantial variations in stack size might well
be expected.) If n, is the number of runs of
length r, then one n, is 1 and the rest are all
zero, but which one it is is constantly changing.
All nr have very low expected values.

In the case of random releases, rather than
LIFO, suppose that the blocks are all in one
run at a specific epoch. Then an allocation—
chosen 'randomly' from the (only) free cell will
still leave only one sequence of allocated cells.
(The memory is considered to be circular.) On
the other hand, release of a cell within that
sequence will break it into two shorter se-
quences. This causes a discontinuity in the
pattern of n, values. However, a subsequent
allocation—choosing at random from the two
free cells then in existence—will give a 50%
chance of rejoining the allocated cells into one
sequence.

Over the lifetime of a typical system, there
will sometimes be a local preponderance of
releases and sometimes a local preponderance
of allocations. (One can view this as a random
walk in one dimension.) Therefore it would
not be surprising if there were extended
periods during which there was essentially
only one contiguous sequence of allocated cells
(allocations dominating locally), and some-
times a fragmentation into a whole lot of
shorter sequences—but with small gaps be-
tween and continual fragmenting and rejoin-
ing (releases dominating locally).

This suggests that the sparsely occupied
memory therefore tends to have two somewhat
different modes of utilization, viewed over a
sufficient time-scale, which accounts for the
lack of an equilibrium solution.

Reeves' analysis applies where allocations
and releases alternate, which is not quite the
same situation as that sketched above. He
reports, 'at low utilizations, the free store was
observed to break up into one large segment
and a number of smaller fragments.' And, 'the
proportion of sequences of given length is
found to decrease with increasing length [i.e.
number of blocks]'. So isolated cells and
shorter runs of reserved blocks tend to predom-
inate, which is not the paradigm of a classical
stack.

The patterns of memory utilization revealed
in this contrast are somewhat reminiscent of
the 'spaghetti stack' implementation algo-
rithm proposed by Bobrow and Wegreit for
management of memory allocation when the
cell allocation and release processes are nearly
but not quite LIFO.* This particular problem
arises in connection with the LISP 'Funarg'
problem and implementation of closures on
access environments, and in implementation
of activation stacks for co-routines and multi-
process environments such as might be in-
volved in SIMULA, or ADA tasks.5

So far as I am aware, no one has investigated
what levels of memory utilization can be
maintained efficiently under a 'spaghetti stack'
regime. Most implementations of languages
permitting multiple processes or tasks have

resorted either to use of a general 'heap'
(possibly garbage-collected) for activation rec-
ords, or preallocate individual areas for the
various stacks required. The former solution
incurs the full cost of dynamic memory
allocation and recovery; the latter risks inef-
ficient utilization of the available rnemory.

A practical implication of all this appears to
be that if one allocates 'too much' (virtual)
memory space in a demand paging environ-
ment, for this kind of system, then the effective
working set does not keep on rising even when
the cell allocations are random. I do not
suggest, however, that 'too much' space should
be allocated without cause.

I should remark on errors in the analysis of
the 'Classical System' in Ref. 3. The allocation
probabilities given there for B cells are
inaccurate, as are the release probabilities for
Bs and Cs. Resolving these requires consider-
ation of the distribution of run lengths, and
the whole analysis for this case is superseded
by that of Reeves (Refs 1 and 2).

Acknowledgements

I am happy to acknowledge discussions of
these topics with my colleague J. K. Mullin,
and the gentle critiques of Professor C. M.
Reeves. This research was supported in part
by the Natural Sciences and Engineering
Research Council of Canada.

D.JULIAN M. DAVIES
Department of Computer Science,
University of Western Ontario,
London, Canada N6A 4B9

References

1. C. M. Reeves, Free store distribution
under random fit allocation. Part 1. The
Computer Journal. 22,346-351 (1979).

2. C. M. Reeves, Free store distribution
under random fit allocation. Part 2. The
Computer Journal'23, 298-306 (1980).

3. D. J. M. Davies, The fifty percent rule
revisited, BIT20,279-288 (1980).

4. D. G. Bobrow and B. Wegbreit, A model
and stack implementation of multiple
environments, Communications of the
Association for Computing Machinery,
16. (No. 10), 591-S03 (1973).

5. J. D. Ichbiah et al, Rationale for the
design of the ADA programming lan-
guage. ACMSIGPLANNotices, 14 (No.
6), (1979).

Received April 1981

©Heyden& Son Ltd, 1982

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 159

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/159/527331 by guest on 10 April 2024




