
A Control Structure for a Variable Number of Nested
Loops

E. Skordalakis and G. Papakonstantinou
Computer Center, N.R.C. 'Democritos', Aghia Paraskevi, Athens, Greece

A new program control structure is proposed in this paper which is suitable for expressing a variable number of nested
loops. This control structure is useful in combinatorial problems and in problems requiring backtracking.
Implementation details are discussed and some illustrative examples are given which employ this new program control
structure. The incorporation of this control structure in contemporary programming languages will considerably
enhance them, particularly languages like FORTRAN, BASIC, and assembly.

INTRODUCTION

A new control structure which is suitable for program-
ming algorithms having a variable number of nested
loops is proposed in this paper. Algorithms employing
nested loops of variable depth are found in combinatorial
problems and in problems requiring backtracking.
Although these algorithms can be programmed using
recursion and the conventional control structures, pro-
gramming them using the new control structure is more
convenient and more natural. Furthermore, the imple-
mentation of this new control structure can be done easily
and it does not require recursion, which means that its
incorporation in languages like FORTRAN, BASIC,
and assembly will enhance them considerably by allowing
them to be used in programming a class of recursive
algorithms.

While we agree that the conventional control structures
(D- or D'-structures4) are sufficient for the practising
programmer and that definite evidence is needed before
a new control structure is to be adopted, we propose this
new control structure in the belief that it meets this
requirement.

DESCRIPTION OF THE CONTROL
STRUCTURE

In Fig. 1 n nested loops are shown in flowchart form (the
symbolism is explained in Fig. 2). The control variable,
the starting parameter, the terminal parameter, and the
step (incrementation) parameter of" the loop k are,
respectively, /, b, e, and s (the values of b, e, and s are
considered positive integers). The body of the loop k is
divided as shown in Fig. 1 into three parts, the 'precodet',
the 'loop k + 1', and the 'postcode k\ This is true for k =
l(l)/i — 1; when k = n, instead of'loop n + 1' which has
no meaning we have 'corecode'. Such a structure is of
practical value when 'precodek' and 'postcode*', k =
1(1)«, are instances of a parameterized 'precode',
'postcode'. In this case the structure is recursive and
therefore it can be coded employing programming
languages which provide recursion. The code of the
structure is given in Appendix A with Algol 60 as the
programming language. However, it can be coded in a

way which is more convenient and natural by employing
a new control structure, specially devised for this case.

This new control structure, called 'nest structure', in
an Algol-like notation is as follows:

nest/ = b, e, s, n, k;
precode;
endpre;
corecode;

/, = /»,(«,)«,

Precode|

iz-b2(sz)ez

Precode2

i

J
Precode,,

I
Corecode

1
Postcode,,

!

i
Postcode 2

t

I
Postcode,

Figure 1 . A control structure consisting of nested loops.

CCC-0010-4620/82/0025-0048 $02.00
4 8 THE COMPUTER JOURNAL, VOL. 25, NO. 1, 1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/48/527403 by guest on 10 April 2024

A CONTROL STRUCTURE FOR A VARIABLE NUMBER OF NESTED LOOPS

endcore;
postcode;
endpost;
endnest;

where
/, b, e, s are integer arrays of length n
i[k] is the control variable for the k loop
b[k] is the initial parameter for the k loop
e{k] is the terminal parameter of the k loop
&k] is the step parameter of the k loop
n is an integer variable reference or an integer constant
denoting the number of the nested loops
k is an integer variable to which is assigned the current
depth of the nesting (1 < k < n). It can be used within
the range of the nest structure whenever the depth of the
nesting is required
'precode', 'corecode', and 'postcode' are sets of
instructions.

(a)

Figure 2. Flowcharts (a) and (b) are considered equivalent.

It is assumed that the arrays b, e, and s are initialized
prior to using the nest structure.

This nest structure is associated with two more transfer
of control instructions. The first has the format:
nextcycle;
which is interpreted as 'carry on the current loop with the
next value of its control variable'.
The second has the format:
exitloop;
which is interpreted as 'exit from the current loop and
carry on with the immediately outer loop'.

SOME ILLUSTRATIVE EXAMPLES

There is a class of problems the solution of which can be
formulated according to the scheme of Fig. 1. The
solution of these problems is a set of vectors (x,, x2,...,
xn) from a direct product space A", x X2 x • • • x Xn with
x, an element of Xt. Each loop / in Fig. 1, 1 < i <, n,
generates the elements of X, while the 'precede,',
'postcode,' select the element xf, and 'corecode' consumes
the solution vector (x,, x2,..., *„). Xx, X2,. .., Xn
may or may not be copies of one another.

Two illustrative examples are given in this section.
The first is a pure combinatorial problem and the second
is a search problem which requires backtracking. The
second problem was taken from Ref. [5] but its solution

is formulated there according to a scheme which is
different from the one considered here. Areas in which
such problems can be found, together with specific
examples, are given in Refs 1-3 and 5.

Example 1. Find all combinations of q elements of a given
set of p elements.

In this problem it is required to find all ordered vectors
O'i. h, • • •, iq) such that /fc_, < ik, k = ()
where
1 <ik<p,k = ()q
ik stands for a particular element of the given set, the
elements of which are somehow mapped into the set {1,
2 , . . . , p } .

Formulating the solution of this problem according to
the scheme of Fig. 1 using nested loops we have q nested
loops one for each component of a combination, and the
control variable in each loop takes the values 1(1)/?. In
other words
* i = { l , 2 , ...,/>} for/ = 1(1)9, and
(x,, x2 xq) = (i'i, i 2 , . . . , /,). Using the symbolism
of Fig. 1, we have

n = q

— ik+ I

em=p,m=
sm = 1, m = l(l)n
precodek = if k < n then bk+l
corecode = print im,m=
postcode^ = nil

Example 2. Colouring the vertices of a graph G.
Let G be a graph of p vertices, and let q be a given

positive integer. A proper colouring of the vertices of G
in q colours is an assignment of a colour ik (1 < ik <, q) to
each vertex k,k — \(\)p,'m such a way that for each edge
e of G the two endpoints of e have different colours. It is
required to find all the proper colourings.

In this problem we are actually searching for vectors
(i, ,i2,...,ip) such that A£= OPk) = true
where
\<ik<q,k= l(l)p
A: = vertex
ik = colour of vertex k

(false for k = 1
k-i

Pk = { V(9kjAik = ij) for 2<k<p

g = adjacency matrix of the graph G.
Formulating the solution of this problem according to

the scheme of Fig. 1 using nested loops we have p nested
loops one for each vertex of the graph, and the control
variable in each loop takes the values l(l)q. In other
words ̂ = { 1 , 2 , . . . , q) for i = \{\)p, and (x,, x2,. . . ,
xp) = (i\ ,i2, . .. , ip). Using the symbolism of Fig. 1 we
have

n=p
bm=\,m=\{Y)n

5 m = l , m =
f if k + lthen

precode s < forj = 1 step 1 until k — 1 do
I if 0y A ik = /j then nextcycle;

corecode = print im,m= 1(1)n
postcode = nil

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1, 1982 4 9

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/48/527403 by guest on 10 April 2024

E. SKORDALAKIS AND G. PAPAKONSTANTINOU

IMPLEMENTATION

The proposed new control structure 'nest' together with
its associated two transfer of control instructions 'next-
cycle' and 'exitloop' can be incorporated into a host
programming language. This can be accomplished in one
of the following three ways: (1) by modifying the compiler
(or interpreter) of the host programming language so as
to cope with the new control structure, (2) by developing
a preprocessor which will translate the augmented
programming language (host programming language +
new control structure) into the host programming
language, (3) by implementing the new control structure
through subroutine calls.

The first way is the most difficult of all. The second is
less difficult than the first, and the third is the easiest.
The following observation is important and can be used
in any one of these three implementations: the flowchart
of Fig. 1 which needs recursion in order to be coded, can
be transformed into an equivalent flowchart, the one
shown in Fig. 3, which does not need recursion in order
to be coded.

Some comments concerning the flowchart of Fig. 3
seem appropriate. It requires the 'precodefc', 'corecode',
and 'postcode^' to be coded as subroutines. It utilizes a
new (global) variable/which controls the flow of control
within the same loop. The depth of nesting is explicitly
controlled through the manipulation of the variable k.

In what follows in this section an implementation of
the third way is presented with FORTRAN as the host
programming language.

The control structure 'nest' is used as a subroutine call
according to:

CALL NEST (/, B, E, S, N, K, F, PRE, CORE,
POST)

where
/, B, E, S are integer arrays of length N
I(K) acts as the control variable of the loop K
B{K) acts as the starting variable of the loop K
E(K) acts as the terminal variable of the loop K
S(K) acts as the step variable of the loop k
n is an integer variable which denotes the number of
the nested loops
k is an integer variable which denotes the current depth
of the nesting /
F is an integer variable the value of which has to do
with the transfer of control instructions 'nextcycle', and
'exitloop' as is explained below.
PRE is the name of a subroutine which holds the code
for 'precode'
CORE is the name of a subroutine which holds the
code for 'corecode'
POST is the name of a subroutine which holds the code
for 'postcode'.

The subroutines with names PRE, CORE and POST
have seven parameters which are the same (and in the
same order) as the seven first parameters of the subroutine
NEST.

The subroutine NEST corresponds to the flowchart in
Fig. 3 and it is coded once. The subroutines PRE, CORE
and POST are prepared by the user each time a control
structure with a variable number of nested loops is
programmed. Within these subroutines the transfer of
control instructions 'nextcycle' and 'exitloop' are coded,

Figure 3. This flowchart is equivalent to the one in Fig. 1.

respectively:

'nextcycle' - { R E T ° U R N

and
fF = 0

'exitloop' -+ \ I(K) = E(K)
I RETURN

Besides the information passed to them through their
parameters the subroutines PRE, CORE, and POST can
share data through labelled COMMON.

The layout of a program part which is equivalent to
the nest control structure in this implementation is as
follows:

C
C BEGIN OF THE NEST CONTROL
C STRUCTURE
C
initialize parameters
CALL NEST (, . . . ,)
C
C END OF THE NEST CONTROL STRUCTURE
C

The FORTRAN listing of the second example of
Section 3 is given in Appendix B.

Acknowledgment
We would like to thank the referee for his helpful suggestions.

5 0 THE COMPUTER JOURNAL, VOL. 25. NO. 1, 1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/48/527403 by guest on 10 April 2024

A CONTROL STRUCTURE FOR A VARIABLE NUMBER OF NESTED LOOPS

REFERENCES

1. J. Cohen and E. Carton, Non-deterministic FORTRAN, The
Computer Journal 17 (No. 1), 44-51 (1974).

2. R. W. Floyd, Nondetemninistic algorithms. Journal of the ACM
14 (No. 4), 636-644 (Oct. 1967).

3. S. W. Golomb and L. D. Baumert, Backtrack programming.
Journal of the ACM 12 (No 4), 516-524 (Oct. 1965).

4. H. F. Ledgard and M. Marcotty, A genealogy of control structures.
Communications of the ACM 18 (No. 11), 629-639 (Nov.
1975).

5. A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms. Academic
Press, New York (1975).

Received October 1980

© Heyden & Son Ltd, 1982

APPENDIX A

begin
integer n;
comment initialize n\
initialize n: —

end;
comment code for postcode n;
postcode n: —

begin
integer array i, b,s,e[\:n];
procedure nest (k);
integer k;
begin
for i\k] = b[k] step s[k] until e[k] do

begin
comment code for precode k;
precodeA:: —

if A: = 1 then goto Lj;
comment code for postcode k;
postcode it: —

A ;
end;

end;
comment initialize b, s, e arrays;
initialize b se: —

if A: < w then nest {k + 1) else
begin
comment code for corecode;
corecode: —

nest(l) ;
end;
end

APPENDIX B

20

30

35
40
C
C
C

COLORING THE VERTICES OF A GRAPH
USING THE 'NEST' CONTROL STRUCTURE

DIMENSION I(30),B(3O),E(30),S(3O)
INTEGER B.E.S.P.Q.F
LOGICAL G
EXTERNAL PRE2.C0RE2.P0ST2
COMMON/BNEST/ G(3O,3O)

P=NUM8ER OF VERTICES, Q'NUMBER OF COLORS

READ(60,10) P,Q
F0RMAT(2I2)
IF (P .LE.M) GO TO 30
WRITE (61,20)
FORMAT(' GRAPH HAS MORE THAN 30 VERTICES PROGRAM STOPS')
STOP
DO 35 M-l.P
READ(6O,4O; (G(M,J),J-1,P)
CONTINUE
FORMAT(30L1)

BEGIN OF NEST CONTROL STRUCTURE

N»P
DO 50 M-l.N
B(M).l
E(M)-Q

50

C
C
C

10

20

()
CALL NEST(I,B,E.S,N,K,F,PRE2,C0RE2,P0ST2)

END OF NEST CONTROL STRUCTURE

STOP
END
SUBROUTINE PRE2(I,B.E,S,N,K,F)
DIMENSION I (N) , B (N) , E (N) , S (N)
INTEGER B.E.S.F
COMMON/BNEST/ G (3 0 , 3 0)
LOGICAL G
IF(K.EQ.l) RETURN
KJ'K-1
DO 10 M<1.IU
IF(G(K,M).AND.I(K).EQ.!(M)) GO TO 20
CONTINUE
RETURN
F-0
RETURN
END
SUBROUTINE C0RE2(I,B,E,S,N,K,F)
DIMENSION I(N),8(N),E(N),S(N)
INTEGER B.E.S.F
URITE(61.10) (I(M),M=1.N)
FORHAT(1H .30(12.24))
RETURN
END

10

20

30
40

SUBROUTINE P0ST2(I,B,E,S,N,K,F)
DIMENSION I (N) ,B(N) ,E(N) ,S(N)
INTEGER B.E.S.F
RETURN
END
SUBROUTINE NEST(!,B,E.S,N,K,F,PRE.CORE,POST)
DIMENSION I(N),B(N),E(N),S(N)
INTEGER B.E.S.F

K=0
K-K+l
I(K)=B(K)
IF(I (K) .GT.E(K)) GO TO 50
CALL PRE(I,B,E,S.N,K,F)
IF(F.EQ.O) GO TO 40
IF(K.NE.N) GO TO 10
CALL CORE I .B.E.S.N.K.F)
IF(F.EQ.O GO TO 40
CALL POST I .B.E.S.N.K.F)
IF(K.EQ.O RETURN
I(K)=I(K)+S(K)

GO TO 20

IF(K.EQ.O) RETURN
GO TO 30
END

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1, 1982 5 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/48/527403 by guest on 10 April 2024

