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It is possible to interpolate in two dimensions from scattered data points using a stochastic process model, giving an
interpolating function which is continuous in all derivatives, passes exactly through the points given and does not
generate spurious features in regions of no data. Using this interpolating method, contours are produced directly from
the data without an intermediate grid. Extensions of the basic model include a two-stage model which allows for a long-
range trend.

INTRODUCTION

Relatively efficient methods exist for the automatic
contouring of functions defined mathematically, or
specified at the nodes of a grid system. However, when
the surface to be contoured is specified only at a finite
number of points arbitrarily positioned in two dimen-
sions, we run into both philosophical and practical
difficulties. The philosophical difficulty is that there are
an infinite number of contour maps which will fit the
given data points, and they can differ widely. Most
existing schemes for interpolating the data to undefined
points in the region of interest run into practical
difficulties—either they fail to give the correct values at
the known data points or they lead to interpolating
functions which are not continuous in all derivatives. In
addition, existing methods for scattered data points
involve interpolating from the data points to the nodes of
a grid, and then using an existing method for grid nodes
to produce the contour map. This method can lead to loss
of information in the final map unless the grid used is
extremely fine.

The method described here uses a statistically-based
interpolation technique, described in another paper,1

which not only gives correct values at the data points but
leads to an interpolating function which is continuous in
all its derivatives. The contour map is produced directly
from the given data points without an intermediate grid
being necessary. This paper describes the practical
aspects of generating such a contour map.

THE INTERPOLATING FUNCTION

Given n data points, values zu z2, ..., zn, at positions
(*i, yi), (x2, y2), • • •, (*„> JfJ and two parameters \i and
p, the interpolating function at an unknown point is
given by

Ax,y) = y'-c(x,y) + n (1)

where y is a vector of n values obtained from the assumed
correlation structure of the data (given by the parameter
p) and the values at the n known points, add c(x, y) is a
vector of correlation values between the n known data
points and the unknown point (x, y). These correlations
are specified by the distances between (x, y) and each
known point (x,, y{) and by the parameter p.

Thus the values y may be calculated once for all. This
step involves inverting the n x n correlation matrix for
the known points, and if n is large it may be more efficient
to partition the points into groups, and calculate the y-
values separately for each group, taking into account
neighbouring points. The values of y may be considered
to be 'uncorrelated' data values, wherein the fact that the
data values are spatially correlated has been removed
from the data.

Thus each interpolating function evaluation requires
the calculation of n correlation values, and a multiplica-
tion with a constant vector. With little additional work,
it is possible to calculate the first and second derivatives
of the interpolating function, and these are used in the
contour tracing. Details of the theory of this interpolating
method are to be found in the other paper.1

The two parameters, fi and p, may be estimated from
the known data points, as described in the earlier paper,
or can be chosen to suit the user of the system. The
'correlation distance' p may be considered to be the
distance over which spatial correlation between two
points is appreciable. The 'grand mean' n is the limiting
value to which the interpolating function tends far away
from any known data points.

CONTOUR TRAaNG

Most algorithms for contouring from scattered data
points require that an intermediate system of grid nodes
be produced, and the contouring is done from this.2

Unless the data points all manage to coincide with grid
nodes, it is possible for the contours so drawn to be
inconsistent with the original data. This has been seen in
practice with the program GPCP (General Purpose
Contouring Program) produced by Calcomp Limited.3

In general, it is going to be possible for the grid nodes
and data points to be made to coincide if we use an
irregular rectangular grid, with n x n nodes. In practice
this may be impossible to realize if n is large.

The sole purpose for the intermediate grid is to enable
the contouring algorithm to carry out the following
functions: (1) ensure that all the contour segments
appropriate to the set of data are drawn; (2) define a
starting point for the drawing of each such contour
segment; (3) decide when to terminate a contour segment,
either because the starting point has been reached again,
or because the area of interest has been left.
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All these functions can in fact be carried out without
the use of an intermediate grid. This is done as follows—
as well as the known data points, a rectangular boundary
is defined, within which the contours are to be drawn. At
each vertex of the bounding rectangle, the value of the
interpolating function is calculated, giving us four
'dummy' data points. The system for keeping track of the
contours works by means of a set of 'reference points'.
Such a set is defined for each contour level, and consists
of a number of points where the interpolating function
value exactly equals the contour level. The set is chosen
so that at least one such reference point lies on each
'definable' contour segment within the area of interest.

A definable contour segment is one which divides the
area of interest into two parts, each containing at least
one data point. It is possible for undefinable contour
segments to exist, which cannot be detected by the
present algorithm, except by accident. Figure 1 shows
such a segment. Such contour segments are products of
the interpolating function, and do not relate directly to
the given data. It is debatable whether or not they should
actually be drawn at all. If they need to be drawn, it
should be possible to include extra heuristics in the
algorithm to discover them.

Undefinable
contour segment

Contour level = 10.0

Figure 1. Example of reference points. X9—Data point with value.
—Reference point.

Reference points are defined by means of a set of
straight lines joining data points. Each such line joins a
data point with value greater than the contour level to a
point with value less than the contour level. Border points
are all connected to internal data points. A search is
carried out along each line until a point is found with
interpolating function value equal to the contour level,
and this becomes a new reference point. Figure 1
illustrates this process. The number of reference points is
less than or equal to n + 3.

Using these reference points, the algorithm for drawing
all the definable contour segments appropriate to a
particular contour level works as follows:

(1) The first reference point on the list is taken as the
starting point of the new contour segment.

(2) From the present point on the contour, a new point
is computed. This is repeated until

either (3) If the contour segment has reached its starting
point again, then the tracing of this segment
is ended and it is drawn.

Figure 2. Outline of contouring algorithm using reference points.

or (4) If the new point falls outside the boundary,
this arm of the segment is ended. If the other
arm has also been ended, then the contour
segment is drawn. Otherwise, tracing the
other arm of the segment is begun from the
starting point, in the opposite direction.

(5) After a contour segment has been drawn, all the
reference points which lie on that segment are deleted
from the list.

(6) If any reference points still exist on the list, a new
segment is started from step 1.

A flowchart to illustrate the algorithm is shown in Fig.
2.

DEFINING A NEW CONTOUR POINT

The algorithm for generating a new point on the contour
from the previous point operates in two stages:

(1) A tangent is drawn to the contour at the current
point, at an angle of 6 to the horizontal, where

= tan" K }
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AUTOMATIC CONTOURING FROM SCATTERED DATA POINTS

A point a distance Ar along the tangent is chosen,
where Ar is known as the 'step length' for generating
the new point.

(2) From this point a perpendicular is drawn to the
tangent, and a search is carried out along this line
until a function value f(x, y) is found which is within
a specified tolerance of the desired contour level. If
no such point is found within a reasonable distance
(due for example to the contour forming a sharp bend
in the area), then the value of Ar is halved and the
process repeated.

Line of search
for new point

si
y

\\tve

Figure 3. Defining new point on contour.

Figure 3 illustrates this procedure. An interesting
refinement is to attempt to select an optimal value of Ar,
the step length, so as to use the fewest points to define a
reasonably smooth contour. In areas where the contour
is almost straight, Ar can be large. Where the contour is
sharply curved, Ar should be much smaller. Let d0/dr be
the rate of change of the contour tangent angle with
distance along the contour. Then

dr dyj dx2 dx dy dxy + \dx) dy

If we specify a desired change in direction from point
to point on the contour of A0, then we may get a
reasonable value for the step length by setting

» <4>

It is obviously necessary to put reasonable maximum
and minimum limits on Ar in the contouring program.

THE TWO STAGE MODEL

The main criticism which could be levelled at the simple
stochastic process model used to produce the interpolat-
ing function is that it assumes the process is stationary
and makes no allowance for a trend or large-scale drift of
the mean. In a lot of cases this simple model gives good
results, but it is obvious that in many cases something
more sophisticated is required. On the other hand, the
fitting of functions such as polynomials to represent the
trend of the data, while common, has nothing to
recommend it but computational convenience. Very few

physical variables extrapolate to infinity or minus infinity
as polynomials do, so that such a model of a large-scale
trend is of value only over a limited area. The approach
used in 'universal kriging'* of modelling the data with a
polynomial or similar functional trend plus a correlated
stochastic residual, is a rather unnatural hybrid.

The simple stochastic model can be extended quite
naturally, by assuming that the trend is also a stationary
stochastic process with a large correlation distance, so
that it varies more slowly than the stochastic process
representing the residuals. The stochastic model to be
fitted to the data is therefore

where ZL(x, y) is a Gaussian random process over the
plane area of interest, with mean \i and correlation
function

= exp[-r2/2pi] (6)

and Zs(x, y) is a similar process with mean 0 and
correlation function

fls(r) = exp[-r2/2p|]

and pL » ps. Figure 4 illustrates this model.

(7)

Figure 4. Illustration of two-stage model.

Three parameters (ji, pL and ps) are needed to fit the
model. This could obviously be fitted by writing down an
expression for the likelihood, and finding three values
which maximized this, but such an approach would be
rather inefficient computationally. Therefore a simpler,
though rather ad hoc, approach has been developed,
which will be described briefly.

First, the data points are grouped together into clusters
of some specified size. This could be done in various
ways: the method selected is to add a new point to a
cluster only if it lies within some preselected distance, /
say, of all the existing points in the cluster. This gives rise
to a set of clusters which are reasonably compact. The
centroid of each such cluster is found and given a value
equal to the average of the points in the cluster. In this
way a set of m 'average points' is found, with m « n, the
original number of data points.

The parameters n and pL are fitted to these m points
using the maximum likelihood methods developed in the
case of the simple stochastic model. The trend part of the
model has now been denned. All that remains is to
estimate ps, which is done using the residual errors at the
n data points

zf = z«-2< (8)
where 4 is the residual error, z, is the original data value
and zi is the trend value at the point, estimated from the
m average points.
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Figure 5. Shkapovskii data contoured by GPCP.

Figure 6. Shkapovskii data contoured by LUCAS.
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AUTOMATIC CONTOURING FROM SCATTERED DATA POINTS

ps is fitted to the n values {z?}, not using the maximum
likelihood method but a faster method which gives a
good approximation if n is large (greater than about 20
say). Basically, the method considers each point and its
nearest neighbour (values z; and z,) and estimates the
correlation between them, and hence the value of ps.
Repeating the procedure for each point and averaging
gives an estimate of ps which appears to be close enough
to the value obtained by maximum likelihood for most
practical purposes.

Thus, the interpolating function at an unknown point
(x, y) becomes

Ax, y) = Estimated trend from m average points using \i
andpL

+ Estimated residual from n data points using
Ps-

RESULTS FROM TEST DATA

The ideas outlined in this paper have been incorporated
in a program LUCAS, written in ALGOL-68R and
running on the Loughborough University of Technology
1904 computer. Real data has been used to test the
program, rather than artificially conceived data. The first
set of test data to be considered is to be found in Ref. 5,
and is a set of 72 measured permeability values from oil
wells in a Russian oilfield, the Shkapovskii oil deposit.
As a comparison the data has been contoured using a
conventional package, GPCP3 and the results are shown
in Fig. 5. Although the contours presented are attractive
and smooth, there are some obvious problems. The
contours are not entirely consistent with the original data
at some points, due presumably to the intermediate grid
adopted by GPCP not being sufficiently fine. Further-
more, in the Southern part of the oilfield where there is
actually no data, the program manages to produce some
detailed contours, including an extremely steep cliff.

In comparison, LUCAS produced Fig. 6, a rather more
boring picture. It reflects the fact that the data is actually
not very highly correlated and therefore the contour map
has not much structure away from the data points. Large
blank areas appear, as much as to say 'unknown territory'.
Thus, the contrasting philosophies of the two approaches
result in radically different contour maps.

In order to test the two stage stochastic model, a
different set of test data was used. This was provided by
a colleague, Dr Roger Smith of the Mathematics
Department at Loughborough, and relates to erosion of
an iridium projection.

One hundred and nineteen data points were provided,
and a trend was fitted which is shown in the contour map
Fig. 7. In many ways this map may be of more interest
than the map including the residuals and fitting all the
data exactly, which is shown in Fig. 8.

Figure 7. Trend contours. Symmetric iridium tip.

Figure 8. Full contours. Symmetric iridium tip.

CONCLUSIONS

A contouring algorithm has been derived for scattered
data points which does not rely on the generation of an
intermediate grid of nodal values. The interpolating
function fits the data points parsimoniously, without
producing 'imaginary' structures in regions not controlled
by data points. Although it is difficult to devise an
objective test for a contouring algorithm, the performance
against examples of real data seems satisfactory. A two-
stage stochastic model incorporating a trend as well as
correlated residual has been developed, and further
generalizations of the basic model are always possible.
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