
On a Class of Allocation Strategies Inducing Bounded
Delays Only

J. J. Cocu and R. E. Devillers
Faculte des Sciences, Laboratoire d'Informatique Theorique,
Universite Libre de Bruxelles, Boulevard du Triomphe B-1050, Bruxelles, Belgium

From a critical examination of the class of strategies preventing individual starvation with global control, introduced
by E. W. Dijkstra, another class of strategies is introduced, which is simpler to implement and whose behaviour has
a straightforward interpretation. Both classes are in fact distinct sub-classes of a more general family of strategies.

INTRODUCTION

Deadlocks and starvations are well known phenomena
which may arise in systems of concurrent processes
competing for some resources. Historically, one of the
most famous examples of such systems is given by the so-
called Dining Philosophers' Problem, from which star-
vation got its name: N philosophers are living in a house
where the table is laid for them, each philosopher having
his own place at the table; their non-ending life consists
of an alternation of thinking and eating, but the dish
served is a very difficult kind of spaghetti, that has to be
eaten with two forks and there is only one fork between
two neighbours at the table, so that no two neighbours
may be eating simultaneously.!

To get a similar system in computer science, one
simply has to replace the forks by unitary, reusable, non-
sharable, non-preemptible resources (like tape drives,
disk packs, page frames, critical sections, . . .) and the
philosophers by processes needing cyclically two of these
resources to enter a critical section.

Now, a deadlock, i.e. an irremediable blocking of
some, or all, of the philosophers, may happen, for
instance if each philosopher picks up his left fork and
then tries to pick up his right fork.

If the requested forks are allocated in one slot, and not
one by one, deadlocks are impossible but starvation, i.e.
infinite waiting of some philosophers due to the particular
history of the other ones, may arise. Starvation may be
due to: deadlock, of course; unfair scheduling, e.g. if
some philosophers have always the priority in the waiting
queues; coalitions, e.g. if philosopher P, succeeds in
picking up his forks and then waits until P3 becomes
hungry and picks up his forks, before ending his meal,

and if P3 in turn waits until Pt becomes hungry again
and picks up his forks, before releasing the forks, and so
on, we see that P2 and P3 will starve; bad luck, e.g. if the
preceding history arises due to unfortunate circumstan-
ces. Strategies to detect, recover from, prevent and avoid
deadlocks have been extensively explored. It seems that
a lot of work may still be done to extend, analyse and
implement existing strategies to prevent starvation, and
to discover new ones.

Dijkstra presented an interesting class of allocation
strategies avoiding individual starvation with a global
control, for a class of systems generalizing the Dining
Philosophers' Problem.2 He considered a set of M
processes alternating finite 'eating' phases and possibly
infinite 'thinking' phases, where the eating phases are
submitted to coherent exclusion rules, such as: any subset
of a permissible set of simultaneous eaters is permissible,
and each process belongs to at least one permissible set.
(For instance, a set of simultaneous eaters would not be
permissible if their global needs for resources exceed the
availability of the system, if they violate an exclusive
access constraint, etc.)

The strategies associate an allowance counter ac, with
each process /. This counter is active when the process is
hungry; it is initialized to a positive value Nt ^ M — 2
when that process becomes hungry, is decremented by 1
when another process starts eating, and may not become
negative. Dijkstra showed that a situation is safe, i.e. free
from the danger of deadlock and starvation, iff

(So): VA: ^ 0, at most k active counters have a value
<k

or equivalently

(Si): it is possible to order the counters in such a way
that the first is ^ 0, the second is ^ 1, the third is
^ 2, etc . . .

A process is then admissible if: he is hungry; his
admission to the set of eaters would preserve permissi-
bility, i.e. would not cause violation of the simultaneity
restrictions; his admission would preserve safeness.

We shall analyse here the hypotheses of the problem in
order to point out some limitationsof Dijkstra's approach.
We shall then define a larger class of strategies, in order
to cope with a variable number of processes, and we shall
show that they may be implemented at a reasonable cost.
We shall also examine an interesting subclass, distinct

CCC-001 (M620/82/0025-0052 $02.00
5 2 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982) Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/52/527406 by guest on 09 April 2024

ON A CLASS OF ALLOCATION STRATEGIES INDUCING BOUNDED DELAYS ONLY

from Dijkstra's example, which has a simple interpreta-
tion and a simple admissibility test (at least for its
safeness part).

THE GOAL

Clearly, various starvation prevention goals may be
considered. First, one might require that the hungry
periods are all bounded by a fixed value. We denote this
property by 'strong starvationfreeness'; it is probably the
more interesting one. This is the goal achieved here, and
in Ref. 3 for instance. Second, one might only require
that the hungry periods are finite. This property may be
called 'weak starvationfreeness'; this is the case consid-
ered in Ref. 4 for instance, due to the few hypotheses
made on the processes and the synchronization mecha-
nism. Finally, one might require that each hungry period
is bounded but that the set of the upperbounds may be
unbounded. So, the first hungry period of a process could
be bounded by 1, the second by 2, e tc This property
could be called 'locally strong starvationfreeness'. Ob-
serve that two subcases may be distinguished, depending
on whether these bounds are known beforehand, or only
when the hungry period starts. Hybrid cases are also
possible, where for each process it is specified if it has to
guarantee a strong, a weak or a locally strong starvation-
freeness, or if it may starve.

THE PROCESSES

The set of processes

Dijkstra considers a fixed, finite set of processes.
Finiteness is quite natural in a computer environment
but it may be interesting to examine how strategies are
sensitive to this hypothesis. This was done in Ref. 3, for
instance, where the authors showed that, with their
general class of strategies with distributed control for
systems only containing unitary resources, the delays
remain bounded if each process has a finite bounded set
of neighbours (two processes are considered neighbours
if they need a same unit of resource: thus they do not
occur in a same admissible set). This is not the case here,
of course, due to the initialization condition Nt > M — 2.
More generally, it may be observed that strategies with
global control are likely to be incompatible with infinite
sets of processes.

The fact that the set of processes is fixed beforehand
may be more annoying for the application of the strategies
to real problems, since it is well known that processes
may be created or destroyed in a computer, even in the
simplest multiprogramming O.S. Consequently, one
should allow the creation and destruction of processes, in
their thinking phases, with adequate and coherent
modifications of the exclusion rules. For instance, when
a process is destroyed, the new admissible sets of
simultaneous eaters could be those of the old ones where
the destroyed process does not occur; when a process is
created, the new set of admissible sets should be such
that if the process is destroyed, one gets back the old
situation (if the system was not empty, the solution is not
unique).

If the number of processes is bounded, Dijkstra's
strategies may be used if we replace M by the bound, but
the limitation on the initial values may be uselessly
restrictive. If the number of processes is unbounded, the
strategies have to be revised.

The eating periods

Dijkstra also supposes that the eating periods (including
their associated synchronization actions) are all larger
than some positive lowerbound and smaller than some
finite upperbound.

The first limitation is natural in a computer context
but the strategies are not really sensitive to it. Simply, if
some processes may have eating periods with null
duration, or durations tending to zero, it is not always
necessary to limit the number of times they may eat
before another hungry process. But it remains sufficient
to do so.

The second limitation is necessary to achieve the
strong starvationfreeness; only specifying that the eating
periods are finite would lead to weak starvationfreeness.
It may be interesting, however, to examine what would
be the impact of a failure of some process during its
critical phase, which would be equivalent to the occur-
rence of an infinite eating period. In Ref. 3 for instance,
the authors showed that, for their general strategies, only
the neighbours of the failing process, and their neigh-
bours, are affected. Here, this is not the case since, if a
hungry process has a null counter and a failing neighbour
blocks it, all the hungry processes will wait for ever.

THE SYSTEM

Dijkstra's strategies are based on two properties of the
system: (A) the existence of a sleeping process (i.e. a
process whose preceding request for eating has been
delayed) implies at least one process who is eating or
leaving the table; (B) for any process i it can be
guaranteed that during a period of his hungriness the
decision to admit someone else to the table will not be
taken more than Nt times, where Nt is a given, finite
upperbound for process /. Dijkstra snowed that, in his
context, these properties are necessary and sufficient to
satisfy strong starvationfreeness.

For property (A), this is due to the fact that each
process operates the cycle

do think; ENTRY; eat; EXIT od

with the (implicit) hypothesis that, if a process is not
immediately admitted to the table, through its inspection
procedure ENTRY, then it may only be woken up by
another process, performing its inspection procedure
EXIT, when it has finished eating, and with the (explicit)
hypothesis that the inspection procedures are exclusive.

Now it may happen that these hypotheses are not
satisfied, and that property (A) is not necessary. For
instance, let us consider a system where the resources are
managed by a separate system process, let us call it the
distributor, which periodically looks if some processes
have signalled the release of their resources (in EXIT)
and if some have signalled their need for new resources

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 5 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/52/527406 by guest on 09 April 2024

J. J. COCU AND R. E. DEVILLERS

(in ENTRY); the ENTRY procedure may have the form

initialize the counter; flag the process hungry;
wait for the resources

and it may happen that all the processes are hungry
simultaneously, until the next working period of the
distributor.

A similar behaviour, with deferred decision, may also
be observed with some synchronization mechanisms,
like Petri Nets5 or Path Expressions,6 where the decision
to fire an enabled transition may be delayed a certain
amount of time. Moreover, for some implementations, it
may be more natural to use ENTRY parts which are
exclusive only during the examination of the situation,
and not during the initializations: ENTRY may then
have the form

initialize the counter; flag the process hungry;
exclusive examination

with the consequence that it may again happen that all
the processes are simultaneously hungry, until one of
them reaches the examination part.

Consequently, a more general hypothesis would be (as
in Ref. 4): (A') a situation where some processes are
hungry and the other ones are thinking, is unstable; after
a finite (bounded) period of time, at least one process will
be admitted to the table. It may be observed that
Dijkstra's strategies are not really sensitive to this
generalization. Simply, as the M processes of the system
may be simultaneously hungry for a while, in order to
avoid a deadlock due to the occurrence of an unsafe
situation when a new process becomes hungry, it is
necessary to choose Nt^ M — 1, instead of M — 2.

For property (B), this is due to the hypotheses on the
duration of the eating periods quoted in the discussion on
eating periods. Beyond the associated remarks, it may be
mentioned that, even if property (B) is necessary and
sufficient, it is not necessary to base the strategies on it;
simply, they have to imply it. That is what happens for
instance in the distributed strategies,3'4 where the
behaviour of each process is only influenced by his
immediate neighbours.

The class of exclusion rules considered here is
applicable to systems with interchangeable, partly shar-
able, multiple resources. This is much more general than
the systems considered in Refs. 3 and 4 for developing
distributed strategies, since the neighbourhood concept
is equivalent to the hypothesis that resources are unique,
non-interchangeable and non-sharable (a relaxation of
some of these restrictions may be found in Ref. 7). One
must observe, however, that the resources are requested
and granted in one slot. Therefore, the strategies
considered here do not apply to the banker's problem, for
instance (as Lauensen's strategies do).8

A LARGER CLASS OF STRATEGIES

It may be observed that the safeness property is
independent of the static aspects of the systems Dijkstra
considered. Let us consider now finite systems, where the
number of processes may vary dynamically, by the
creation and destruction of processes in their thinking
phase. Initially, the situation is safe; the creations and

the destructions of processes do not modify the safeness,
nor the realizability, of the present situation; if the
arrivals and admissions of hungry processes preserve
safeness, then, deadlocks and starvations will be avoided.

Consequently, if a strategy is such that: when a process
becomes hungry, its counter is initialized to a value which
preserves the safeness, without further restrictions; a
hungry process is admitted only if this does not violate
the exclusion rules, and if this admission preserves the
safeness; property (A') is enforced—then, locally strong
starvationfreeness is achieved. Moreover, if the number
of processes is bounded, the initial values of the counters
may be chosen bounded, and the strong starvationfree-
ness is obtained, as in the subclass considered by Dijkstra.

IMPLEMENTATION

Even in the more general cases, these strategies may be
implemented at a reasonable cost, by using the ideas
already developed in Ref. 9. The starting point is that the
safeness criteria (So) and (S,) are equivalent to the
following one: (S2) the non-decreasing sequence of the
active counters is such that the Jtth is > k — 1, for
k = 1,2,... In order to be able to use this property, it is
not necessary to sort systematically the set of counters,
but simply to maintain an ordered list during the new
arrivals (insert the counter at the right place) and the
admissions (drop the counter).

Now, if F is the first (and L the last) counter value
which is equal to its rank — 1, in the ordered sequence of
the active counters of a presently safe situation (F = oo
and L = — oo if no such counter exist), then (Tl) when a
process becomes hungry, the situation remains safe iff
the initial value of its counter is > L; (T2) when a hungry
process is admitted, the situation remains safe iff its
counter is ^ F .

These properties (Tl) and (T2) are trivial if one looks
at the evolution of the ordered sequence of the counters,
before and after the critical values F and L. They give
simple criteria for the safe choice of the initial value and
for the same admission of a hungry process.

AN INTERESTING SUBCLASS

Although the implementation of the general strategies
mentioned above is reasonably efficient, it requires the
maintenance of an ordered list of active counters and of
two critical values. This may be avoided for the subclass
of strategies where all the active counters are different.
Indeed (T3) if the active counters are all different, then
(a) the situation is safe, (b) if one of the counters is null,
the associated process is the only admissible one, (c) if
the counters are strictly positive, any hungry process may
be admitted if this does not violate the exclusion rules,
(d) if an admissible process is admitted, the remaining
counters remain all different. The proofs are immediate.

Initially all the counters are different (there are none of
them). From (T3), it results that if the initial values of the
counters are chosen in order to be different from the
counters currently in the system, we get automatically a
strategy of the subclass. To get a fast test for the safe

5 4 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 ©HeydenA Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/52/527406 by guest on 09 April 2024

ON A CLASS OF ALLOCATION STRATEGIES INDUCING BOUNDED DELAYS ONLY

admission of a hungry process, one simply has to
maintain a flag indicating if there is a null counter.

A SIMPLE FAMILY OF STRATEGIES

To get easily a strategy of this subclass, one may for
instance choose the initial value of the new counter
greater than the counter values presently in the system.
That is what is done in the family of strategies defined by
the following actions. (We shall not give here a detailed
algorithm for these strategies, embedding the quoted
actions in a specific program, with a particular choice for
the synchronization mechanism; such an implementation
may be found in Ref. 7.):

choose a non-negative value d
initialize :M\=d and nozero: = true
when process / becomes hungry, initialize his counter
by

act:= M; if A/ = 0 then nozero := false fi;
M:=M+ 1

the safe admissibility of process / is indicated by the
boolean expression:

nozero V ac, = 0
when a process is admitted, perform:

nozero: = true; for each process./ remaining hungry
do aCj: = ac, - 1; if ac, = 0 then nozero: = false fi
oi;M:=M- 1

Admissions may be performed by a separate controller,
or by the processes themselves, while signalling their
hungriness or leaving the table. Of course, adequate
mutual exclusions have to be ensured.

It may be observed that these strategies present the
following invariant relations: (T4) M = d + number of

hungry processes; V hungry process /: aq < M;
V hungry processes /, j : ac, < ac, iff / is hungry since a
longer period than/

The behaviour of these strategies is quite simple and
interesting. If d = 0, we simply have a FIFO queue: the
oldest hungry process has a null counter and is the only
one admissible (the strategy then has some similarities
with Lamport's bakery's algorithm10). If d > 0, we have
what may be called a FIFO queue with d degrees of
freedom, in the sense that each hungry process may be
overtaken at most d times, i.e. at most d processes may
start eating before it, while they became hungry after it.
This is due to the fact that, if a process has been
overtaken d times, so are the processes preceeding it in
the ordered list; now, if we consider the first of them, i.e.
the oldest hungry one, its counter was initialized to: d +
the number of hungry processes preceding it; as all these
processes, plus d other (urgent) ones have started eating,
we see that the first process has a null counter and is the
only one which may be admitted; when he will start
eating, the situation will be the same for the next one,
until all the processes overtaken d times have been
admitted. The processes overtaken d times thus constitute
a FIFO queue. Let us also mention that, for d > 0, one
may drop the test on M when a process becomes hungry.

CONCLUSION

From a critical examination of the hypotheses underlying
Dijkstra's strategies, we have obtained a larger class of
strategies, with a reasonable implementation cost, and a
distinct subclass, which is very easy to implement and
presents a simple behaviour. In particular, we meet the
FIFO handling as a special case.

REFERENCES

1. E. W. Dijkstra, Hierarchical ordering of sequential processes.
Acta Informatics 2 (No. 1), 115-138 (1971).

2. E. W. Dijkstra, A class of allocation strategies inducing bounded
delays only. Spring Joint Computer Conference, 933-936
(1972).

3. P. J. Courtois and J. Georges, On starvation prevention. RAIRO
Informatique 11 (No. 2), 127-141 (1977).

4. R. E. Devillers and P. E. Lauer, A general mechanism for
avoiding starvation with distributed control. Information Pro-
cessing Letters 7 (No. 3), 156-158 (1978).

5. J. L. Peterson, Petri nets. Computing Surveys 9 (No. 3), 223-
252(1977).

6. P. E. Lauer and R. Campbell, Formal semantics for a class of
high level primitives for coordinating concurrent processes.
Acta Informatics 5 (No. 4), 297-332 (1975).

10.

J.-J. Cocu, Strategies de Pr6 vent/on de Famine, I nternal Report
61, L.I.T., CP 212, University of Brussels (1979).
S. Lauensen, Job scheduling guaranteeing reasonable turn-
around time. Acta Information 2 (No. 1), 1-11 (1973).
R. E. Devillers, On the Implementation of a Class of Allocation
Strategies Inducing Bounded Delays Only, Technical Report
95, L.I.T., CP 212, University of Brussels (1980).
L. Lamport, A new solution of Dijkstra's concurrent program-
ming problem. Communications of the ACM 17 (No. 8), 453-
455(1974).

Received November 1980

© Heyden & Son Ltd, 1982

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 55

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/52/527406 by guest on 09 April 2024

