
The Rotating Bus as a Basis for Interprocess
Communication in Distributed Systems

Nenad Marovac
Department of Mathematical and Computer Sciences, San Diego State University, San Diego, California 92182, USA

In the last decade a large number of different interprocess connecting structures and associated protocols were
implemented in systems incorporating multiple processors. Efforts in the research of interprocess communication have
been intensified in latter years in connection with the research and development of distributed systems. However, most
of the developed structures were oriented towards communication between complete computers with full processing
power, and involved these computers too much in the communication between processes. What we propose here is more
along the lines of the classical bus structure with distributed data propagation and control. Our mechanism is based on
the rotating bus concept; it ensures simplicity of interconnecting structures, communication control procedures and
very small time overhead in interprocess communication within a computing system using the rotating bus features. It
also allows for simple expansion of the system. The mechanism, with completely distributed control, is mainly intended
for use in interprocess communication in multi-processor systems, computing systems with distributed architecture and
in-house networks linking intelligent terminals.

INTRODUCTION

The distributed systems encompass data processing
systems comprising a multiplicity of different types of
general purpose resources.1 These resources are physi-
cally distributed and dynamically assigned as required to
processes taking place within the system. The processes,
also being physically distributed, mutually interact
through an interprocess communication mechanism
linking the system together. The processes are coordi-
nated by an operating system. The operating system
unifies and integrates, but does not centralize the control
of the resources or the processes which operate within
the system in a cooperative autonomy.

This informal definition of distributed systems brings
to light two important features of the distributed systems:
first, the need for an efficient interprocess communication
mechanism in such systems, and second, the suggestion
that beside resources, data and control of system resources
being distributed, the control of the interprocess com-
munication mechanism should also be highly decentral-
ized or rather completely distributed.

In the last two decades a large number of different
interprocess connection structures and associated mech-
anisms were implemented in systems incorporating
multiple processors.2"5 References 6-9 present excellent
efforts in systematic classification and evaluation of such
structures. Recently, however, research in interprocess
communication has been intensified in connection with
the research and development of distributed systems.

In the context of this paper we are not interested in
distributed systems spread over a wide geographical
area. Instead, we are concerned with systems housed in
one or more cabinets implementing single or multipro-
cessor computing systems with distributed architecture.
In other words, our objective is to replace a conventional
bus structure with a communication mechanism suited for
the development of novel computing systems with the
distributed architecture of tomorrow, with increased through-
put by enchancing computing concurrency. We are also

interested in using the communication mechanism being
proposed in this paper in a system of terminal stations,
i.e. intelligent terminals incorporating microprocessors.
Such stations can be placed in departments and executive
offices within enterprises and our communication mech-
anism is to be used as a basis for cooperative processing
and transmission of data in textual and pictorial form
from one station to another.

This paper proposes a universal mechanism between
processes. The mechanism, based on the 'rotating bus'
concept and its associated protocol, enables 'simultane-
ous' one-to-one, one-to-many, and one-to-all (broadcast-
ing) modes of communication between processes in the
system, as well as simple expansion of the system. As
already stressed, the mechanism is mainly intended for
use in interprocess communication in multiprocessor and
distributed computing systems, as well as in-house
systems of linked intelligent terminals incorporating
microcomputers.

In the Appendix to the paper we describe a simple and
popular procedure to link together two processors. We
also illustrate how different processors can be adapted to
the requirements for that communication procedure. The
purpose of the discussion in the Appendix is to show that
processors with very different communication properties
and different levels of intelligence, ranging from full
computers, through processors and DMA controllers, to
passive elements like memories, can be successfully
adapted for interchange of data using the basic simple
procedure on which we intend to establish the principles
of our communication mechanism.

In the next section we state the requirements for a
general interprocess communication mechanism for
distributed systems. In the section on 'The rotating bus'
we present the basic design and priniciples for such a
mechanism based on these objectives and the observa-
tions made in the Appendix. This section also includes a
discussion on the achievable data transfer rates between
any two processes in a system, and a discussion on the
reliability and security of the system design. The

CCC-0OKM620/82/0O25-OO22 $05.00
2 2 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/22/527373 by guest on 09 April 2024



THE ROTATING BUS AS A BASIS FOR INTERPROCESS COMMUNICATION IN DISTRIBUTED SYSTEMS

following section briefly describes the word (byte)
transfer level protocol.

The rotating bus, as we present it in those two sections,
is based upon a simple bus loop structure. The final
section includes some generalizations to make the
rotating bus a more versatile communication mechanism.
Furthermore, although the rotating bus is mainly in-
tended for physically compact distributed systems, it can
be adapted to circumstances where components are
spaced over wider geographical areas by inserting serial
components for transmission over larger distances.

OBJECTIVES IN INTER-PROCESS
COMMUNICATION

The purpose of the examples given in the Appendix was
to illustrate that in systems of interconnected asymmet-
rical processors (systems containing diverse computers,
processors and other types of data processing devices
which have different communication properties and
degrees of intelligence) it is possible to adapt these
devices in such a way as to have equal properties with
respect to a communication procedure applied within
these systems. In the remainder of the main part of this
paper we will examine how to fit the simple handshaking
procedure into an efficient and flexible interconnecting
structure for intercommunication between computing
processes in systems with distributed architectures
containing processors of different natures. We will also
consider the basic data transfer protocol for such a
network.

Initially we must consider what our goals are in
interprocess communication. The situation to which we
wish to address ourselves is a system of N, possibly
interacting, computing processes. These processes may
perform independently or they may cooperate on a set of
tasks. In general, we assume that the individual processes
divide their time between computation and communi-
cation with other processes.

With this situation in mind, we outline in the following
list what we feel are the most important requirements for
an interprocess communication mechanism:
(i) Fully decentralized control. The control of the commu-
nication mechanism should not be localized in one
process, nor should there be a device dedicated solely for
controlling the communication mechanism. This is in
order to avoid the bottleneck usually common to such
systems. Also, a system in which the control is decen-
tralized and in which separate control functions are
located where needed offers higher reliability and larger
flexibility of operation. This applies particularly to a
system in which all processes are on an equal functional
level of importance.

(ii) Asynchronous operation. The individual processes
should not have to concern themselves with global timing
considerations in data transfer within the system.

(iii) Simplicity of operation. A process, and the processor on
which the process is running, should not be required to
deal with any aspect of communication operations except
to place messages into the system, and remove them from

the system when they are addressed to the process in
question. In particular, a process should not have to be
engaged in routing or re-transmitting messages between
two different processes.

(iv) Versatile operation. A process should be able to address
as many other processes at once as desired (i.e. a single
message could be addressed to one other process, several
other processes, or all the other processes in the system).

(v) Reliable operation. Processes should be able to detect
and recover from most errors in message transmission.

(vi) Design economy. We would like a communication
mechanism, the implementation of which is not more
expensive than the processors within the system.

(vii) Flexibility to expansion. Our mechanism should be
capable of easy expansion in the event that we wish to
include more processors in the system.

(viii) Universality. The mechanism should be sufficiently
general to accommodate any kind of a computing device
with given word size, from diverse computers, processors,
DMA and device controllers to memory units.

It should be noted that most of these considerations
apply equally well to the design of a general-purpose,
long-distance computer network communication mech-
anism. This, however, is not the purpose of our study.
We are interested in a mechanism which is suitable for
a closely spaced network such as an in-house text and
picture distribution system or, more importantly, net-
work-type distributed computer architecture with inten-
sive interaction between the processors.

THE ROTATING BUS

Communication between processes in a system may be
performed either by means of shared memory or through
message transfers. Formally it would appear that the
shared variable method is not as suitable as the message
transfer method.10 Certainly there are difficulties to be
overcome in the way of possible race conditions. In the
following we will consider only the message transfer
method.

In order to transport a simple handshaking procedure
and utilize the observations made in the Appendix for
our problem of interprocess communication in a system
of N processes, we will approach the problem by
considering the configuration given in Fig. 1. In this

V CL1

/ CL2 m

a

Figure 1. Handshaking between Ci and the rest of the system.

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 23

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/22/527373 by guest on 09 April 2024



N. MAROVAC

figure, a process Ci is extracted from the rest of the system
and is interplaying with the entire remaining part of the
system via the handshaking procedure. All the Ci process
sees is an «-bit bi-directional data path and the two
control and sense lines. CL1 and CL2. The CL2 line is
used to indicate to Ci the presence of a message from the
system or acknowledge reception of a message from Ci.
The CL1 line indicates to the rest of the system the
intention of Ci to send a message or acknowledge
reception of a message from the rest of the system.

It now remains to determine the organization of the
interconnection structure to establish such interplay and
the contents of the vector data lines.

If we think of messages as data, and our system of
processes as a computer, then we immediately think of a
bus structure as a means for transferring messages from
one process to another, just as a conventional computer
uses a bus to transfer data, say, from memory to the
CPU, and so forth. A bus structure also conforms to the
principles discussed in relation to Fig. 1. Unfortunately,
the conventional bus has major disadvantages for a
system of multi-processors. In a conventional computer
when one device places information on the bus no other
device may use the bus at the same time. Control of the
bus is passed between different units, i.e. CPU, DMA
controller and so forth, but at any instant of time, only
one unit is firmly in control of the bus. The concept of a
unit being in complete control of the bus at any instant of
time is not in keeping with the principle of giving each
processor equal power at the same time in a system of
processes of equal importance. This comment applies
also to the case of a centralized bus controller which
governs time multiplexing of the bus, granting use of the
bus to different units either at their explicit request or in
a round robin manner.

On the other hand, there are significant advantages to
a bus in interprocessor communication. Bus structure
enables parallel transfer of the entire data unit, as a word
or byte. The addressing of the receiving device is simple,
no need for complex routing procedures. Also, the bus
communication mechanism is just as efficient for data
transfers involving devices incorporating intelligence,
like CPUs, DMA controllers and so forth, as it is for
passive devices like memories, I/O ports, etc.

Bearing in mind the aforementioned comments on the
use of bus structures in interprocessor communication,
and the objectives outlined in the section on objectives,
we decided to adopt the following design, which is a
modification of the conventional bus structure. Instead
of a 'static' bus we decided to use a 'rotating' bus, namely
a circular vector data path in which data being transferred
between processors rotates around the bus from one
process to another in a manner similar to the rotating
magnetic field in polyphase AC asynchronous motors.
Basically, what we are proposing is a circular structure
resembling a conventional bus closed into a loop and
then partitioned into a large number of segments, as
shown in Fig. 2(a). The length of these segments, referred
to as slots, is one bit and their width is equal to the bit-
width of the bus. Each slot contains, at any one time, a
single information unit called a. frame. A frame contains
an actual bus data message (word or byte) plus the control
information, i.e. addressing and sequencing information
in certain implementations. Each bit of information in a
frame, data and control, is on a separate parallel line, so

Figure 2. Illustration of a rotating bus: (a) bus segments; (b)
computers on a rotating bus.

that the entire data frame rotates together as a single unit
from one slot to another. There are many data frames
rotating around the bus at the same time. The rate of
rotation of data frames around the bus may be consider-
ably faster than the processing rate of the processes
connected to the bus. In our experimental rotating bus,
the rotating rate of data is five million data frames per
second. We may then, for all practical purposes, consider
the data transfer between two processes to be instanta-
neous, and that all processes on the bus are able to
communicate simultaneously with each other in a bus-
like manner.

Another difference between the conventional bus and
the rotating bus, besides rotation of data, is the addition
of another address field to the bus. In the conventional
bus, either the sender or receiver of data is implicit,
being the unit controlling the data bus at that time. The
other participant, the receiver or sender, is specified
explicitly by having its address on the address part of the
bus (address bus). In the rotating bus there are many data
frames on the bus at any one time. As these data frames
have different senders and receivers, and as all processes
are potential participants in data transfers due to the fact
that no single process is in control of the bus (in
accordance with objective (i)), each data frame on the
rotating bus must contain the address of both the sender
and receiver of that data unit.

The rotating bus as an interprocess communication
mechanism incorporates both the simplicity of a loop
network topology,11"14 and the simplicity of a bus
mechanism. It is well known that networks based on loop
topology satisfy objectives (iii), (vii), and the bus
mechanism together with the handshaking procedure
can be adapted to satisfy objectives (ii), (iii), (iv), (vi),
(vii) and (viii). This will be further elaborated upon in

2 4 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/22/527373 by guest on 09 April 2024



THE ROTATING BUS AS A BASIS FOR INTERPROCESS COMMUNICATION IN DISTRIBUTED SYSTEMS

the remainder of this section. Furthermore, as will be
apparent from the next subsection, control of the rotating
bus is completely distributed. This satisfies objective (i),
which is of paramount importance in distributed pro-
cessing systems.

Devices, like computers, processors, memory units and
so forth, are connected to the rotating bus via Rotating
Bus Interfaces (RBI), as shown in Fig. 2(b). The function
of an RBI is to monitor the bus for messages for its
associated process, or for an empty slot (frame) if the
process wishes to send a message. When an RBI detects
a message designated to its associated process it: (i)
informs its process that a message has arrived; (ii)
releases the message to the process if it is not read
automatically; (iii) allows the process to place a message
on the bus if desired; and (iv) continues to monitor the
bus for the next message directed to its process.

When its process wishes to place a message on the bus,
the RBI waits for an empty frame to appear, and then
proceeds in similar fashion.

The rotating bus interface

We present here a simplified version of the RBI in such
a manner as to bring out its main functional
characteristics.

The structure of the RBI is depicted in Fig. 3. The
central part of an RBI is an m-bit parallel-in-parallel-out
(master/slave flip flop) register, known as an RBI register,
slot register, or simply a slot. The register becomes a part
of the bus. The bus is a uni-directional m-bit data line.
The bus enters the RBI on one side coming from the
previous station on the bus, and exists on the other side
of the register towards the next station. Besides being
incorporated into the bus the RBI register is connected
to its associated process via m bi-directional lines.
Connection to the process is also made from logic circuits
in the RBI to interrupt the process via the CL2 line if the

Rotating
bus

RBI slot register

Transfer
pulse

Rotating
bus

CL1

Slot request JCL2

Figure 3. Structure of a RBI.

RBI register contains information directed to the process.
In its basic design, the m bits of an RBI are composed

of d bits of data, an address-to field AT and an address-
from field AF. The number of bits in the address fields is
determined by the number of stations to be placed on the
loop. Since two address values are reserved for special
conditions, n address bits can address 2"~2 stations. We
use an address-to value of zero to denote an empty frame,
and a value where each bit is set to ' 1' to indicate that the
data item (frame) is being broadcast to all stations on the
bus.

There are three decoders in an RBI attached to the
address-to field, and one attached to the address-from
field. The decoders on the address-to field detect whether
the address is that of the process, or whether it is all ones
or zeros. The first two cases indicate that a message has
arrived for the process, which is then interrupted to
receive the message. The last case signals the arrival of
an empty data frame and this generates an interrupt if
the process has activated its slot request line. The decoder
on the address-from field generates an interrupt to the
process if the address is that of the process. It can signal
either the return of a broadcast which has traversed the
bus and must now be removed, or it can signal the fact
that a message sent to another station on the bus was not
received. If this occurs three times with the same message
the sending station signals a warning that the station
being addressed is not responding.

In addition to the RBIs the rotating bus includes a bus
control line T. This line is controlled by ready flags from
all processors in the bus, and a bus clock. The transmit
control line T carries clocking pulses governing the
rotation of messages within the system, i.e. transmission
of message data from one RBI to another around the
rotating bus.

Comparison of the rotating bus with other loop structures

Loop topologies have been used by others in computer
networking. However, previous work was on the devel-
opment of serial ring network structures.1 '~16 There are
a number of advantages, as we see them, in using the
rotating bus in the development of distributed
architectures:

(1) Parallel data access; parallel structures allow for
wider bandwidth and higher data transfer rates through
the system.

(2) Simpler addressing; the rotating bus allows for
simple bus addressing and address processing strategies.
There is no need to accept part of a message in order to
decide whether to accept or forward the message, which
generally adds to communication delays.

(3) The inherent problem of loop structures, viz. lost
token detection and token regeneration17'18 is avoided
in the use of the rotating bus.

(4) Two register RBIs (Fig. 4) provide for better
reliability of the rotating bus than CRC block error or
parity checking techniques used in serial communication
rings.

(5) Superior security and privacy arrangements.
(6) Complexity of interfaces; RBIs are simpler than

interfaces in conventional serial loop networks, which,
in general, require a much higher degree of intelligence.
The latter usually incorporates microprocessors, while

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL. VOL. 25, NO. 1,1982 25

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/22/527373 by guest on 09 April 2024



N. MAROVAC

RBIs include only passive devices. Furthermore, the
complexity of interfaces in serial loop structures implies
further delays in their different stages which means
further decreases in bandwidth as compared to the
rotating bus.

(7) Protocol simplicity; The bus type protocol of the
rotating bus is simpler than message protocols in serial
loop structures; as the bus becomes narrower, the control
function becomes more complex.6

The main disadvantage of the rotating bus is the
multiplicity of lines. However, we feel that the expense
of the additional lines is offset by the greater cost of
interfaces in serial loop structures and the other advan-
tages of the rotating bus as listed above.

Functionally, the rotating bus is a system of time slots.
However, if frames were grouped into variable length
packages (variable number of frames per packet) and
RBIs were adequately modified, the rotating bus could
be built to resemble either pass control4 or DDCLN
rings;14 in fact for simulation purposes our first rotating
bus was built as an 8-frame-packet system.

However, for application in distributed architectures
it is more efficient to use a rotating bus as a system of
time slots. In distributed architecture computing systems
single frame messages (i.e. one word or one byte) are
more frequent and more natural than multiple frame
packets. Moreover, even in the case of multi-frame
messages, occurring for example in transferring and
processing of arrays, transfer of single frame packets is
more efficient. The rotating bus clock is considerably
faster than the clocks of individual processors 'hanging'
on the bus. Therefore, after receiving a frame from or
placing a frame onto the rotating bus, a relatively long
time interval will expire before the processor is ready to
accept or deliver another frame (word or byte). This
means that a number of frames could pass by the
processor in this 'idle' time. These idle or in-between
frames can just as well be used by other processors on the
bus.

Furthermore, the length of buffer queues (see section
on rotating bus in uniprocessor environment) is then
dependent only on the local environment, i.e. disparity in
speeds of the rotating bus and the local processor (and to
a lesser degree on the speed of processors with which the
local processor is frequently communicating) and not on
the average global message length as in DDCLN rings.14

In the design and construction of our bus and its
interfaces, it became apparent that a further possibility
of reducing the propagation delay and speeding-up
operations existed without having to go for faster and
more expensive processors on the bus. This time saving
was related to the time delay required for the decoding of
frame addresses. As mentioned above, an RBI register
was implemented by using master-slave flip-flops. We
decided to use edge triggered flip-flops; a frame enters
the first stage of a flip-flop on a positive edge and the
second stage on a negative edge of a clock pulse. The
valley between the two pulses was to be used by the RBI
to perform address decoding and unloading of the frame
by the associated processor if the addresses indicated
such action. If address decoding takes pi time and frame
unloading/loading pi time the required length of the
clock pulse valley interval is L2=pl +p2. However,
when a frame is in the second stage of the flip-flop of
station i on the bus, during the clock period Tk, it is also

available to the decoding circuitry in the station / + 1.
The decoding in the station i + 1 can take place through
the LI of Tk clock pulse and LI of pulse Tk + 1, where
LI is the high level part of a clock period (i.e. LI + L2 =
T). This reduces the required length of the clock pulse
valley intervals, as during this time only loading/
unloading of frames takes place, i.e. it is enough that
L2 =p2, and LI > pi. The only modification required to
RBIs as shown in Fig. 8, is that the address portion of
inputs to RBIs registers are routed to decoding circuitry
and that output from the OR gate resulting in the signal
CL2 is activated with the negative edge of each clock
pulse. This is in order to ensure RBI-processor synchro-
nization and to provide for the fact that station i may
change the contents of the frame towards the end of the
clock interval Tk. It is apparent that this implementa-
tional feature is not available to serial structures.

Speed, expansion and load consideration

The bus clock works at very high frequencies since the
speed of the bus is influenced only by the speed of logic
used in the control gates and flip-flops incorporated in
the RBI registers. Using fast TTL logic, clock rates
between 10 to 50 MHz are reasonable, which results in a
bus with large data transfer rates.

A further advantage to a rotating type of bus is that it
is readily expandable. All that is needed to add a
processor into the bus is to plug-in its RBI at the desired
place in the bus. Additional independent RBI registers
can also be added to the bus to provide extra message
slots—this is particularly useful if one expects heavy
traffic in the bus.

A study of the loading characteristics of the bus is
currently in progress, in particular, to determine the
availability of free message slots. At first glance it would
appear that a few communicating processes could tie up
the available message slots on the bus and lock out all the
other processes. Study by Hayes and Sherman has shown
that this is not the case.19 Although they considered
Pierce communication ring networks,12 the results can
be directly interpreted and extended to the rotating bus.
However, let us further examine the problem through a
discussion of some practical alternative solutions.

For the moment we will assume that the number of
slots available on the bus is equal to the number of RBI's,
which is equal to the number of processors attached to
the bus, let us say N. Now, suppose that in the bus
protocol, we limit the availability of slots to one per
communicating pair, i.e. if process A sends a message to
B, which in turn acknowledges or replies to this message,
then only one slot is allocated for this exchange (that is,
B replies in the same slot that A used). With this
restriction, if one process only talks to one other process
at a time, then the total number of slots required is N/2.
If we allow one process to talk to Mother processes at the
same time then we require NM/2 slots. The extreme case
is where M = N — 1, which is the case where every
process talks to every other process simultaneously.

Now let us suppose that we limit M to be 2, that is we
limit each process to communicating with only two other
processes at a time, then we require precisely N slots
which is just the number we assumed we had to begin
with. Now if we alter the original assumption and allow

2 6 THE COMPUTER JOURNAL, VOL. 25. NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/22/527373 by guest on 09 April 2024



THE ROTATING BUS AS A BASIS FOR INTERPROCESS COMMUNICATION IN DISTRIBUTED SYSTEMS

the average M to be 2 we conclude that the number of
slots on the bus would provide for smooth communication
between all processors on the bus. We should note here
that both the above restriction of limiting each commu-
nicating pair to a single slot and the assumption for the
average Mto be 2, are very practical in general and, even
more so, in the systems for which use of the rotating bus
is suggested in this paper.

A second approach would be to incorporate the full
number of N(N - l)/2 slots into the bus. We could
augment the iVRBIs with (N(N - l)/2 - AT) slot registers.
Simple slot registers can be made very inexpensively (at
the cost of a few dollars) so this is certainly a feasible
alternative.

Another approach to slot management is as follows:
we make no restriction on the number of slots that a
given process uses, or on the number of other processes
with which it communicates at any time—however, we
insist that when a message is received by a process then
the process immediately clears the slot, thereby releasing
it (converting it into an empty slot). In order to reply or
acknowledge the process must wait for the next free slot
to arrive. This ensures that at least one free slot
propagates through the system.

Clearly, there are a number of promising approaches
for efficient bus management. Investigation of these
approaches will be reported in a future paper.

Reliability and security

Like all loop type structures the potential weakness of
the rotating bus is its reliability. This question for loop
topologies is considered in references.13'1S> 16

As a rotating bus structure would be dedicated mainly
to multi-processor distributed systems and in-house
message distribution networks the problem of line failure
is not a serious one. The pertinent difficulty is failure of
processors and RBI's on the bus.

The bus functions, to a large degree, independently of
the processors. Consequently, it is simple to ensure that
its operation is not directly affected by the failure or
shutting down of the processors. This is achieved by
automatically setting CL1 line high when either the
processor is to be shut down or the processor does not
react to the signal on CL2 line after a certain time
interval. However, if a processor fails, bus performance
may be degraded due to a buildup of messages addressed
to that processor. In such circumstances these messages
eventually return to their senders. When the same
message returns to the sender for the third time, the
sender aborts the communication with the failed proces-
sor and issues a warning message to the system operator.

Very little additional circuitry is required to protect
the system against failure of RBI's. This is realized with
a slight increase in cost by incorporating into the RBI's
a duplicate slot register. The output of each of the RBI
slot registers is XORed together bit by bit. Each bit of the
result is then ORed together producing a warning signal.
This signal will be true if, and only if, the output from the
two RBI registers is not identical. This is 'shown in Fig.
4 where RBI-A/ and RBI-B/ denote corresponding bit
positions in the two RBI slot registers within an RBI.
One should note here that only one RBI slot register
(RBI-A in Fig. 4) is actually used for the bus communi-

Warning

XOR

Rotating
bus

RBI-B,

RBI-A,

Clear Rotating
bus

Figure 4. Modified RBI.

cation. The other is used solely for verification purposes.
Although a fault in the RBI has been indicated, the
potentially incorrect information could leave that RBI to
rotate around the bus. This situation would exist until the
RBI is replaced. In order to avoid propagation of these
potentially corrupted messages, the warning signal is also
used to clear the RBI slot register participating in the
bus. This results in replacing the potentially corrupted
message with zeros, which is interpreted as an empty
slot. This will prevent reception and acknowledgement
of incorrect messages. As the messages sent out by the
processors will not be acknowledged communications in
the system will gradually cease.

To ensure security and privacy of information the
following procedure can be used. Before an RBI is
incorporated into the bus, its decoders are set to the
desired addresses. The RBI is then closed and sealed to
prevent tampering with decoders in order to illegally
extract information rotating around the bus. As a result
of this, an RBI can alert its associated processor only
when a data frame destined for, or originating from, that
processor is in the RBIs slot register, or when a required
empty slot is available, but not under any other
circumstances. However, the danger still exists that a
processor could unload all information passing by on the
bus, even when not being interrupted by the CL2 line of
its RBI. This can be prevented simply by incorporating
latching buffers in the RBI which are controlled by its
CL2 line. This will disable flow of any information
between the RBI and the corresponding processor unless
the CL2 line is high, and will consequently guarantee
security of information on the bus, short of taping the
actual cables between the RBIs.

COMMUNICATION PROTOCOL

In this section we discuss the basic objectives of protocols
for the rotating bus. In computing systems with distrib-
uted architectures interprocess messages are in the form
of individual basic data units (words or bytes). Under
these circumstances, a conventional bus protocol can be
directly transported to the rotating bus as the frame
protocol, and the processes embed within themselves all
the required higher level protocols.

However, if we consider distributed systems in general,
interprocess messages comprise more than one basic data
unit. Since, in the rotating bus, only one basic data unit
of information is passed in each frame, a message
consisting of several basic data units would have to be
built up one unit at a time. This requires a higher level
protocol, i.e. message protocol, which subsumes the basic
data unit (frame) protocol. At a still higher level, we may
wish to consider interprocess and application protocols.

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 2 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/22/527373 by guest on 09 April 2024



N. MAROVAC

These would, in turn, be implemented upon the message
level protocol.

The message and higher level protocols can be made
independent of the device-processors on the bus. This is
due to the adaptability of the devices as discussed in the
Appendix, and the fact that the protocols can be
implemented using the frame level protocol primitives
and a set of programming elements, which model
different level virtual processors on the rotating bus.

The actual implementation of the basic data unit
'frame' protocol for a specific device depends on the
following communication properties for the device: (i) is
it serial or parallel; (ii) are there control lines which may
be used as CL1 and CL2 lines (see the Appendix); and
(iii) can the CL2 line interrupt the processor, or must a
polling procedure be used.

The frame level protocol for general distributed
systems, and the message distribution networks of
intelligent terminals, is somewhat elaborate because of
our wish to include a broadcast mode of communication.
The frame protocol recognizes five different types of
frames: (i) 'personal' frame; (ii) broadcast frame; (iii)
personal broadcast frame; (iv) personal frame acknowl-
edgement; (v) broadcast frame acknowledgement.

A personal frame is sent from one process to another,
and a personal frame acknowledgement is sent in
response to the correct reception of a personal frame.

A broadcast frame message is one sent from one
process to every other process on the bus, and correct
reception of such a frame message is given by a broadcast
frame message acknowledgement. A broadcast frame
sent out by a process is removed from the bus when it
returns to its sender. Amongst its other activities the
sender then waits for acknowledgements of the broadcast
frame to arrive. If, after a reasonable interval of time has
passed, one or more stations on the bus have failed to
acknowledge reception of the broadcast frame, then the
sending station will send out a personal broadcast frame
to the stations which have failed to acknowledge receipt.

For this more elaborate version of the rotating bus
frame level protocol, another three one-bit fields are
added to each slot, i.e. width of the bus, as shown in Fig.
5(a). As mentioned previously, broadcast frames are
indicated by each bit in the address-to (AT) field having
value T . A personal broadcast frame is indicated by a
personal address in the AT field and the bit B set. The
field MP, meaning Message-Present, indicates that the
data field contains a message and AP standing for
Acknowledge-Present indicates that the frame is also

< =

(a)

C=

AT

AT

AF

AF

RBI slot i

B M

p

A

p

"egister

data

RBI slot register

s R B data

used to acknowledge the last frame in the opposite
direction, i.e. sent by the process with address AT to the
process with address as in the field AF.

In other words, a frame may contain a message only,
an acknowledgement only, or both an acknowledgement
and message frame. When both AP and B bits are set,
the frame acknowledges receipt of a broadcast frame
from the process AT, besides containing a possible frame
message.

If we wish to ensure, to the greatest possible extent,
correct operation of the protocol, synchronization of
processes, and data flow control, the fields MP and AP
are expanded into sequencing fields S and R of HDLC
protocols.20-21

GENERALIZATION OF ROTATING BUS AND
FUTURE WORK

Although the rotating bus was developed mainly for
multi-processor computer systems with distributed ar-
chitectures and in-house networks of computers and
microcomputer-based intelligent terminals, it can be
adapted to include remote processes as well. The required
modifications are illustrated in Fig. 6. This shows the

Serial

(b)

Figure 5. Added fields in RBI slots.

Figure 6. Rotating bus with serial components. P/S: parallel-to-
serial adapter; S/P: serial-to-parallel adapter.

replacement of parts of the bus by serial communication
facilities, which is achieved by using simple parallel to
serial and serial to parallel adapters. They can be in the
form of parallel-in-serial-out and serial-in-parallel-out
shift registers. One should note here that the processes
are still being incorporated into the system in the parallel
sections only, i.e. in the rotating bus sections.

In order to ensure the desired (rotating bus) rates of
information within the system, transfer rates along the
serial parts of the structure, being bit rates, must be
proportionally higher than the rates along the parallel
parts.

Multi-path rotating bus

Addition of new paths to the rotating bus can be very
simply implemented by the use of branching-out sema-
phores. This is illustrated in Fig. 7(a). This shows three
paths in the bus, paths 0,1 and 2. Processes are separated
into these paths in accordance with the frequency of
communication between them. Suppose that processes in
path 0, have to communicate frequently with processes
in paths 1 and 2, but processes in paths 1 and 2
infrequently communicate with each other. Addresses of
processes in the same path are chosen so that they all

2 8 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/22/527373 by guest on 09 April 2024



THE ROTATING BUS AS A BASIS FOR INTERPROCESS COMMUNICATION IN DISTRIBUTED SYSTEMS

Figure 7. Multi-path rotating bus. BOS: branching-out-
semaphore.

have the same values in one or more address bit positions.
Then routing of messages from path 0 to paths 1 and 2
can be achieved by using branching-out semaphores.
These semaphores examine the address bits in the AT
(address-to) field and, in accordance with their value, let
the clocking pulses on the T line pass along the
appropriate path and, at the same time, block the passage
of the clocking pulses to other paths. This ensures
message transfer to the first RBI on that path and inhibits
transfer to RBI's on other paths of the branch. At
converging points, clocking pulses from the path which
received clocking pulses at the branching-out semaphore
pass the converging point into the common path (path 0)
and enable transmission of message data from the last
RBI on the transmitting path to the first RBI on the
common path. Behaviour of the entire bus is as if it was
decomposed into two separate circular paths, as shown
in Fig. 7(b), only one circular path being active at a time.
If the bus contains more than one common path,
branching-in semaphores are used at the converging
point and their mechanism is similar to that used for
branching-out semaphores.

Rotating bus in uniprocessor environment

We are pursuing further research into the use of the
rotating bus as a means of communication within a
uniprocessor, i.e. a conventional computer. We can
consider a uniprocessor computer also as a system of
processors, some of which are active like CPUs, DMA
and device controllers, and some of which are passive
like memories, memory-like addressed I/O devices and
so forth. All the remarks of the section titled 'The rotating
bus' concerning the advantages and disadvantages of the
conventional bus structure for inter-process communi-
cation still apply. Using the rotating bus, the data transfer
within the computer can be interleaved and pipelined to
a very high degree and instruction fetching, decoding
and execution overlapped. From the CPU's point of view
the rotating bus 'looks' like an infinite sequence of
information filled temporary registers or a cache memory
of infinite size. The rotating bus further increases
throughput by allowing a number of processes to proceed
concurrently, whereas in computers with a classical bus
structure they are sequential. For example, the operation
of CPUs, DMA controllers and so forth can be overlapped
to a high degree. Overall, the concurrency and parallelism
can be considerably enhanced by application of the
rotating bus in such systems. However, the considerations

and principles of the use of a rotating bus in such an
environment is outside the scope of this paper and will be
reported fully elsewhere.22

Flow control

One of the most frequent questions put forward at
presentations of the rotating bus principles relates to the
flow control in the system. If a processing unit is much
slower than others in the system, it uses the CL1 — R/"
line to stretch the clock cycle to obtain enough time to
unload a frame data destined for it. To avoid this
necessity of the clock stretching, which slows the entire
system, a queue of buffers is inserted between the RBI
for that unit and the unit itself, Fig. 8. If a sequence of

rotating bus
RBI slot register

rotating bus

R
T l

IN queue OUT queue

processor

Figure 8. Non-stop rotating bus interface.

frames for a device is longer than the length of its queue
(which is determined by statistical analysis) the device
can still use the clock stretching technique to decrease its
queue length. Even such rare occurrences of clock
stretching of the bus can be completely avoided by use of
an appropriate flow control strategy in the higher level
point-to-point protocol.

CONCLUSION

An interprocess communication mechanism is presented,
based upon a 'rotating bus'. The overall objective for
such a mechanism is a simple, cost-effective, and flexible
means for fast data transfer, particularly suitable for
multi-processor systems.

We have implemented a system based on the concept
of the rotating bus. It has a clocking speed of 5MHz and
it uses clock stretching without buffering queues. For
testing purposes we used SWTC6800 computers, based
on Motorola 6800 processors, which were connected to
RBIs on the bus via two ports in their 6820 PIA
interfaces. The design, implementational and testing
observations were reported in references.23'24

Acknowledgements

I wish to thank Jack Krivanek, David Diamond, Brian Smith, and
Selim Akl for helpful comments and assistance in preparation of this
paper.

The research reported in this paper was partially supported by the
National Research Council of Canada.

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 29

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/22/527373 by guest on 09 April 2024



N. MAROVAC

REFERENCES

1. P. H. Enslow Jr, What is a distributed processing system. IEEE
Transactions Computer (January 1978).

2. G. Mazare, A few examples of how to use a symmetrical multi-
micro-processor. Preliminary document for seminar on the
design of distributed systems, NICE, IRIA (1978).

3. R. J. Swan eta/., Cm" A modular multi-micro-processor, AFIPS
Conference, AFIPS Montvale, New Jersey (1977).

4. R. J. Farber et al., The system architecture of distributed
computer system—the communication systems. Symposium
on computer communication networks and teletraffic (April
1972).

5. A. D. Jensen, The Honeywell experimental distributed proces-
sor—an overview. IEEE Transactions Computer (January
1978).

6. P. H. Enslow Jr, Multiprocessors and Parallel Processing,
J. Wiley Interscience, New York (1974).

7. K. J. Thurber et al., A systematic approach to the design of
digital bussing structures. FJCC (1972).

8. G. A. Anderson et al.. Computer interconnection structures:
taxonomy, characteristics and examples. Computer Surveys
(December 1975).

9. E. D. Jensen efa/., A review of systematic methods in distributed
processor interconnection. IEEE Conference in Communica-
tion, Philadelphia (14 June 1976).

10. P. Zave, On the formal definition of processes, in Proceedings
of the 1976 International Conference on Parallel processing,
ed. by P. H. Enslow IEEE, London (1976).

11. W. D. Farmer and E. E. Newhall, An experimental distributed
switching system to handle bursty computer traffic. Proceedings
of ACM Symposium on Problems in the Optimization of Data
Communication Systems (1969).

12. J. R. Pierce, Network for block switching of data. The Bell
System Technical Journals (No. 6), (July-August 1972).

13. E. R. Hafner, Digital communication loops—a survey. Proceed-
ings of the 1974 International Zurich Seminar on Digital
Communications (1974).

14. C. C. Reames and M. T. Liu, A loop network for simultaneous
transmission of variable-length messages. Proceedings of the
Second Annual Symposium on computer architecture, pp. 7-
12 (January 1975).

15. P. Zafiropulo, Reliability—a key element in loop systems,
Proceedings of the 1974 International Zurich Seminar on
Digital Communications (1974).

16. E. Hafner and Z. Nenadal, Enhancing the availability of a loop
system by meshing, Proceedings of the 1976 International
Zurich Seminar on Digital Communications (1976).

17. G. Le Lann, Distributed systems—toward a formal approach.
Proceedings of the IFIP Congress, Toronto (August 1977).

18. G. Le Lann, Algorithms for distributed data-sharing systems
which use tickets, Proceedings of the 3rd Berkeley Workshop
on Distributed Data Management and Computer Networks
(August 1978).

19. J. F. Hayes and D. N. Sherman, Traffic analysis of a ring
switched data transmission system. The Bell system technical
joumalSO (No. 9), (November 1971).

20. N. V. Stenning, A data transfer protocol. Computer Networks 1
(No. 2), (1976).

21. G. V. Bochman, Finite state description of communication
protocols, Proceedings of the Computer Networks Protocols
Symposium, Liege, F3-1 (1978).

22. N. Marovac, The rotating bus as a basis for novel computer
architectures, in preparation.

23. N. Marovac and B. Smith, The rotating bus as a packet
switching medium. Annual Canadian Computer Conference,
Quebec, CIPS (1979).

24. B. Smith, A packet rotating bus, MSc. report, McGill University,
School of Computer Science (1979).

Received May 1980

© Heyden & Son Ltd, 1982

APPENDIX

An interprocess communication procedure

There is a variety of interconnecting structures used to
link computers to other computers or peripherals. One of
the simplest methods is to interconnect them via bi-
directional parallel ports together with two associated
control lines, using the 'handshaking' procedure to
control the communication interplay. The corresponding
interconnection structure is shown in Fig. Al. The vector
path between the two computers represents an /i-bit bi-
directional line between a single n-bit bi-directional port
in each computer, and CL1 and CL2 represent associated
one-directional control signal lines used to transmit and
sense Ready-to-Receive (RR), Ready (R), Data Ready
(DR) and Acknowledge (ACK) control signals. The flow
of processes in the two computers, as well as the flow of
data and control signals between the computers when
computer 1 (Cl) is to transmit data to computer 2 (C2) is
shown in Fig. A2.

Besides using the handshaking procedure in commu-
nication between computers, the procedure is also used
in communication between asynchronous processors in
computers themselves, as well as between CPU and
memory. This is shown in Fig. A3.

The handshaking method presented with the aid of
Figs Al and A2 can be directly implemented in linking
two MOTOROLA 6800 microcomputers via PIA 6820
devices.

Computer
C i

CL1

CL2

Computer

Figure A . I . Linking two computers for handshaking.

Processing

_J
Send RR signal

Processing

Receive RR signal

R signal received
R(CL1)

Send R signal

Put data on line

Send DR signal
DR(CLl)

1

*
Accept data

•
Receive ACK signal

ACK(CLl)
ACK(CU)-- Send ACK signal

IIU j

,yes

Continue processing Continue processing

Figure A.2. Interplay between two computers in handshaking.

30 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/22/527373 by guest on 09 April 2024



THE ROTATING BUS AS A BASIS FOR INTERPROCESS COMMUNICATION IN DISTRIBUTED SYSTEMS

Do CL2

Data bus

Figure A.3. CPU to memory communication.

Linking computers with no control lines

Some computers have parallel interface devices with bi-
directional parallel ports without associated control
signal lines. However, the same mechanism can still be
applied with two simple modifications. One port in such
devices is used in the same manner, i.e. as the bi-
directional data port—while one bit of another port is
used in output mode to simulate the CLl control signal
line, and another bit is used in input mode to simulate the
CL2 sense. If the CL2 sense bit cannot interrupt the
computer then the latter has to examine (poll) this bit
periodically to establish reception of RR, R, DR and
ACK control signals. An example of such a communi-
cation procedure arises in linking MOS Technology
KIM-1 microcomputers via 6530 parallel interface
devices.

Processors with serial data ports only

Although it is always theoretically possible to incorporate
parallel interface devices such as the MOTOROLA PIA
6820 into the memory space of any microcomputer, it is
often necessary to link a processor directly. Sometimes,
such processors have only serial data ports. This is the
case when linking a NATIONAL SC/MP micro-
processor via its serial I/O ports. However, it is still
possible to apply our communication mechanism by
adapting the processor with some simple additional
circuitry. The required modifications are shown in Fig.
A4.

In Fig. A4, MM74C164 is a serial-in-parallel-out 8 bit
shift register, and MM74C165 is a parallel-in-serial-out

In-dock

MM74C165

Sense A S c / M p Flag 1
MrU

Flag 2 (ISP-8 500D) Flag 0
SIN SOUT

CLl

Out-clock

MM74C164

Figure A.4. SC MP in handshaking.

8 bit shift register. Flag 0 and Flag 2 signals from the
MPU are used to clock the shifting of output and input
bits within the output and input shift registers respec-
tively, and Flag 1 simulates the CLl control signal. Sense
A input line on the MPU simulates the CL2 control
sense. SIN and SOUT denote serial input and output
ports, respectively. At the reception of data into the input
shift register indicated by the control signal on sense A
line, SC/MP extracts all 8 bits, bit by bit. When sending
data, the SC/MP MPU outputs 8 bits, bit by bit, into the
output shift register. After outputting the last (8th) bit,
the MPU sets FLAG 1 simulating the CLl control line.

Do (CL2)

Bi-directional
data path

Figure A.5. Modification of CPU to memory interconnections.

Passive devices

Interconnections between memories and CPUs, as shown
in Fig. A3, can also be rearranged to conform to the
structure in Fig. Al. The modification is shown in Fig.
A.5 where address and data buses as well as the R/W line
are combined together into the bi-directional n-bit
parallel data path.

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25. NO. 1,1982 3 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/22/527373 by guest on 09 April 2024




