
The Application of Functional Dependency Theory
to Relational Databases

C. Robert Carlson and Adarsh K. Arora
Bell Laboratories Naperville-Wheaton Road, Naperville, Illinois 60566, USA
Miroslava Milosavljevic Carlson
Northeastern Illinois University, Bryn Mawr at St Louis Avenue, Chicago, Illinois 60625, USA

This paper examines three areas where the application of functional dependency theory to relational databases has had
an impact. These areas are relational views, database translation and logical database design. The paper refines our
earlier work on relational views in which the concepts of consistent and updatable views were proposed. In the area of
database translation, it identifies six levels of information preserving relational transformations. Finally, a relational
database design algorithm is proposed which combines the best features of the classical synthesis and decomposition
approaches while avoiding their identified shortcomings.

INTRODUCTION

This paper shows, that functional dependency theory
provides a unified framework for the analysis of several
database problems. The paper represents both a synthesis
and extension of our earlier work on each of these
problems. The first section contains background infor-
mation to familiarize the reader with the terminology
and concepts of functional dependency theory.

In the second section, functional dependencies are
used to define the concepts of consistent and updatable
views. Basically, a 'consistent view' is one whose
interpretation is consistent with that of the underlying
database. An 'updatable view' is one whose updates can
be translated into appropriate updates of the underlying
database. Together, these definitions describe a class of
useable views.

In section three, six levels of information preserving
relational transformations are identified. These levels
reflect the different degrees with which transformations
preserve the update and retrieval properties of databases.
These levels are important since previously many
applications have mistakenly assumed that all the
information embodied in their database is preserved by
the restructuring operations they have employed.

Finally, some shortcomings of the classical synthesis
and decomposition approaches to relationship database
design are identified in the fourth section. A new
algorithm is then proposed which combines the best
features of these approaches while avoiding their iden-
tified shortcomings.

BACKGROUND

Attributes are identifiers taken from a finite set {Alt A2,
. . ., Am). Each At has associated with it a domain,
denoted DOM(Ad, which is the set of possible values for
that attribute. We shall use the letters A, B,..!, for single
attributes and the letters X, Y , . . . , for sets of attributes.
For simplicity, we write XY for the union of X and Y.

A relation on an attribute set T = {Alt A2, • • •, An} is
a finite subset of the Cartesian product DOMCdJ x

DOM042) x •• x D O M U J and is denoted by either
R(T) or R(AU A2,...,An). The elements of a relation
are called tuples.

A set of complete primitive operators capable of
manipulating relations has been defined by Codd1. Two
operators will be of particular interest to us: projection
and equi-join. The projection of R(X, Y, Z) over a set of
attributes X is denoted R[X], and is defined to be the set
{x\(x, y, z> e R}. The equi-join of relations R1(X, Y) and
R2(Y, Z) over the attribute set Y is denoted R1*R2 and
is defined to be the set {<*, y, z>|<x, j> e Rl and <j>, z>
eR2}.

The projection operator can also be defined for
individual tuples of a relation. If u is a tuple in R, then
u[X] is the X-component of u. If the X-component of
each tuple always uniquely identifies that tuple and no
proper subset of X has this property, then X is a key of R.
It is possible for a relation to have several keys. It is usual
to impose the constraint that no component of a key
value may be null.

Let X and Y be arbitrary attribute sets in some relation
R(T). A functional dependency (FD) from X to Y, denoted
X -»Y exists in R(T) if, independent of time, for every
X-value that appears in R, the corresponding Y-value is
unique. For a particular R(T), X -> Y is a set S = {<x, y}
| u e R and u[X] = x and u[Y] = y) with the property that
<xl, yl} e S and <xl, yl) e S implies that y\ = yl. X ->
Y is a nontrivial FD if Y £ X and a full FD if for any V

We assume that a relational database consists of a set
of relations {Ri<Ti, D/> 11 < i < n} such that each relation
Rj is defined over some set of attributes TJ and Di denotes
the set of functional dependencies in R/. This description
of the database is called its intension. R/(T/) denotes the
extension (set of tuples) of relation Ri. Obviously, all
instances of R/(T/) must satisfy the functional depend-
encies of Di.

Given a set of FDs in a relation, it is often possible to
deduce other FDs that also hold in that relation. Given
an intension R<T, D> and an FD g, it is said that D
implies g if g holds in every instance of R(T). It is possible
to decide whether g is implied by D using systems of
inference rules.2'3 A system of inference rules is (i) sound
if every g generated by it is in fact an FD, (ii) complete if

CCC-0010-4620/82/0025-0068 $03.00

6 8 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 I Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/68/527421 by guest on 10 April 2024

THE APPLICATION OF FUNCTIONAL DEPENDENCY THEORY TO RELATIONAL DATABASES

every FD implied by D can be generated by it, and (iii)
nonredundant if no inference rule in this system is
superfluous. Fig. 1 shows a system of inference rules
which is sound, complete and nonredundant.

(1) I fXsY<=T, thenY-X.
(2) I f X - Y and X - Z , then X—YZ.
(3) I f X - Y and Y - Z , then X—Z.

Figure 1. FD Inference rules for a relation.

The set of all FDs derivable from D using a system of
inference rules C is called the closure of D under C and is
denoted by D+(C), or simply D+ when there is no
ambiguity. A covering of D under C is a set E such that
E+(C) = D+(C). E is a minimal cover if no proper subset
of it is a covering.

RELATIONAL VIEWS

The main purpose of database management systems is to
provide convenient access to shared data for a community
of users having assorted requirements and database
experience. This is accomplished in part by providing
each user with a 'view' of only the relevant portions of
the database. This section refines our work on relational
views which is reported elsewhere in detail4-5.

A relational view VyXSy,Ey> defined over a relational
database R = {R/<T/, Di> 11 < i < «} is a 'virtual' relation
such that Vy(Sy) denotes the extension of Vy and Ey
denotes the set of FDs in Vy. The definition of Vy
constitutes a mapping from the extension of R to the
extension of Vy. We consider only those views which are
derived from R using projection and equi-join operators.

Note that the inference rules described in Fig. 1 are
applicable to a single relation. Specifically, inference rule
(1) describes only those projections realizable in a single
relation. Since we are now dealing with multiple relations,
we need a rule which describes those projections which
are realizable through the lossless join of multiple
relations.6 Rule (4) shown in Fig. 2 has been added for
this purpose.

(1) If X £ Y £ Ti for some R/(T/), then Y - X.
(2) IfX— Y and X—Z, then X - Y Z .
(3) IfX—Y and Y—Z, then X—Z.
(4) If Z — X and Z - Y and XYZ £ Ti for any Ri (TO,

thenXY-AforAeXY.
Figure 2. FD Inference rules for single and multiple relations.

Let SOURCE(Vy) denote the set of relations from
which a view Vy is derived, and let N = {i\ Ri e SOURCE
(Vy)}. We say a view is 'good' if the FDs embodied by
this view can be obtained from its corresponding source
relations by using the inference rules shown in Fig. 2.
Formally,

A view Vy<Sy, Ey> is FD-consistent (or
consistent, for short) with SOURCE(Vy) if
£/+ £ (L U A) + -

To understand the type of ambiguity that arises when
a view is not FD-consistent with its source relations,
consider view VI obtained from relations RI and R2

(Fig. 3). VI is not FD-consistent since EMP.PROJ —
ACCT NO. e El + but EMP.PROJ — ACCT NO. £ (Dl
U D2)+. Note that the derivation from RI and R2 of VI
insists that every EMP in a DEPT must work on every

V1(EMP DEPT
el
el
el

E1 = {EMP-

PROJ
dl pi
dl p4
dl pi

+ DEPT; DEPT, PROJ

ACCT NO.)
al
al
al

• ACCT NO.}

VI = (R1*R2)[EMP, DEPT, PROJ, ACCT NO.]

R1(EMP DEPT)
el dl
el dl

R2(DEPT PROJ
dl pi
dl pA
dl pi

ACCT NO.)
al
al
al

Dl = {EMP—DEPT} D2= {DEPT, PROJ —
ACCT NO.}

Figure 3. Non-FD-consistent view.

PROJ being worked on by that DEPT and furthermore
each EMP uses the ACCT NO. for each of the PROJs of
the DEPT. However, the FDs associated with VI are not
sufficient to impose the constraint that each EMP must
work on all PROJs being worked on by the EMP's
DEPT. This constraint can only be achieved by including
multivalued dependency (MVD) information in the
descriptions of both the source relations and the view.7'8

However, we are not convinced that the semantics
associated with an MVD can be easily understood by the
users of a view. Thus, we do not allow views of this type
and do not include MVD information in our analysis.

FD-consistency is a strong enough condition to allow
retrievals from a view because the user's interpretation
of a view is 'consistent' with the interpretation of the
underlying source relations. However, it is not a sufficient
condition for update purposes. Note that the view V3
derived from relation R3 (Fig. 4) is an FD-consistent

V3(AGE NO. KIDS)
al nl
al nl

E3 = <b

V3 = R3[AGE, NO. KIDS]

R3(EMP AGE NO. KIDS SPOUSE)
el al nl si
el al nl si

D3 = {EMP-AGE|NO. KIDS|SPOUSE}
Figure 4. Nondeletable FD-consistent view.

view. However, what are the semantics of a deletion
from V3? One way to ensure that the deletion is well-
defined is to insist that a key of the view is a key in at
least one of its source relations. Formally,

A view Vy<Sy, Ey> is deletion supportable if
it is FD-consistent and a key of Vy is a key
of some relation Ri e SOURCE(Vy).

We claim that an insertion through a view should be

) Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 69

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/68/527421 by guest on 10 April 2024

C. R. CARLSON, A. K. ARORA AND M. M. CARLSON

allowed only if it does not force us to assign a null value
to an attribute which appears on the left-hand side of
some nontrivial FD. As a result, view V4 of relations R4
and R5 (Fig. 5) is not allowed since an insertion through

V4(EMP MGR)
el ml
el ml

E4 = {EMP—MGR}

V4 = (R4*R5)[EMP, MGR]

R4(EMP
el
el

DEPT)
dl
dl

R5
dl
dl

(DEPT MGR)
ml
ml

D4={EMP->DEPT} D5 = {DEPT—MGR}
Figure 5. A non-insertion supportable view.

it will result in the insertion of a tuple in relation R5
containing a (unique) NULL value for the key attribute
DEPT. This condition also ensures that view V5 of
relation R6 (Fig. 6) cannot be used for insertion purposes.

V5(EMP MGR)
el ml
el ml

E5 = {EMP—MGR}

V5 = R6[EMP, MGR]

MGR}

R6(EMP
el
el

DEPT
dl
dl

MGR)
ml
ml

D6 = {EMP-> DEPT | MGR; DEPT -
Figure 6. A non-insertion supportable view.

Note that although DEPT is not a key attribute now, at
some point we might wish to decompose R6 into R4 and
R5 to accommodate additional views (e.g. view (DEPT,
MGR)) and then DEPT will be a key attribute.

Formally,

A view Y/<S/, Ey> is insertion supportable if it
is FD-consistent and for each full FD X-*
Ye (Ui<=i«A)+> Y £ S/ implies that X s S/.

It is not a difficult exercise to show that an insertion
supportable view is also deletion supportable. Thus,

The class of updatable views is precisely the
class of insertion supportable views.

RELATIONAL DATABASE TRANSLATIONS

Relational database translation deals with the reorgani-
zation of a relational database for use on other systems,
to improve system performance and to achieve a more
flexible organization of data. A fundamental problem in
database translation is to determine what information
from the original database is preserved by the reorganized
version of the database.

An extensively studied class of transformations in-
volves decomposing a relation into a set of relations using
only the projection operator.3'9'10'11 In this section, we
will develop meaningful criteria for describing the
properties of a wider class of transformations.

Let T be a transformation which when applied to a set
of relations R = {R/<Ti, D/> 11 < i < n) yields a set of
relations Q = {Q/<W/, F/> 11 < / < m}. We assume that
(0 U T/ = U W/, (ii) each D/ and F/contains information
about FDs, and (iii) each relation Qj is derived from R
by using projection and/or equi-join operators.

The loss (if any) of information from R to Q can be of
two types. First, it is possible that Qj = Ri*Rk but that
the equi-join operator failed for some specific tuple of Ri
and as a result some specific query resolvable by Ri
cannot be resolved by QJ. This is illustrated in Fig. 7. If
Q = Q3, then after the transformation the query 'retrieve
DEPT for EMP = eV cannot be resolved. We call this
phenomenon to be the loss of information in the
extensional sense. One way to avoid it is to make a strong
assumption that if an attribute set X appears in relations
Ri and Rk and the derivation of Qy necessitates
computation of R/*Rfc, then it must be the case
that R/[X] = RA{X]. We are not particularly fond of
this assumption since it prohibits some very simple
but appealing transformations (Fig. 7 where Q =
{Ql, Q2, Q3}). Instead, we make the assumption that if
an attribute A appears in Ri, then there exists a Qj e Q
such that Rji[A] £ QJ[A]. This weaker assumption is
sufficient to guarantee that there will not be a loss of
information in the extensional sense. From this point on,
it is assumed that a transformation does not lose
information in the extensional sense.

To study the loss of information in the intensional
sense, we define six types of transformations. A transfor-
mation applied to a database R yielding a database Q is
(i) 'update equivalent' if the class of updates which can
be performed in R is precisely the class of updates which
can be performed in Q, (ii) 'update preserving' if all
updates of R can be performed in Q, (iii) 'weakly update
preserving' if all allowable updates of R can be performed
in Q but some nonallowable updates of R cannot be
recognized as such in Q and thus are allowable in Q, (iv)
'retrieval equivalent' if the class of queries supported by
R is precisely the class of queries supported by Q (v)

Q1(EMP
el
el

R1(EMP
el
el

DEPT)
dl
dl

R2(DEPT MGR)
dl ml

DEPT)
dl
dl

Q2(DEPT MGR)
dl ml

Q3(EMP
el

DEPT
dl

MGR)
m2

Figure 7. Loss(Q= {0.3}) and no loss (Q. = {Q1,Q2,Q3})of information in the extensional
sense.

70 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 ©Heyden& Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/68/527421 by guest on 10 April 2024

THE APPLICATION OF FUNCTIONAL DEPENDENCY THEORY TO RELATIONAL DATABASES

'retrieval preserving' if the queries of R can be resolved
by Q, and (vi) 'partially retrieval preserving' if some
queries of R can be resolved by Q.

Formally, let T be a transformation which when
applied to a relational database R = {Ri<T», D/>|1 <
i < n} yields a relational database Q = {Qj<W/, F/>
11 <j < m). Let SOURCE(Qj) = {R/|R/ is used in the
derivation of Qj} and let SOURCE *(Ri) = {Q/ |RJ 6
SOURCE(OJ)}.

Definition. Transformation T is

(1) Update equivalent (UE) if each Ri is an updatable
view of SOURCE *(Ri) and each Qj is an updatable
viewofSOURCE(Qj).

(2) Update preserving (UP) if each Ri is an updatable
view of SOURCE *(R/).

(3) Weakly Update preserving (WUP) if for each
Ri<Ti, Di>, an updatable view V/<S/, Ey> is sup-
ported by SOURCE *(Ri), where T/ = S/ and E/+

£ Di+.
(4) Retrieval equivalent (RE) if each Qj is a consistent

view of SOURCE(QJ) and for each Ri<T/, Di>, a
consistent view Y/<S/, E/> is supported by
SOURCE *(Ri), where Ti = S/ and E/+ s Di+.

(5) Retrieval preserving (RP) if for each Ri(Ti, Di>, a
consistent view V/<S/, E/> is supported by
SOURCE *(Ri), where Ti = Sy and E/+ c D/+.

(6) Partially retrieval preserving (PRP) if for some
attribute set X, at least one Q/[X] is a consistent view
ofSOURCE(Oj).

In the context of Fig. 8, let TI be a transformation
which yields Q = {2, 3} when applied to R = {1}. Note
that T is UE since the class of updates which can be
performed in relation (1) is exactly the class of updates
allowable by relations (2) and (3).

If we take R = {4} and Q = {5, 6}, then the transfor-
mation T2 is not UE since Q allows an update of relation
(6) of the form 'insert <J1, miy but this update cannot
be performed in relation (4). Note that T2 is UP since all
updates of relation (4) can be simulated in Q.

Now, let R = {7} and Q = {8, 9}. This transformation
T3 is not UP since a nonallowable update which violates
CITY, ADDR— POSTAL of relation (7) will be allow-
able in Q. This is due to the fact that it is impossible to
derive this FD in Q. Transformation T3, however, is

WUP since Q does support an updatable view (CITY,
ADDR, POSTAL, NAME) with the set of FDs {ADDR,
POSTAL— NAME; POSTAL— CITY}.

If R = {5,6} and Q = {4}, then T4 is not WUP since,
corresponding to relation (6), no updatable view is
supported by Q. Since relation (4) is a consistent view of
relations (5) and (6) and they in turn are consistent views
of relation (4), transformation T4 is RE, and, therefore,
the classes of queries resolvable by R and Q are identical.

Consider transformation T5 applied to R = {5,10}
yielding Q = {11}. If one looks at the FDs associated
with relation (11), the semantics of this relation are: an
employee works in a single department, a department
working on a project has a unique account number and
each employee working on a project has a unique account
number. Thus, relation (11) indicates that a query of the
type 'retrieve EMPs working on PROJ pi ' is resolvable
by it. However, no query of this type is resolvable by R,
and, therefore, T5 is not RE. Since every query of R is
resolvable by Q, T5 is RP.

Finally, let us consider relation (11) again with the
above semantics and a transformation T6 which yields
Q = {5, 10} from R = {11}. Obviously, T6 is not RP
since, as before, 'retrieve EMPs working on PROJ pi '
cannot be resolved by Q although it is resolvable by R.
Clearly, T6 is PRP since some queries of R can be
resolved in Q. It should be pointed out that the property
of PRP is very weak since every transformation satisfies
it.

From these definitions, it is clear that UE implies UP
which in turn implies WUP. Also, RE implies RP which
in turn implies PRP. To show that the implications
depicted in Fig. 9 hold, we need to prove the following.

Lemma. If a transformation T is WUP, then it is also RE.

Proof. Since each updatable view is also consistent, the
second condition of RE is satisfied. It remains to be
shown that if T is WUP, then each Qj is a consistent
viewofSOURCE(Qj).

Consider a Qj e Q and let SOURCE(OJ) = {RI, R2,
. . . , Rp}. Then, for 1 < J'<,p, SOURCE*(R/) contains
OJ. Consider a Rk e SOURCE(Oj) and let
SOURCE *{Rk) = {Ql, Q 2 , . . . , Qj, ..., Qr}. Since T
is WUP, for Rk a relation VA:<SA:, E/t> is updatable view
of SOURCE *(Rk), and, therefore, all key attributes of

1(EMP AGE PHONE)
FD1 = {EMP—AGE|PHONE}

3(EMP PHONE)
FD3 = {EMP—PHONE}

5(EMP DEPT)
FD5 = {EMP—DEPT}

2(EMP AGE)
FD2 = {EMP— AGE}

4(EMP DEPT MGR)
FD4 = {EMP—DEPT|MGR; DEPT-

6(DEPT MGR)
FD6 = {DEPT- MGR}

MGR}

7(CITY ADDR POSTAL NAME)
FD7 = {CITY, A D D R - POSTAL|NAME; POSTAL- CITY}

8(POSTAL CITY) 9(POSTAL ADDR NAME)
FD8 = {POSTAL— CITY} FD9 = {POSTAL, ADDR— NAME}

10(DEPT PROJ ACCT) 11(EMP PROJ DEPT ACCT)
FD 10 = {DEPT, PROJ — ACCT} FD 11 = {EMP - DEPT; DEPT, PROJ - • ACCT}

Figure 8. Example relations.

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1, 1982 7 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/68/527421 by guest on 10 April 2024

C. R. CARLSON, A. K. ARORA AND M. M. CARLSON

>RPSPRP

Figure 9. Relationships among properties of transformations.

Qy are in Vk. Since RA: and Vk are defined over the same
set of attributes, all key attributes of Qy are in RJt. Thus,
for 1 < i <p, Ri contains key attributes of Qy, making
Qy consistent with SOURCE(QJ).

A well studied class of transformations involves
normalization of a relation 12.We observe that our axioms
used in conjunction with Bernstein's algorithm will
always produce an UP Third Normal Form (3NF)
representation.13 However, it is known that a transfor-
mation to Boyce-Codd Normal Form is,14 in general,
WUP.9

RELATIONAL DATABASE DESIGN

Synthesis and decomposition are two major approaches
for relational database design.12'13 This section briefly
discusses these approaches and then proposes an algo-
rithm for database design which combines the best
features of both of them while staying away from their
shortcomings.

The synthesis approach assumes that the designer is
provided with a set G of FDs. The algorithm described
by Bernstein13 essentially finds a nonredundant cover H
of G using Armstrong's axioms2 and then constructs one
relation for each subset of H which contains all the FDs
with identical left hand sides. With Kambayashi's
modification,15 Bernstein's algorithm yields a minimum
number of relations which must be used to 'represent' G.

Let us look at this approach from a slightly different
point of view. Assume that G consists of FDs from a set
R of relations and that a minimum set Q of relations,
embodying the information contained in R, needs to be
generated. Given this scenario, there are two shortcom-
ings of the way the synthesis approach has been used.
First, it is assumed that Armstrong's axioms2 yield
semantically equivalent derivations of an FD. Given that
only FD information is known, this assumption is rarely
true. The net result is to yield a set Q which is only
partially retrieval preserving of the information in R.9

For example, if R consists of the single relation 11
described in Fig. 8, the synthesis approach would produce
relations (5) and (10), but these relations provide only
partial retrieval support of relation (11). Admittedly,
determination of semaniic equivalence of various deri-
vations of an FD is a difficult problem. However, if our
axioms (Fig. 2) are used, it is possible to get some
improvement. This is due to the fact that: (1) at least in
the context of a single relation, it is probably true that
these axioms yield semantically equivalent derivations of
FDs, and (2) no derivation of an FD involves a connection
trap or lossy join and, hence, there is a better likelihood
that the derivations will be semantically equivalent. Even
with our axioms, schema Q is, in general, only retrieval
equivalent to schema R. This is the other problem with
the way the synthesis approach is generally used—no
attempt is made to preserve the updates of R in Q.

The decomposition approach, on the other hand,
attempts to decompose a relation into several relations to

gain more flexibility in terms of updates. Unless one is
careful with this approach, it is possible to generate a
schema which, while allowing new updates, cannot
determine the validity of some old updates. For example,
consider relation R(ABC D) with the set of FDs{AB->
C; C-» D; A—> D}. The decomposition approach could
produce relations R1(A B C) and R2(A D) which are
only weakly update preserving. Also, no consideration is
given to the issue of redundancy by this approach.

The database design algorithm we are proposing is as
follows:

Step [0] The design algorithm is provided with a col-
lection of relational views V = {V/<Ti, E/>|
I < i < /»}.

Step[l] The consistency of interpretation across all
views is checked. View Vi is consistent with
view Vy if the following condition holds:
X , Y £ T / & X ^ Y e (U E y) + =>X->YeEi+

If the property X-> Y e E/+ is not desired, then
these attributes must be renamed in view Vi so
that consistency of interpretation across all
views holds.

Step [2] The conflict free property of multiple FD
derivations is checked. Two derivations of the
FD X->Y are said to be conflict free if
whenever these derivations yield tuples of the
form <x, y,> and <x, y2) where x / NULL,
then either yv = y2 or yx = NULL or y2 =
NULL. Note that this property is slightly
weaker than saying that the two derivations
are semantically equivalent. For each occur-
rence of a multiple FD derivation where this
property is not desired, some of these attributes
must be renamed. If the conflict free property
is desired, then a trigger mechanism must be
associated with the source relations embodying
these derivations which checks that updates do
not violate the conflict free constraint. For
example, if the following views were provided
it might be desirable to maintain the conflict
free property for both the COURSE -•
PROF -»DEPT and COURSE -• TA ->
DEPT derivations of the FD COURSE-^
DEPT:

VI (COURSE PROF TA)
V2(PROF DEPT)
V3(TA DEPT)

Step [3] Maximize data sharing

(i) Through view redefinition
Consider the following views:

Vl(EMPDEPT)
V2(DEPT MGR)
V3(EMP MGR)

At this point in the algorithm, it can be
assumed that the derivations of the FD EMP-*
MGR embodied by views VI, V2 and V3 are
to be maintained in a conflict free manner. If
these derivations are represented separately,
then the appropriate trigger mechanism (de-
scribed in Step [2]) must be utilized to maintain

7 2 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/68/527421 by guest on 10 April 2024

THE APPLICATION OF FUNCTIONAL DEPENDENCY THEORY TO RELATIONAL DATABASES

this property. On the other hand, if the user is
willing to redefine view V3 as (EMP, DEPT,
MGR), where DEPT-* MGR, then the follow-
ing source relations will be obtained in part (ii)
of this step:

R1(EMP, DEPT)
R2(DEPT, MGR)

Each view is now an updatable view, and
redundant representation of FDs has been
minimized.

(ii) Generate a minimal 3NF schema.

Using the synthesis approach and our ax-
ioms, an update preserving 3NF representation
of the renamed views is constructed subject to
any redundancy imposed in part (i).

The relational schema generated by the above algo-
rithm has several desirable properties. They include:

* Each view is retrieval and update supportable.
* A consistent interpretation across views is supportable.
* Only well-defined tuples (non-Null values in key

attributes) in all views are allowed.
* Incorrect view insertions are reversible.
* A conflict free representation of FDs is supportable.
* Redundant representation of FDs is minimized.

CONCLUSION

Functional dependencies first emerged in the context of
normalization theory. Since then they have been applied
to many areas of database study. What we have done in
this paper is to show that functional dependencies
provide a unified framework for the analysis of various
database problems.

Several concepts have been formalized in this paper.
For view design, 'consistency' and 'updatability' allow us
to identify retrieval and update supportable views,
respectively. In the area of data translation, six levels of
information preserving transformations have been iden-
tified. A database design algorithm has been proposed
which produces a relational schema based on the concepts
of'consistent views', 'updatable views', 'conflict free FD
representation', and 'nonredundant FD representation'.

Acknowledgment

The authors are grateful to Richard T. Bagley who implemented the
relational database design algorithm and with whom we have had
many useful discussions. We would also like to thank the users of the
algorithm for forcing us to clarify our statement of the algorithm.

REFERENCES

1. E. F. Codd, Relational Completeness of Data Base Sublan-
guages, Data Base Systems, Courant Computer Symposia
Series, Vol. 6, pp. 65-98. Prentice-Hall, Englewood Cliffs, New
Jersey (1972).

2. W. W. Armstrong, Dependency structures of data base relation-
ships. Proceedings of the International Federation for Infor-
mation Processing (1974) 580-583.

3. A. K. Arora and C. R. Carlson, The information preserving
properties of relational database transformations. Proceeding
of 1978 VLDB, Berlin. W. Germany, 352-359 (1978).

4. A. K. Arora and C. R. Carlson, On the Updatability of Relational
Views, Technical Memorandum 80-5424-2, Bell Laboratories
(1980).

5. C. R. Carlson and A. K. Arora, Updatability of relational views
based on functional dependencies, Proc. COMPSAC 1979,
Chicago, Illinois, 415-420 (1979).

6. A. V. Aho, C. Beeri and J. D. Ullman The theory of joins in
relational data bases. Proceedings of the 18th Annual ACM
Symposium on Foundations of Computer Science. 107-113,
November 1977.

7. C. Beeri, R. Fagin and J. H. Howard, A complete axiomatization
for functional and multivalued dependencies in database
relations. Proceedings of the ACM-Special Interest Group on
Management of Data SIGMOD. Toronto, Canada, 47-61
(1977).

8. C. A. Zaniolo, Analysis and design of relational schemata for
database systems, PhD Dissertation, Computer Science De-
partment, UCLA (1976).

9. A. K. Arora and C. R. Carlson, A Formal Characterization of the
Information Preserving Properties of Relational Database
Transformation, Technical Memorandum 79-5424-3, Bell
Laboratories (1979).

10. C. Beeri, P. Bernstein and N. Goodman, A sophisticates
introduction to database normalization theory, Proceedings of
1978 VLDB. Berlin. W. Germany, 113-123 (1978).

11. C. Beeri and P. A. Bernstein, Computational problems related
to the design of normal form relational schemas. ACM
Transactions on Database Systems 4 (No. 1), 30-59 (1979).

12: E. F. Codd, Further Normalization of the Data Base Relational
Model, Data Base Systems, Courant Computer Symposia
Series, Vol. 6, pp. 33-64. Prentice-Hall, Englewood Cliffs, New
Jersey (1972).

13. P. A. Bernstein, Synthesizing Third Normal Form Relations from
Functional Dependencies, ACM Transactions on Database
Systems 1 (No. 4), 277-298 (1976).

14. E. F. Codd, Recent investigations into relational data base
systems. Proceedings of the International Federation for
Information Processing 1974, 1017-1021 (1974).

15. Y. Kambayashi, K. Tanaka and S. Yajima, Relational database
design, Proceedings of the 13th IBM Computer Science
Symposium—Software Engineering Series No. 1, Working
Conference on Database Engineering (November 1979).

Received November 1980

© Heyden & Son Ltd, 1982

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 7 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/68/527421 by guest on 10 April 2024

