
On the Static Access-Control Mechanism in
Concurrent Pascal

Richard Kieburtz
Department of Computer Sciences, SUNY at Stony Brook, NY, 11794, USA

Abraham Silberschatz
Department of Computer Sciences, The University of Texas, Austin, Texas, 78712, USA

In Concurrent Pascal, an explicit hierarchy of access rights to abstract variables is stated in the program text and
checked by the compiler. This declarative control of static access rights provides a considerable degree of protection
against unauthorized use of an abstract variable by an errant program component. However, there are cases in which
the mechanism of Concurrent Pascal falls short of enforcing the principle that each program component should have
within its name space only those rights of access to variables that it requires. This paper outlines an extension to the
static access control mechanism of Concurrent Pascal that can enforce the need-to-know principle.

INTRODUCTION

A large software system is commonly configured by
linking together a number of previously compiled
modules drawn from a library. To specify a system
configuration is to tell what instances of modules need to
be created and initialized, and what are their linkages to
other modules. It is not common practice to specify a
system configuration in the same notation used for
programming its components.

The programming language Concurrent Pascal was
not designed to serve as a systems configuration lan-
guage,1 but as we shall see, it comes close to being
suitable for the purpose. In this paper we are concerned
with its facilities for instantiating and initializing
program modules, and with the means it provides to
specify linkages. We are also concerned with a protection
issue: how to limit the set of system resources that an
individual module might access to the smallest set
necessary to carry out its task. This form of protection is
important because a system that imposes such a restric-
tion upon its components is better able to restrict the
scope of damage that may be caused by a malfunctioning
component, than is a system without access restrictions.

One of the most noteworthy aspects of Concurrent
Pascal is that it supports modularity in the construction
of programs. A system programmed in this language is
constructed from three kinds of modules called processes,
monitors and classes. The inter-module service calls of
such a system can be modelled by a directed graph, called
an access-graph, whose nodes are labelled with the names
of system modules. An arc from A to B indicates that
module A can call upon module B for service. In such a
case we say that module A has an access-right to module
B. An access-graph G has the properties that: (a) G is
static. Once a system has been configured, no new
modules nor access-rights can be created or destroyed,
(b) G is acyclic. The modules of a system form a
hierarchy. These two properties are always true of a
system written in Concurrent Pascal; the language
structure guarantees them.

Obviously, a module requires access rights to any other
module whose procedures it may need to call in carrying
out its task. The specification of need for access is not a
decision ordinarily left up to the programmer of an
individual module, however. It is a system designer's
decision. From the point of view of a system designer, it
is equally important that the access-rights of each module
are restricted as that it is furnished access to those
resources it requires. By restricting the access-rights of
system modules, it can be assured that any damage which
might be done by an errant module will be limited in its
scope. This is an essential characteristic of a reliable
system. The principle that a module should be allowed to
address only those resources which it is said to need has
been referred to as the need-to-know principle.2

This paper investigates these ideas as they are
incorporated in the programming language Concurrent
Pascal. We show that the need-to-know principle cannot
always be adhered to in writing operating systems in
Concurrent Pascal, and we propose a simple modification
that will allow this principle to be observed. This proposal
is then compared with two other schemes designed to
meet similar goals.

STATIC ACCESS CONTROL

Let us start by briefly reviewing how access-rights are
manifested in Concurrent Pascal. A program component
(module P) can gain a permanent access-right to an
instance R of type T in either of two ways: (a) The
instance R can be declared in the local name space of P;
or (b) a permanent parameter of type T can be declared
in the heading of P. During initialization of P, the
permanent parameter name is bound to a designated
instance of type T. The second of these methods allows
static binding of access to a globally defined module.
This method for manifesting access-rights displays
considerable ingenuity and deserves further explanation.

In Concurrent Pascal, each program component that
represents an abstract data type (that is, a class or a

CCC-OOlO-4620/82/0025-0017 $02.50

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 1 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/17/527363 by guest on 05 April 2024

R. KIEBURTZ AND A. SILBERSCHATZ

monitor) contains a sequential code segment to accom-
plish initialization of an instance of the type. No operator
can be invoked on a module until the module has been
initialized. Initialization is not implicit, but must be
called for explicitly by executing an init statement upon
the module, causing its initialization code to be executed.

In an init statement, actual parameters are furnished,
corresponding in type to the permanent parameters of
the program component type being initialized. The
permanent parameters are bound to local names of the
corresponding actual parameters, and the binding per-
sists throughout the lifetime of the initialized program
segment. An actual parameter mentioned in an init
statement must itself have been previously initialized.

To provide for initialization of global modules (i.e.
monitors and processes), all global declarations are
included in the textual structure of an enclosing process
declaration. This all-enveloping process, called the initial
process of a Concurrent Pascal program, has no name nor
any parameters. Typically, its code body consists only of
a sequence of init statements, although in principle, it
might also give initial values to globally defined variables
of simple types. Since all global processes and module
instances are declared within the initial process, all are
initialized there as well. The only init statement which is
implicitly executed when control is given to a Concurrent
Pascal program is that of the initial process.

Let us illustrate how access rights are obtained in
Concurrent Pascal by an example. Consider the system
depicted by the access graph of Fig. 1. In this system,

Processes PI and P2

Classes of type
Charstream

Monitor /?«#<?/•: pagebufTer

Figure 1. An access graph.

processes PI and P2 communicate with one another via
a shared page buffer, which is encapsulated as a monitor
to ensure exclusivity of access by each process. However,
a process is not given a raw buffer to use for communi-
cation; an interface to the buffer is provided by the class
type Charstream. A program skeleton corresponding to
this system is

type Pagebuffer = monitor;
begin . . . end;

Charstream = class (Buffer: Pagebuffer);
begin . . . end;

P = process (Buffer: Pagebuffer):
var Messagestream: Charstream;
begin

init Messagestream (Buffer);

end;

var Buffer: Pagebuffer;
P1,P2:P;

begin (*initial process code*)
init Buffer;
init PI (Buffer);
init P2 (Buffer)

end.

The example above, which is taken from the Solo
operating system,3 is typical of the way that Concurrent
Pascal programs are structured. The problem here is that
the skeleton program violates the need-to-know principle,
in that processes PI and P2 hold an access right to the
monitor, Buffer, although they have no actual need to use
that monitor directly.

If one were to try to remedy this situation, using
Concurrent Pascal as it has been denned, the skeleton
program might be rewritten as follows:

type Pagebuffer = monitor;
begin . . . end;

Charstream = monitor (Buffer: Pagebuffer);
begin . . . end;

P = process (Messagestream: Charstream);
begin . . . end;

var Buffer: Pagebuffer;
Instream, Outstream: Charstream
P1,P2: P;

begin (* initial process code*)
init Buffer;
init Instream (Buffer), Outstream (Buffer);
init PI (Instream), P2 (Outstream)

end.

Here the local variable Messagestream that was declared
within process type P in the original version has been
eliminated. Instead, there has been substituted a pair of
globally declared instances of type Charstream, each of
which has been given a static access right to the monitor
Buffer. Note that type Charstream is now a monitor type,
rather than a class type as it had been previously. This is
because class instances cannot be bound as permanent
parameters to a monitor or a process in Concurrent
Pascal.

However, the substitution of a monitor for a class
cannot be considered to be a satisfactory solution, since
this would burden a system with the needless run-time
overhead of monitor entry at each call upon one of its
procedures. When a monitor procedure is called, mutual
exclusion of access (by customer processes) is enforced
by a call upon the system kernel. Upon return from a
monitor procedure, the kernel must again be invoked.
Thus even though no instance of the type Charstream is
shared among multiple processes, a substantial loss in
efficiency would be implied by the standard monitor
implementation.

An equally serious problem with this solution is that it
interferes with a reasonable modularization of the system.
This is because declaration and initialization of Instream
and Outstream are pushed into the definition of the initial
process. The solution given above is artificial, and would
never be used in practice. In the following section, we
propose another alternative.

18 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 ©HeydenA Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/17/527363 by guest on 05 April 2024

ON THE STATIC ACCESS-CONTROL MECHANISM IN CONCURRENT PASCAL

ENVIRONMENT SPECIFICATION

A possible way to satisfy the need-to-know principle is to
separate the definition of rights of access from the
declaration of a shared instance of an abstract type. The
rights of access may then be limited to those program
components that have actual need to use a module, while
allowing the module name to have a global declaration
which affords it the necessary scope. The separation
needed is between a type definition and the declaration
of instances of that type. Instead of placing type
definitions in a global context and allowing instance
declarations to be made locally, we wish to restrict type
definitions to a local context, but allow global instances
to be declared. In order to accomplish this, we shall allow
qualified type names to be exported from the context of
their definition, but with a restriction of the set of rights
(i.e. procedure names applicable to the type) that is
exported with the type name.

We can illustrate this proposal by means of a few minor
extensions to the notation of Concurrent Pascal. Let us
introduce an environment declaration, in order to define
a context in which types can be declared. The contents of
an environment are not to be made known outside of its
local context by any implicit exportation rule; however,
any names that are to be made generally available will be
explicitly designated in an exports list. The items exported
will, in general, be qualified types. A qualified type
specifies the name of an abstract data type4 (called the
base type) and a set of operators applicable to it. The
qualifying set of operators must be a subset of the
operators actually defined by base type. Only those
operators that appear explicitly in the qualifying set are
allowed to be invoked upon a variable declared as an
instance of the qualified type.

We shall allow nesting of environment declarations,
and type names may be passed outward as far as
necessary by including them in the exports lists of
surrounding environments. Within a given environment
an abstract type definition, or module, will import (by
default) the names of all types known or defined in the
environment. We now have a nested syntactic structure
in which static qualification can be added to a type by
degrees, as the type is made known in successively wider
environments.

A consequence of this scheme is that the static access
rights held for use of a typed variable by a program
module which imports it from a surrounding environment
may exceed the rights of access that are available where
the variable is declared. This kind of rights restriction is
foreign to conventional block-structured languages, but
corresponds closely to the notion of amplification5'6 that
has been developed in connection with capability-pro-
tected operating systems.

The concept is easily illustrated by an example. We
return to the system whose access graph is given by
Fig. 1. In this version of the skeleton program, the
declarations of types Pagebuffer and Charstream are
encapsulated within an environment definition from
which only qualified types are exported:

initial process:
E: environment

exports Pagebuffer{}, Charstream {Read, Write};
type Pagebuffer = monitor;

begin . . . end;
Charstream = class (Buffer: Pagebuffer);

procedure entry Read () ; . . .
procedure entry Write () ; . . .
begin ... end;

endE;
type P = process (Buffer: Pagebuffer);

var Messagestream: Charstream;
begin

init Messagestream (Buffer);. . .
end

var Protectedbuffer: Pagebuffer
P1,P2:P;

begin
init Protectedbuffer
init PI (Protectedbuffer),
init P2 (Protectedbuffer),

end.

Note that in the context of the initial process, one can
declare instances of the type Charstream and Pagebuffer,
since these have been exported from the environment E
in which they are defined. The exportation of Charstream
gives it a qualified type with access rights to the
procedures Read and Write. However, the exportation
of Pagebuffer gives it a qualified type with no access
rights whatsoever, except for the implied right of
initialization. (It would make no sense in Concurrent
Pascal to allow the declaration of a variable that could
not be initialized, for the initialization statement is
constrained to occur in the same context as does the
declaration.) Subsequently, Protectedbuffer is bound as
the actual parameter in the initialization of PI and P2.
Access rights to Protectedbuffer are held only by the
instances of class type Charstream which occur within
the two processes PI and P2. This version of the program
preserves the need-to-know principle.

The proposed static access-control mechanism as
described thus far is still not adequate to meet the
requirements of all situations. There are conceivable
circumstances in which it might be necessary to duplicate
a type definition in two or more environments in order to
assure the type-correctness of a program. To illustrate
such a case, consider the spooling system given as an
example in Ref. 1. The part of this example that presents
a problem is shown in the access graph of Fig. 2, in
which the circles labelled with C denote instances of a

Virtual-disk

Disk-resource

Virtual-console

Console-resource

Figure 2. An access graph.

©HeydenA Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 19

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/17/527363 by guest on 05 April 2024

R. KIEBURTZ AND A. SILBERSCHATZ

class type, and those labelled with M denote instances of
a monitor type. The part of the system illustrated here
provides virtual disk resources which are used by a pair
of disk buffer monitors. These in turn serve the input,
output, and job processes of a spooling system. These
higher level program components are not shown in
Fig. 2, nor are they included in the illustrative program
texts that follow.

In this example, the variables Diskjresource and
Console jresource are both instances of a common monitor
type. However, the criteria for the access-correctness of
these two instances are not the same. An instance of the
class Virtualjconsole is to be declared locally within the
class Virtual_disk. Both of the monitor instances, Con-
solejresource and Disk_resource, are to be declared
externally to these class instances and bound as perma-
nent parameters, so that access to the monitors can be
shared. But the code body of class Virtualjiisk is to be
allowed access rights to one of these monitors
(Disk_resource) and not to the other.

To allow the discrimination of access rights, we suggest
the use of alias names for the resource type, to be
introduced in the exports list of an environment decla-
ration. Access rights can then be specified separately,
with each name given for the type. The following
program illustrates the use of this scheme, and of nested
environments, to give an access-correct skeleton of the
spooling system. The declarative mechanism is both
specific and powerful, yet quite simple. It may require
some time to become accustomed to it, as the idea of
exporting declarative information (types) outward in a
nest of environments has no counterpart in purely block-
structured languages. (The programming language Ada
allows a module declaration (called a package) to export
a type,7 along with a set of procedural operators defined
on the type. Ada does not provide a static parameteri-
zation capability like that of Concurrent Pascal,
however.)

initial process:
E2 environment

exports Virtual_disk {all}, M2 { }, Ml{ }
El environment

exports Virtual_console {all}
M2{ } = M, Ml {all} = M;

type M = monitor;. . .
Virtual_console = class (Console: M);

end El;
type Virtual_disk = class (Disk: Ml;

Console: M2);
var V_console: Virtual console;
begin

init V_console (Console);
. . . use V_console, Disk . . .

end;
end E2;
var Dl,D2;Virtual_disk;

Disk_resource: Ml;
Console_resource: M2:

begin
init Disk resource, Console_resource;
init Dl (Disk_resource, Console_resource);
init D2 (Diskjresource, Console_resource);

end.

Here the notation {all} means all rights defined upon the
base type.

ALTERNATIVE SCHEMES FOR STATIC
ACCESS-CONTROL

Two other schemes that have been proposed for control
of static access binding are worthy of note. In Ref. 8 is
proposed a notation in which access to a variable or a
type is explicitly granted to a module that is to be allowed
to refer to it. A grant is made as a declarative statement
in the module which defines the object to which access is
granted, and names both the object and the grantee
explicitly. This mechanism seems well suited to a 'flat'
hierarchy of modules, as opposed to a deeply nested
hierarchy of module definitions. As proposed in Ref. 8,
it lacks means of parameterization or for renaming of
objects or grantees, which appears as a handicap if the
method were applied in the design of large systems.

In the programming language Pascal-Plus9, a novel
form of textual substitution has been implemented to
solve the static binding problem. A type declared as an
envelope (replacing class types of Concurrent Pascal) or
as monitor may contain an unspecified 'inner statement',
denoted by '***'. When an envelope or a monitor type
variable is declared within a block B, the body of its
definition is expanded, with the remainder of the text of
B substituted for the 'inner statement' of the envelope or
monitor definition.

Devotees of macro expansion may find the Pascal-Plus
solution preferable to the one we have proposed. We
have tried applying the Pascal-Plus scheme to the
examples given in the present paper, and have assured
ourselves that the scheme can provide static binding
consistent with the need-to-know principle. However,
we found programming with a textual substitution
scheme to be a very demanding exercise when module
definitions were nested, as in the case of our second'
example.

The disadvantage of our proposal is that it plays upon
the ability to limit the visibility of names in a way that
will be unfamiliar to most programmers. An interactive
programming support system would no doubt be of
considerable help in following the transitions from one
local name space to another, as one reads through a
program text. However, the code body of a sequential
procedure appears in proper sequence in a program text,
which is not always the case with a macro substitution
scheme such as that used in Pascal-Plus.

CONCLUSION

We have proposed a simple modification to Concurrent
Pascal to ensure that the need-to-know principle can
always be adhered to in writing operating systems in that
language. We have done so by presenting a few small
extensions to the notation of Concurrent Pascal. These
extensions allow the programmer to separate the defini-
tions of rights of access from the declaration of a shared
instance of abstract type. The rights of access may then
be limited to those program components that have actual

2 0 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 I Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/17/527363 by guest on 05 April 2024

ON THE STATIC ACCESS-CONTROL MECHANISM IN CONCURRENT PASCAL

need to use a module, while allowing the module name to
have a global declaration affording it the necessary scope.
We have illustrated our concept by presenting a program
text corresponding to Brinch Hansen's spooling system.

Acknowledgment

This work was supported in part by NSF Grants MCS 79 04817, MCS
77 02463 and in part by ONR Contract N00014-80-K-0987.

REFERENCES

1. P. Brinch Hansen, The programming language Concurrent
Pascal, Institute of Electrical and Electronic Engineers Transac-
tions on Software Engineering 1 (No. 2), 199-207 (June 1975).

2. P. J. Denning, Fault tolerant operating systems, Computer
Surveys 8 (No. 4), 359-389 (December 1976).

3. P. Brinch Hansen, The SOLO operating system. Software.
Practice and Experience 6 (No. 2), 141-205 (April 1976).

4. A. K. Jones and B. H. Liskov, A language extension for controlling
access to data. Institute of Electrical and Electronic Engineers
Transactions on Software Engineering 2 (No. 4), 277-285
(December 1976).

5. A. K. Jones, Protection in programming systems, PhD. Thesis,
Carnegie-Mellon University (1973).

6. E. Cohen and D. Jefferson, Protection in the HYDRA operating

system. Proceedings of the fifth ACM Symposium on Operating
Systems Principles. 141-160 (1975).

7. J. D. Ichbiah, et al, Rationale for the design of the ADA
programming language. ACM Sigplan Notices 14 (No. 6), Part
B (June 1979).

8. J. R. McGraw and G. R. Andrews, Access control in parallel
programs. Institute of Electrical and Electronic Engineers Trans-
actions on Software Engineering 5 (No. 4), 1-9 (June 1979).

9. J. Welsh and D. W. Bustard, Pascal-Plus-another language for
multi-programming. Software Practice and Experience 9, 947-
957(1979).

Received May 1980
© Heyden & Son Ltd, 1982

©Heyden& Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 2 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/17/527363 by guest on 05 April 2024

