
Parallel Algorithms for the Iterative Solution to
Linear Systems

R. H. Barlow and D. J. Evans
Department of Computer Studies, Loughborough University of Technology, Loughborough, Leicestershire, UK

In this paper, parallel algorithms suitable for the iterative solution of large sets of linear equations are developed. The
algorithms based on the well known Gauss Seidel and SOR methods are presented in both synchronous and
asynchronous forms. Results obtained using the M.I.M.D. computer at Loughborough University are given, for the
model problem of the solution of the Laplace equation within the unit square.

INTRODUCTION

The traditional methods of solving linear systems
iteratively are Gauss-Jacobi, Gauss-Seidel and SOR,
each of which has a greater rate of convergence than its
predecessor. To further increase the rates of convergence
of the Gauss-Seidel and SOR methods, researchers have
developed block forms as opposed to the original
pointwise forms of these methods.1'2 The Gauss-Seidel
and SOR methods have traditionally imposed a certain
constraint on the ordering of the updates of point/blocks
within an iterative cycle. The importance of the ordering
scheme and the structure of the linear system to the
convergence power of these methods was summarized in
precise rules by the results of Young2 and Varga.1 For
systems not satisfying these rules, little theory concerning
convergence can be determined.

The advent of parallel computers poses a challenge
because when equations or subsets of equations are
updated in parallel then there is no guaranteed update
ordering scheme possible. Thus, is it possible to find
parallel schemes that converge with the full power of
sequential schemes?

Lambiotti and Voigt/ considered tridiagonal linear
systems, and gave parallel algorithms that reproduced
exactly the results of the sequential schemes. These
algorithms required some synchronization to achieve
this. Here we extend their work first to arbitrary linear
systems and then to examining the consequences of using
no synchronization to coordinate the processors. We will
show that it is possible to construct algorithms, that using
no synchronization, reproduce almost exactly the results
of the original sequential algorithm.

Algorithms that require no synchronization, called
asynchronous algorithms, have achieved importance in
parallel computing because the coordination of proces-
sors is an overhead in the execution of algorithms and in
some algorithms/system combinations destroys any gains
from having multiple processors co-operating on the
algorithm execution.4'5

The next section presents the usual Gauss-Jacobi,
Gauss-Seidel and SOR methods, outlines the rules of
Young and Varga and then develops parallel synchronous
schemes that produce the exact same results as their
sequential counterparts. The middle section discusses
asynchronous variants of the schemes that violate or
perturb slightly the ordering rules. Results for both types

of scheme, obtained using a MIMD parallel computer at
Loughborough University are given in the final section.

ITERATIVE METHODS: SYNCHRONOUS
VERSION

Given a linear system

Ax = b

one can write without loss of generality,

A=I-L-U

(1)

(2)

with matrices L and U consisting only of elements below
and above the diagonal respectively. Then, the standard
iterative form of the Gauss-Jacobi method is

(3)

b (4)

whilst the Gauss-Seidel method is,

and the SOR method is
x(n+ 1) = x(») + Ux(n) + b _ (5)

where o) is the over-relaxation parameter chosen to
maximize the convergence rate of the method, and n is
the iteration number.

In the forms written above, one sees clearly that all
new components of the vector x in the Gauss-Jacobi
method are calculated from all the old component values
of the x within an iterative cycle. All component updates
can therefore be carried out in parallel with synchroniz-
ation being required only between iterative cycles.

In contrast, the Gauss-Seidel and SOR methods use
new values within an iterative cycle in a systematic
manner that, in Eqns (4) and (5), demands a strictly
sequential evaluation of the components.

The advantages of the Gauss-Seidel and SOR methods
over the Gauss-Jacobi method is that firstly they require
only 1 copy of the components and secondly that they
converge much faster. In the case that matrix A possesses
property A, viz.

A =
I B
B I (6)

i.e. A is of 2 cyclic form, and is solved in a consistent
order,2 then the Gauss-Seidel method converges twice as

CCC-0010-4620/82/0025-0056 $02.50
5 6 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/56/527407 by guest on 09 April 2024

PARALLEL ALGORITHMS FOR THE ITERATIVE SOLUTION TO LINEAR SYSTEMS

fast as Gauss-Jacobi and SOR converges 2/e as fast with
0 < e « 1.

When property A is not satisfied very little about the
convergence rates is known.

It is thus important to derive parallel forms of the
Gauss-Seidel and SOR methods. Baudet* considers
partially violated schemes wherein the components are
grouped into blocks where blocks are computed in
parallel to each other whilst within a block, equations are
treated sequentially by the Gauss-Seidel or SOR methods.
We should however point out that the main consideration
of Baudet's paper is chaotic relaxation applied to non-
linear systems.

The basis of our method is that Property A implies
that the equations can be divided into two disjoint
subsets, where the update equations for components in
one set refer only to components in the other set. One
possible consistent ordering scheme is obtained by first
updating all the components in the first set and then
those in the other set. Since Property A is satisfied, then,
all updates within a set of components are independent
and can be done in parallel.

Thus, we have a formulation of a parallel Gauss-Seidel
and SOR method that, proceeds in two steps that must
alternate with each other within an iterative cycle. Thus
they require synchronization between each set and
between iterative cycles but each step has a level of
parallelism equal to the number of members in its subset.

Thus, for example, if A has a tridiagonal form then it
satisfies Property A since one can divide equations into
two disjoint subsets consisting respectively of the even
and the odd indexed components, where the update
equation for a component in one set relates only to
components in the other set. One consistent ordering,
called red-black, is obtained by first updating all even-
numbered components and then all odd-numbered
components. The usual ordering obtained by considering
the components in strictly increasing order is also a
consistent ordering. Both orderings converge asymptoti-
cally at the same rate but no parallel method can be
derived from the latter ordering.

THE ITERATION METHODS: ASYNCHRONOUS
VERSION

We have seen that synchronization is required to ensure
that components in each subset are all updated before
updates in the other subset are started. This can result in
loss of processor power due to fast processors waiting on
slower ones.

For MIMD computers configured as multiple inde-
pendent processing elements with no processor having
overall control, the unique allocation of paths to
processors, and the signalling of termination of a path,
involves synchronization. This synchronization can result
in a significant loss of processing power depending on
the demand rate for synchronization from the program
and the implementation time on a given system.

Kungs has therefore, considered parallel iterative
algorithms that proceed asynchronously: that is, proces-
sors are initially allocated to a parallel path and remain
iterating that path until completion of the algorithm
without any synchronization between the parallel paths.
Data communication still takes place, with the most

recent value of any particular data being used but without
any concept of how many times that used data has been
iterated.

Baudet4 has applied these concepts to linear systems of
equations and obtained results for the example of the
model problem Laplace equation within the unit square
with Dirichlet boundary values. As mentioned earlier,
his methods are based on allocating a processor perma-
nently to a fixed block of components, blocks being
processed in parallel with respect to each other with
sequential processing within a block following the
standard Gauss-Seidel or SOR scheme. Clearly his
method violates the consistent ordering scheme at the
boundaries of the block; in linear systems with more
complex dependence between components this violation
may be much more extensive. Asynchronous versions
are obtained by allowing processors to iterate blocks
without waiting for other blocks to complete, and without
the synchronization that insures that components in a
block, used by another block are all from the same
iterative cycle.

Let us now develop from the synchronous scheme
given in the preceding section an asynchronous version.
This asynchronous scheme may violate minimally, in a
manner to be discussed, the consistent ordering scheme.

This asynchronous scheme will forgo the synchroniz-
ation that insured: (i) once and once only uptake of a
component each cycle; (ii) that all components updates
in 1 subset are completed before the processing of the
next subset commences.

The asynchronous scheme is based on two components:
(a) a shared list formed by the end to end concatenation
of the two subset lists and a shared pointer into this list;
(b) a process, executed by each processor, consisting of
copying the index value to local data space, incrementing
the shared index value and then iterating the component
corresponding to the local index value.

One can note that if the accesses to the index were
protected by a critical region/synchronization primitive
then constraint (i) above would be satisfied.

If processors execute at the same speed and their start
time is minimally offset with respect to each other then
at any time the components being iterated will be
consecutive components from the cyclic list of compo-
nents of the system. Offsetting the start time is simply
achieved by forcing processors to initialize via the
update of a shared data item protected by a critical
region/synchronization primitive.

The algorithm, written in a loose form of FORTRAN
is,

C Data shared by processors is size, components,
subset list and pointer convergence flag

SSHARED N, XCOMP, LIST, INDEX,
BCONVF

DIMENSION XCOMP(N), LIST(N)
C Initialize components

XCOMP(I) =
C Initialize list of the order in which the components

are to be taken up
LIST(I) = permutation of I

C Initialize index into list
INDEX = 0

C Initialize iteration counts
ITER1 = 0, ITER2 = 0

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL. VOL. 25. NO. 1,1982 5 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/56/527407 by guest on 09 April 2024

R. H. BARLOW AND D. J. EVANS

C Initialize local and shared convergence flags
BCONV = TRUE
BCONVF = FALSE

C Set up process for each processor
SDOPAR 100 IPROC = 1, NPROC

C Loop on collecting component
1 CONTINUE
C First test if result converged

IF(BCONVF) GOTO 100
C Collect next component: do not synchronize access

ILOCAL = INDEX
IF(ILOCAL. EQ. N) ILOCAL = 0
ILOCAL = ILOCAL + 1
INDEX = ILOCAL

C Get component corresponding to local value of
index

ICOMP = LIST(ILOCAL)
C Solve equation for component: if not converged set
C BCONV = FALSE

CALL SOLVE(LINE, BCONV)
ITER1 = ITER1 + 1

C Test if N iterations locally since last convergence
test

IF(ITER1. LT. N) GOTO 1
ITER2 = ITER2 + 1

C Test convergence
IF(BCONV) GOTO 10

C Not converged
ITER1 = 0
BCONV = TRUE
GOTO1

10 BCONVF = TRUE
100 SPAREND

We briefly note that the convergence test may not be
the best. Better ones have been utilized but involve a
more detailed description which we shall forego here.

Let us examine the consequences of not satisfying
constraints(i) and (ii) together with the possibility of
unequal speed processors.

(1) No forced once and once only update of the index of
the next component to be iterated. Clearly with
processors executing at different speeds then two or
more processors will eventually access and modify
the index at almost the same time. Multiple processors
will then execute the same component. The chance
of this happening, on each uptake, is approximately

(Time (index update)/Time (component
iteration)) * (No. of processors — 1)

which is usually very small. This will result in a waste
of processor time, and a corresponding loss of
speedup. Its pertubation of the iteration scheme
values is likely to have only a minimal overall effect.
Its effect can be eliminated by making processors
first copy to local memory all components used and
updated in the scheme. They then carry out the more
time consuming update calculation. Now since
processors started the component iteration at almost
the same time then unless faster processors have
started updates before slower ones have finished
copying then multiple processors iterating the same
component has no effect.

(2) No synchronization between disjoint subsets. It
follows that components from both the original

disjoint subsets may be iterated at the same time. If
processors execute at the same speed then the
component set in iteration at any time are a
consecutive subset of the new cyclic list. If processors
are executing N components then the chance of
components lying in both subsets is n/(N — 1).
However, even if components in both subsets are
being iterated concurrently this will produce no effect
in many cases.

Consider the case of a tridiagonal linear system: then the
two original disjoint subsets consist respectively of all
even-numbered and all odd-numbered components. If
subsets are ordered by increasing component number
then the rth component of one subset relates only to the
/th and i + lth component of the other subset. Since the
subsets are concatenated end to end for the asynchronous
scheme unless n > (N/2 — 1) then no interference occurs
in the concurrent iteration of components from both
subsets.

If processors do not all execute at the same speed then
the current set of iterating components will not always be
consecutive: although the scheduling algorithm of pro-
cessors to the next indexed component will always tend
to restore the consecutive structure. Any effect this has
depends on n and N. The worse effect in terms of
components that this can have, can be assessed by noting
that if processor speeds are sh i= \,n with respect to the
slowest processor then this worst case is equivalent to
having m = £"= j st processors of the same speed.

Obviously systems can have component relating
structures more complicated than that of the tridiagonal
one but similar principles will still apply.

To appreciate the importance of this point, let us again
consider the tridiagonal system discussed above. If the
system has 16 components then in the circular list the
newer dependent components are seven components
apart. Thus, if two processors are cooperating then one
can be six times slower than the other without there
being any interference between them. All the potential of
both processors is realized whilst at the same time exactly
the same result as the sequential algorithm is reproduced.
With Baudet's method with processors locked to blocks,4

the boundary values of the block of components iterated
by the faster processor would only have stabilized six
times later than the faster processor had thought its
subset of components had converged.

RESULTS

Consider the solution of the Laplace equation with
Dirichlet boundary values discretized on a square mesh
to yield the 5-point equation for each point

Xy_ , + Xy + l = 0
f o r / , y = 1,2, ...,N,

which relate the update formula for any point (1,7) to
only its nearest neighbours. Grouping points on rows
together, one obtains a block equation that relates the
update of components on 1 row only to the values of
components on its nearest neighbour rows. Thus, updates
to even indexed rows use only values from odd indexed
rows and the system satisfies Property A.

5 8 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/56/527407 by guest on 09 April 2024

PARALLEL ALGORITHMS FOR THE ITERATIVE SOLUTION TO LINEAR SYSTEMS

Table 1. Synchronous and asynchronous versions of Gauss-Seidel and SOR

Method Mesh Over- Speed-up two Shared memory Synchronization Shared memory loss Synchronization loss
relaxation processors access rate access rate (cycles)"
parameter (cycles)

Access Contention Access Contention

Synchronous GS 16x16 1.0 1.71 1:115
SOR 16 x 16 1.60 1.71 1:115

GS 32x32 1.0 1.82 1:120
SOR 32x32 1.77 1.82 1:120

Asynchronous GS 16 x 16 1.0 1.97 1:120
SOR 16 x 16 1.60 1.95 1:120

GS 32x32 1.0 1.97 1:120
SOR 32x32 1.77 1.95 1:120

1:24K
1:24K
1:50K
1:50K

1% 0.3%
1% 0.3%
0.9% 0.3%
0.9% 0.3%

5.5% 5.0%
5.5% 5.0%
3.2% 2.5%
3.2% 2.5%

Any scheme that alternates the update of first, all the
even-components and then all the odd-components is
consistently ordered. Thus, the asymptotic rate of
convergence of the SOR scheme is 2/e with respect to the
Gauss-Jacobi scheme. In order to minimize the overlap
of processing of dependent components in the asynchron-
ous scheme the sublists are constructed in order of
increasing row number viz. (1, 3, 5, . ..) and (2, 4, 6, 8,
. . .), known commonly as a2 ordering.2

The resultant SOR block method was programmed as
indicated in the preceding two sections and run on a two
processor MIMD system at Loughborough University.
The results are indicated in Table 1. We should note that
the comparison is with the corresponding sequential
algorithm with no synchronization and no shared data
overhead. We note also that in the parallel results, the
mean number of iterations was identical with that of the
sequential algorithm. Examination of the end grid values
showed that except for the first row in the asynchronous
version, they were identical to the sequential results. The
discrepancy in the asynchronous version arises because
the convergence test that stops the iteration is done by
any processor that terminates a given iterative cycle: the
other processors continue iterating components testing
the 'STOP' flag only on taking up a component.

As is standard in our work6'7 we give the mean rate of
access to the shared data and to the synchronization tool.
From these figures, one can predict parallel overheads
for the algorithms running on any MIMD system given
its unit access overhead to stored data and the synchro-
nization tool. The actual overheads in accessing the
shared data and synchronization tool on the Lough-
borough system which are given in the table are divided
into two parts: one arising from accessing the resource
and the other from the loss due to processors contending
and being forced to wait on the shared resource.
Contention figures are obtainable when the algorithm
does the same amount of real work irrespective of the
number of cooperating processors. The separation
between contention for the shared memory and synchro-
nization was possible because synchronization was
controlled through software and thus waiting was
measurable by the software.6'8

Following Baudet4 we partitioned the components into
two fixed subsets (/ = 1, 2, . . . , N/2; N/2+l, ..., N)
and forced each of the two processors to permanently

Table 2. Asynchronous Gauss-Seidel and SOR using the method
of Baudet (1978)

Mesh Over-relaxation
parameter

16 x 16 1.0
16 x 16 1.60
32 x 32 1.0
32 x 32 1.74

Mean number of
iterations (sequential)

37
17
58
33

Mean number of
iterations (parallel)

38
16
60
32

iterate within one subset. The results are given in Table
2. We have chosen to give only the number of iterations
required to converge. The comparison is with the usual
sequential Gauss-Seidel and SOR iterating components
in increasing order 1,2,3, ..., N. The results make it
clear that in this method the results differ numerically
depending on the number of cooperating processors. If
one ignores the parallel overheads due to shared memory
access the speedup is directly related to the number of
iterations/number of processors. In some cases, speedup
greater than the number of processors occurs.

CONCLUSION

We have derived a parallel version of the Gauss-Seidel
and SOR iterative schemes that in the case of a given
system with Property A and consistent ordering gives the
exact same results as the usual sequential method.
Asynchronous algorithms were also derived that under
weak conditions on the number and speed of processors
relative to the size of the system also give the same results
as the sequential methods.

The work in the paper can almost certainly be
generalized to linear systems where A is of ̂ -cyclic form.'
In this case, parallelism within the p subsets would be
possible while synchronization between the p subsets
would be required. However, the exact form of the
algorithm and in particular the conditions under which
the asynchronous version works are under further
investigation.

Acknowledgement
Research supported by SRC under its Distributed Computing Research
Program.

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 5 9

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/56/527407 by guest on 09 April 2024

R. H. BARLOW AND D. J. EVANS

REFERENCES

1. R. S. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood
Cliffs. New Jersey (1963).

2. D. M. Young, Iterative Solutions of Large Linear Systems,
Academic Press, London (1971).

3. J. J. Lambiotti and R. G. Voigt, The solution of tridiagonal linear
systems on the CDC star 100 computer. ACM Transactions on
Mathematical Software 1,308-329 (1975).

4. G. M. Baudet, Asynchronous iterative methods for multiproces-
sors. Journal of the ACM 25, 226-244 (April 1978).

5. H. T. Kung. Synchronous and asynchronous parallel algorithms
for multiprocessors, in New Directions and Recent Results in
Algorithms & Complexity, ed. by J. F. Traub. Academic Press,
London (1976).

6. R. H. Barlow and D. J. Evans, Analysis of the performance of a

dual minicomputer parallel computer system, in Proceedings of
Eurocomp 1978, Online Conferences, Uxbridge, 259-276
(1978).

7. R. H. Barlow and D. J. Evans, A parallel organisation of the
bisection algorithm. Computer Journal 22, 267-269 (August
1979).

8. I. A. Newman and M. C. Woodward, Reliable Sharing of Passive
Resources in a Multiprocessor Environment, Internal Report No.
45, Department of Computer Studies, Loughborough University
of Technology.

Received November 1980

© Heyden & Son Ltd, 1982

Note added in proof: We have run the above-mentioned parallel
algorithms on a new 4-processor asynchronous parallel computer at
Loughborough University.1

The speedups for the synchronous version of the algorithm are 1.91,
2.65 and 3.78 using two, three and four processors respectively, while
the corresponding results for the asynchronous algorithm are 1.96,2.93,
3.94 for a grid of 32 x 32 points when used in the solution of the Laplace
Equation in the unit square. The two processor speedups are better

than the corresponding results in Table 1 of the paper because the
synchronization tool on the new system is more efficient.

1. R. H. Barlow, D. J. Evans, I. A. Newman and M. C. Woodward,
The NEPTUNE Parallel Processing System, Report of the
Department of Computer Studies, Loughborough University, UK
(1981).

60 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/56/527407 by guest on 09 April 2024

